Integration of genetic and functional genomics data to uncover chemotherapeutic induced cytotoxicity View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Ruowang Li, Dokyoon Kim, Heather E. Wheeler, Scott M. Dudek, M. Eileen Dolan, Marylyn D. Ritchie

ABSTRACT

Identifying genetic variants associated with chemotherapeutic induced toxicity is an important step towards personalized treatment of cancer patients. However, annotating and interpreting the associated genetic variants remains challenging because each associated variant is a surrogate for many other variants in the same region. The issue is further complicated when investigating patterns of associated variants with multiple drugs. In this study, we used biological knowledge to annotate and compare genetic variants associated with cellular sensitivity to mechanistically distinct chemotherapeutic drugs, including platinating agents (cisplatin, carboplatin), capecitabine, cytarabine, and paclitaxel. The most significantly associated SNPs from genome wide association studies of cellular sensitivity to each drug in lymphoblastoid cell lines derived from populations of European (CEU) and African (YRI) descent were analyzed for their enrichment in biological pathways and processes. We annotated genetic variants using higher-level biological annotations in efforts to group variants into more interpretable biological modules. Using the higher-level annotations, we observed distinct biological modules associated with cell line populations as well as classes of chemotherapeutic drugs. We also integrated genetic variants and gene expression variables to build predictive models for chemotherapeutic drug cytotoxicity and prioritized the network models based on the enrichment of DNA regulatory data. Several biological annotations, often encompassing different SNPs, were replicated in independent datasets. By using biological knowledge and DNA regulatory information, we propose a novel approach for jointly analyzing genetic variants associated with multiple chemotherapeutic drugs. More... »

PAGES

178-190

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41397-018-0024-6

DOI

http://dx.doi.org/10.1038/s41397-018-0024-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104161753

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29795408


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Pennsylvania", 
          "id": "https://www.grid.ac/institutes/grid.25879.31", 
          "name": [
            "Bioinformatics and Genomics program, Pennsylvania State University, University Park, Pennsylvania, USA", 
            "Institute for Biomedical Informatics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Ruowang", 
        "id": "sg:person.0616147416.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616147416.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Biomedical and Translational Informatics, Geisinger, Danville, Pennsylvania, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Dokyoon", 
        "id": "sg:person.01341553516.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341553516.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Loyola University Chicago", 
          "id": "https://www.grid.ac/institutes/grid.164971.c", 
          "name": [
            "Departments of Biology and Computer Science, Loyola University Chicago, Chicago, Illinois, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wheeler", 
        "givenName": "Heather E.", 
        "id": "sg:person.01275232417.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275232417.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Pennsylvania", 
          "id": "https://www.grid.ac/institutes/grid.25879.31", 
          "name": [
            "Institute for Biomedical Informatics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA", 
            "Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dudek", 
        "givenName": "Scott M.", 
        "id": "sg:person.01333314717.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333314717.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chicago", 
          "id": "https://www.grid.ac/institutes/grid.170205.1", 
          "name": [
            "Department of Medicine, University of Chicago, Chicago, Illinois, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dolan", 
        "givenName": "M. Eileen", 
        "id": "sg:person.01071140520.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01071140520.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Pennsylvania", 
          "id": "https://www.grid.ac/institutes/grid.25879.31", 
          "name": [
            "Bioinformatics and Genomics program, Pennsylvania State University, University Park, Pennsylvania, USA", 
            "Institute for Biomedical Informatics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA", 
            "Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ritchie", 
        "givenName": "Marylyn D.", 
        "id": "sg:person.01101077522.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101077522.37"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/annonc/mdr031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000199427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0914492107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000225796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11632", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000661742", 
          "https://doi.org/10.1038/nature11632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ctrv.2006.09.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004125417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/0008-5472.can-06-1927", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005907516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1055-9965.epi-06-0617", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009011613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkt1223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010707975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/database/baw093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011376807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1535-7163.mct-06-0591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012636649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc1560", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012837748", 
          "https://doi.org/10.1038/nrc1560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc1560", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012837748", 
          "https://doi.org/10.1038/nrc1560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1182/blood-2008-05-154302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017011799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/28.1.27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017305614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0899-9007(99)00266-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017868440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg3868", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017872565", 
          "https://doi.org/10.1038/nrg3868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/17460441.2016.1245286", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018514853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/519795", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019061180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1003449", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019277578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1535-7163.mct-08-0840", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019338420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1535-7163.mct-08-0248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019761237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajhg.2010.10.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019762324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1634/theoncologist.11-4-342", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020233334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0903103106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020299353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1000888", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022521320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/tpj.2011.38", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023982566", 
          "https://doi.org/10.1038/tpj.2011.38"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.97.7.3450", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026003916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1756-0381-7-20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029023538", 
          "https://doi.org/10.1186/1756-0381-7-20"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029065430", 
          "https://doi.org/10.1038/nature11247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btt572", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030314938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cncr.26737", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031000197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1847", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031429813", 
          "https://doi.org/10.1038/ng1847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1847", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031429813", 
          "https://doi.org/10.1038/ng1847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.107524.110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032096953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.272.28.17376", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032297317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/9789814447973_0038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032326481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-12-2618", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033941167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajhg.2007.12.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034517013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mvr.2014.02.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036265085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/cshperspect.a000141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037252752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.113.151381", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039449435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.113.151381", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039449435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0703736104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039491649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc3628", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040233463", 
          "https://doi.org/10.1038/nrc3628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/75556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044135237", 
          "https://doi.org/10.1038/75556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/75556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044135237", 
          "https://doi.org/10.1038/75556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/jto.0b013e318189f50e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044137799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.lungcan.2014.08.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045687287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1001827107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045694233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cncr.28548", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047798360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/cshperspect.a000158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048557207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gepi.21808", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051275813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2007-8-3-r39", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051807491", 
          "https://doi.org/10.1186/gb-2007-8-3-r39"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12531", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052616209", 
          "https://doi.org/10.1038/nature12531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3109/13880209.2015.1113995", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053311833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2217/pgs.11.121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053738020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/519850", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058792487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/annonc/5.suppl_1.s7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059393382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/fpc.0b013e3283481967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060340937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/fpc.0b013e3283481967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060340937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/fpc.0b013e3283481967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060340937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1947601911408076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064081086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/138920106779116928", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069177456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3892/or_00001044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071537828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082886169", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "Identifying genetic variants associated with chemotherapeutic induced toxicity is an important step towards personalized treatment of cancer patients. However, annotating and interpreting the associated genetic variants remains challenging because each associated variant is a surrogate for many other variants in the same region. The issue is further complicated when investigating patterns of associated variants with multiple drugs. In this study, we used biological knowledge to annotate and compare genetic variants associated with cellular sensitivity to mechanistically distinct chemotherapeutic drugs, including platinating agents (cisplatin, carboplatin), capecitabine, cytarabine, and paclitaxel. The most significantly associated SNPs from genome wide association studies of cellular sensitivity to each drug in lymphoblastoid cell lines derived from populations of European (CEU) and African (YRI) descent were analyzed for their enrichment in biological pathways and processes. We annotated genetic variants using higher-level biological annotations in efforts to group variants into more interpretable biological modules. Using the higher-level annotations, we observed distinct biological modules associated with cell line populations as well as classes of chemotherapeutic drugs. We also integrated genetic variants and gene expression variables to build predictive models for chemotherapeutic drug cytotoxicity and prioritized the network models based on the enrichment of DNA regulatory data. Several biological annotations, often encompassing different SNPs, were replicated in independent datasets. By using biological knowledge and DNA regulatory information, we propose a novel approach for jointly analyzing genetic variants associated with multiple chemotherapeutic drugs.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41397-018-0024-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2691302", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3146132", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4317568", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2690867", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1027238", 
        "issn": [
          "1470-269X", 
          "1473-1150"
        ], 
        "name": "The Pharmacogenomics Journal", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "name": "Integration of genetic and functional genomics data to uncover chemotherapeutic induced cytotoxicity", 
    "pagination": "178-190", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d282721dd60b051dbd910135b298336ad0fd8bea6dbea25b9a8d436a11324bb4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29795408"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101083949"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41397-018-0024-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104161753"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41397-018-0024-6", 
      "https://app.dimensions.ai/details/publication/pub.1104161753"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13087_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41397-018-0024-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41397-018-0024-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41397-018-0024-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41397-018-0024-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41397-018-0024-6'


 

This table displays all metadata directly associated to this object as RDF triples.

306 TRIPLES      21 PREDICATES      87 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41397-018-0024-6 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author Neb96133e5db94e28b313cb45680adb5d
4 schema:citation sg:pub.10.1038/75556
5 sg:pub.10.1038/nature11247
6 sg:pub.10.1038/nature11632
7 sg:pub.10.1038/nature12531
8 sg:pub.10.1038/ng1847
9 sg:pub.10.1038/nrc1560
10 sg:pub.10.1038/nrc3628
11 sg:pub.10.1038/nrg3868
12 sg:pub.10.1038/tpj.2011.38
13 sg:pub.10.1186/1756-0381-7-20
14 sg:pub.10.1186/gb-2007-8-3-r39
15 https://app.dimensions.ai/details/publication/pub.1082886169
16 https://doi.org/10.1002/cncr.26737
17 https://doi.org/10.1002/cncr.28548
18 https://doi.org/10.1002/gepi.21808
19 https://doi.org/10.1016/j.ajhg.2007.12.015
20 https://doi.org/10.1016/j.ajhg.2010.10.018
21 https://doi.org/10.1016/j.ctrv.2006.09.006
22 https://doi.org/10.1016/j.lungcan.2014.08.001
23 https://doi.org/10.1016/j.mvr.2014.02.007
24 https://doi.org/10.1016/s0899-9007(99)00266-x
25 https://doi.org/10.1073/pnas.0703736104
26 https://doi.org/10.1073/pnas.0903103106
27 https://doi.org/10.1073/pnas.0914492107
28 https://doi.org/10.1073/pnas.1001827107
29 https://doi.org/10.1073/pnas.97.7.3450
30 https://doi.org/10.1074/jbc.272.28.17376
31 https://doi.org/10.1080/17460441.2016.1245286
32 https://doi.org/10.1086/519795
33 https://doi.org/10.1086/519850
34 https://doi.org/10.1093/annonc/5.suppl_1.s7
35 https://doi.org/10.1093/annonc/mdr031
36 https://doi.org/10.1093/bioinformatics/btt572
37 https://doi.org/10.1093/database/baw093
38 https://doi.org/10.1093/nar/28.1.27
39 https://doi.org/10.1093/nar/gkt1223
40 https://doi.org/10.1097/fpc.0b013e3283481967
41 https://doi.org/10.1097/jto.0b013e318189f50e
42 https://doi.org/10.1101/cshperspect.a000141
43 https://doi.org/10.1101/cshperspect.a000158
44 https://doi.org/10.1101/gr.107524.110
45 https://doi.org/10.1142/9789814447973_0038
46 https://doi.org/10.1158/0008-5472.can-06-1927
47 https://doi.org/10.1158/1055-9965.epi-06-0617
48 https://doi.org/10.1158/1078-0432.ccr-12-2618
49 https://doi.org/10.1158/1535-7163.mct-06-0591
50 https://doi.org/10.1158/1535-7163.mct-08-0248
51 https://doi.org/10.1158/1535-7163.mct-08-0840
52 https://doi.org/10.1177/1947601911408076
53 https://doi.org/10.1182/blood-2008-05-154302
54 https://doi.org/10.1371/journal.pgen.1000888
55 https://doi.org/10.1371/journal.pgen.1003449
56 https://doi.org/10.1534/genetics.113.151381
57 https://doi.org/10.1634/theoncologist.11-4-342
58 https://doi.org/10.2174/138920106779116928
59 https://doi.org/10.2217/pgs.11.121
60 https://doi.org/10.3109/13880209.2015.1113995
61 https://doi.org/10.3892/or_00001044
62 schema:datePublished 2019-04
63 schema:datePublishedReg 2019-04-01
64 schema:description Identifying genetic variants associated with chemotherapeutic induced toxicity is an important step towards personalized treatment of cancer patients. However, annotating and interpreting the associated genetic variants remains challenging because each associated variant is a surrogate for many other variants in the same region. The issue is further complicated when investigating patterns of associated variants with multiple drugs. In this study, we used biological knowledge to annotate and compare genetic variants associated with cellular sensitivity to mechanistically distinct chemotherapeutic drugs, including platinating agents (cisplatin, carboplatin), capecitabine, cytarabine, and paclitaxel. The most significantly associated SNPs from genome wide association studies of cellular sensitivity to each drug in lymphoblastoid cell lines derived from populations of European (CEU) and African (YRI) descent were analyzed for their enrichment in biological pathways and processes. We annotated genetic variants using higher-level biological annotations in efforts to group variants into more interpretable biological modules. Using the higher-level annotations, we observed distinct biological modules associated with cell line populations as well as classes of chemotherapeutic drugs. We also integrated genetic variants and gene expression variables to build predictive models for chemotherapeutic drug cytotoxicity and prioritized the network models based on the enrichment of DNA regulatory data. Several biological annotations, often encompassing different SNPs, were replicated in independent datasets. By using biological knowledge and DNA regulatory information, we propose a novel approach for jointly analyzing genetic variants associated with multiple chemotherapeutic drugs.
65 schema:genre research_article
66 schema:inLanguage en
67 schema:isAccessibleForFree false
68 schema:isPartOf N7c34ed24a89f495181ee703e0b16194b
69 Nb80637cdb1b448248b7ae2dd95c225ac
70 sg:journal.1027238
71 schema:name Integration of genetic and functional genomics data to uncover chemotherapeutic induced cytotoxicity
72 schema:pagination 178-190
73 schema:productId N1346b8807e914d4193634070fb534e2c
74 N422b76d4180040faa9cecac04572f22d
75 N667bdfc01efb4c19a72b0a83413a6b8b
76 Ndac8200317414503a5a39e570749cca6
77 Ne1c76911a98344378010946f3b1a9a26
78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104161753
79 https://doi.org/10.1038/s41397-018-0024-6
80 schema:sdDatePublished 2019-04-11T14:30
81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
82 schema:sdPublisher N945a4e19747549c2b61fe518d4a42ad7
83 schema:url https://www.nature.com/articles/s41397-018-0024-6
84 sgo:license sg:explorer/license/
85 sgo:sdDataset articles
86 rdf:type schema:ScholarlyArticle
87 N1346b8807e914d4193634070fb534e2c schema:name nlm_unique_id
88 schema:value 101083949
89 rdf:type schema:PropertyValue
90 N422b76d4180040faa9cecac04572f22d schema:name doi
91 schema:value 10.1038/s41397-018-0024-6
92 rdf:type schema:PropertyValue
93 N667bdfc01efb4c19a72b0a83413a6b8b schema:name pubmed_id
94 schema:value 29795408
95 rdf:type schema:PropertyValue
96 N7c34ed24a89f495181ee703e0b16194b schema:issueNumber 2
97 rdf:type schema:PublicationIssue
98 N945a4e19747549c2b61fe518d4a42ad7 schema:name Springer Nature - SN SciGraph project
99 rdf:type schema:Organization
100 Na86f910ed4b84b459cfacb38bd1f90ef schema:name Biomedical and Translational Informatics, Geisinger, Danville, Pennsylvania, USA
101 rdf:type schema:Organization
102 Nb80637cdb1b448248b7ae2dd95c225ac schema:volumeNumber 19
103 rdf:type schema:PublicationVolume
104 Nb8e054ed5a984fb68d1822976d669f55 rdf:first sg:person.01275232417.64
105 rdf:rest Ndf2ddd3afd864f918727ebf0d264b5de
106 Nc0b844a35ac34881a438a36c274be087 rdf:first sg:person.01071140520.49
107 rdf:rest Ne53e36b8638441b6a0b183f2353eb1c0
108 Nc23db13ee23b4972935aef1bdeb18ce6 rdf:first sg:person.01341553516.04
109 rdf:rest Nb8e054ed5a984fb68d1822976d669f55
110 Ndac8200317414503a5a39e570749cca6 schema:name readcube_id
111 schema:value d282721dd60b051dbd910135b298336ad0fd8bea6dbea25b9a8d436a11324bb4
112 rdf:type schema:PropertyValue
113 Ndf2ddd3afd864f918727ebf0d264b5de rdf:first sg:person.01333314717.92
114 rdf:rest Nc0b844a35ac34881a438a36c274be087
115 Ne1c76911a98344378010946f3b1a9a26 schema:name dimensions_id
116 schema:value pub.1104161753
117 rdf:type schema:PropertyValue
118 Ne53e36b8638441b6a0b183f2353eb1c0 rdf:first sg:person.01101077522.37
119 rdf:rest rdf:nil
120 Neb96133e5db94e28b313cb45680adb5d rdf:first sg:person.0616147416.36
121 rdf:rest Nc23db13ee23b4972935aef1bdeb18ce6
122 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
123 schema:name Biological Sciences
124 rdf:type schema:DefinedTerm
125 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
126 schema:name Genetics
127 rdf:type schema:DefinedTerm
128 sg:grant.2690867 http://pending.schema.org/fundedItem sg:pub.10.1038/s41397-018-0024-6
129 rdf:type schema:MonetaryGrant
130 sg:grant.2691302 http://pending.schema.org/fundedItem sg:pub.10.1038/s41397-018-0024-6
131 rdf:type schema:MonetaryGrant
132 sg:grant.3146132 http://pending.schema.org/fundedItem sg:pub.10.1038/s41397-018-0024-6
133 rdf:type schema:MonetaryGrant
134 sg:grant.4317568 http://pending.schema.org/fundedItem sg:pub.10.1038/s41397-018-0024-6
135 rdf:type schema:MonetaryGrant
136 sg:journal.1027238 schema:issn 1470-269X
137 1473-1150
138 schema:name The Pharmacogenomics Journal
139 rdf:type schema:Periodical
140 sg:person.01071140520.49 schema:affiliation https://www.grid.ac/institutes/grid.170205.1
141 schema:familyName Dolan
142 schema:givenName M. Eileen
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01071140520.49
144 rdf:type schema:Person
145 sg:person.01101077522.37 schema:affiliation https://www.grid.ac/institutes/grid.25879.31
146 schema:familyName Ritchie
147 schema:givenName Marylyn D.
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101077522.37
149 rdf:type schema:Person
150 sg:person.01275232417.64 schema:affiliation https://www.grid.ac/institutes/grid.164971.c
151 schema:familyName Wheeler
152 schema:givenName Heather E.
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275232417.64
154 rdf:type schema:Person
155 sg:person.01333314717.92 schema:affiliation https://www.grid.ac/institutes/grid.25879.31
156 schema:familyName Dudek
157 schema:givenName Scott M.
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333314717.92
159 rdf:type schema:Person
160 sg:person.01341553516.04 schema:affiliation Na86f910ed4b84b459cfacb38bd1f90ef
161 schema:familyName Kim
162 schema:givenName Dokyoon
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341553516.04
164 rdf:type schema:Person
165 sg:person.0616147416.36 schema:affiliation https://www.grid.ac/institutes/grid.25879.31
166 schema:familyName Li
167 schema:givenName Ruowang
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616147416.36
169 rdf:type schema:Person
170 sg:pub.10.1038/75556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044135237
171 https://doi.org/10.1038/75556
172 rdf:type schema:CreativeWork
173 sg:pub.10.1038/nature11247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029065430
174 https://doi.org/10.1038/nature11247
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/nature11632 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000661742
177 https://doi.org/10.1038/nature11632
178 rdf:type schema:CreativeWork
179 sg:pub.10.1038/nature12531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052616209
180 https://doi.org/10.1038/nature12531
181 rdf:type schema:CreativeWork
182 sg:pub.10.1038/ng1847 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031429813
183 https://doi.org/10.1038/ng1847
184 rdf:type schema:CreativeWork
185 sg:pub.10.1038/nrc1560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012837748
186 https://doi.org/10.1038/nrc1560
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/nrc3628 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040233463
189 https://doi.org/10.1038/nrc3628
190 rdf:type schema:CreativeWork
191 sg:pub.10.1038/nrg3868 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017872565
192 https://doi.org/10.1038/nrg3868
193 rdf:type schema:CreativeWork
194 sg:pub.10.1038/tpj.2011.38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023982566
195 https://doi.org/10.1038/tpj.2011.38
196 rdf:type schema:CreativeWork
197 sg:pub.10.1186/1756-0381-7-20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029023538
198 https://doi.org/10.1186/1756-0381-7-20
199 rdf:type schema:CreativeWork
200 sg:pub.10.1186/gb-2007-8-3-r39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051807491
201 https://doi.org/10.1186/gb-2007-8-3-r39
202 rdf:type schema:CreativeWork
203 https://app.dimensions.ai/details/publication/pub.1082886169 schema:CreativeWork
204 https://doi.org/10.1002/cncr.26737 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031000197
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1002/cncr.28548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047798360
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1002/gepi.21808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051275813
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1016/j.ajhg.2007.12.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034517013
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1016/j.ajhg.2010.10.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019762324
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1016/j.ctrv.2006.09.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004125417
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1016/j.lungcan.2014.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045687287
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1016/j.mvr.2014.02.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036265085
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1016/s0899-9007(99)00266-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017868440
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1073/pnas.0703736104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039491649
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1073/pnas.0903103106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020299353
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1073/pnas.0914492107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000225796
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1073/pnas.1001827107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045694233
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1073/pnas.97.7.3450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026003916
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1074/jbc.272.28.17376 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032297317
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1080/17460441.2016.1245286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018514853
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1086/519795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019061180
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1086/519850 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058792487
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1093/annonc/5.suppl_1.s7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059393382
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1093/annonc/mdr031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000199427
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1093/bioinformatics/btt572 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030314938
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1093/database/baw093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011376807
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1093/nar/28.1.27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017305614
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1093/nar/gkt1223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010707975
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1097/fpc.0b013e3283481967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060340937
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1097/jto.0b013e318189f50e schema:sameAs https://app.dimensions.ai/details/publication/pub.1044137799
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1101/cshperspect.a000141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037252752
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1101/cshperspect.a000158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048557207
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1101/gr.107524.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032096953
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1142/9789814447973_0038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032326481
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1158/0008-5472.can-06-1927 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005907516
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1158/1055-9965.epi-06-0617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009011613
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1158/1078-0432.ccr-12-2618 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033941167
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1158/1535-7163.mct-06-0591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012636649
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1158/1535-7163.mct-08-0248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019761237
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1158/1535-7163.mct-08-0840 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019338420
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1177/1947601911408076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064081086
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1182/blood-2008-05-154302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017011799
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1371/journal.pgen.1000888 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022521320
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1371/journal.pgen.1003449 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019277578
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1534/genetics.113.151381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039449435
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1634/theoncologist.11-4-342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020233334
287 rdf:type schema:CreativeWork
288 https://doi.org/10.2174/138920106779116928 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069177456
289 rdf:type schema:CreativeWork
290 https://doi.org/10.2217/pgs.11.121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053738020
291 rdf:type schema:CreativeWork
292 https://doi.org/10.3109/13880209.2015.1113995 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053311833
293 rdf:type schema:CreativeWork
294 https://doi.org/10.3892/or_00001044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071537828
295 rdf:type schema:CreativeWork
296 https://www.grid.ac/institutes/grid.164971.c schema:alternateName Loyola University Chicago
297 schema:name Departments of Biology and Computer Science, Loyola University Chicago, Chicago, Illinois, USA
298 rdf:type schema:Organization
299 https://www.grid.ac/institutes/grid.170205.1 schema:alternateName University of Chicago
300 schema:name Department of Medicine, University of Chicago, Chicago, Illinois, USA
301 rdf:type schema:Organization
302 https://www.grid.ac/institutes/grid.25879.31 schema:alternateName University of Pennsylvania
303 schema:name Bioinformatics and Genomics program, Pennsylvania State University, University Park, Pennsylvania, USA
304 Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
305 Institute for Biomedical Informatics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
306 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...