Depth-discrete metagenomics reveals the roles of microbes in biogeochemical cycling in the tropical freshwater Lake Tanganyika View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-02-09

AUTHORS

Patricia Q. Tran, Samantha C. Bachand, Peter B. McIntyre, Benjamin M. Kraemer, Yvonne Vadeboncoeur, Ismael A. Kimirei, Rashid Tamatamah, Katherine D. McMahon, Karthik Anantharaman

ABSTRACT

Lake Tanganyika (LT) is the largest tropical freshwater lake, and the largest body of anoxic freshwater on Earth’s surface. LT’s mixed oxygenated surface waters float atop a permanently anoxic layer and host rich animal biodiversity. However, little is known about microorganisms inhabiting LT’s 1470 meter deep water column and their contributions to nutrient cycling, which affect ecosystem-level function and productivity. Here, we applied genome-resolved metagenomics and environmental analyses to link specific taxa to key biogeochemical processes across a vertical depth gradient in LT. We reconstructed 523 unique metagenome-assembled genomes (MAGs) from 34 bacterial and archaeal phyla, including many rarely observed in freshwater lakes. We identified sharp contrasts in community composition and metabolic potential with an abundance of typical freshwater taxa in oxygenated mixed upper layers, and Archaea and uncultured Candidate Phyla in deep anoxic waters. Genomic capacity for nitrogen and sulfur cycling was abundant in MAGs recovered from anoxic waters, highlighting microbial contributions to the productive surface layers via recycling of upwelled nutrients, and greenhouse gases such as nitrous oxide. Overall, our study provides a blueprint for incorporation of aquatic microbial genomics in the representation of tropical freshwater lakes, especially in the context of ongoing climate change, which is predicted to bring increased stratification and anoxia to freshwater lakes. More... »

PAGES

1971-1986

References to SciGraph publications

  • 2018-02-11. Wet deposition of atmospheric nitrogen contributes to nitrogen loading in the surface waters of Lake Tanganyika, East Africa: a case study of the Kigoma region in ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
  • 2018-08-15. Understanding explosive diversification through cichlid fish genomics in NATURE REVIEWS GENETICS
  • 2018-11-30. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries in NATURE COMMUNICATIONS
  • 2018-05-28. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy in NATURE MICROBIOLOGY
  • 2016-04-11. A new view of the tree of life in NATURE MICROBIOLOGY
  • 2016-10-03. Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota in NATURE MICROBIOLOGY
  • 2017-07-25. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2013-10-28. Deoxygenation alters bacterial diversity and community composition in the ocean’s largest oxygen minimum zone in NATURE COMMUNICATIONS
  • 2005-11-12. Sulfur and primary production in aquatic environments: an ecological perspective in PHOTOSYNTHESIS RESEARCH
  • 2016-10-24. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system in NATURE COMMUNICATIONS
  • 2004-07. Inorganic Nutrient Concentrations and Chlorophyll in the Euphotic Zone of Lake Tanganyika in HYDROBIOLOGIA
  • 2010-03-08. Prodigal: prokaryotic gene recognition and translation initiation site identification in BMC BIOINFORMATICS
  • 2018-08-27. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life in NATURE BIOTECHNOLOGY
  • 2014-10-30. Oxic water column methanogenesis as a major component of aquatic CH4 fluxes in NATURE COMMUNICATIONS
  • 1999-07. The stoichiometry of particulate nutrients in Lake Tanganyika – implications for nutrient limitation of phytoplankton in HYDROBIOLOGIA
  • 2017-08-01. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea in NATURE BIOTECHNOLOGY
  • 2016-01-08. Genome-wide selective sweeps and gene-specific sweeps in natural bacterial populations in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2007-06-28. Biological and chemical sulfide oxidation in a Beggiatoa inhabited marine sediment in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41396-021-00898-x

    DOI

    http://dx.doi.org/10.1038/s41396-021-00898-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1135273151

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/33564113


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Microbiology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Ecosystem", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Lakes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Metagenome", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Metagenomics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Tanzania", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Integrative Biology, University of Wisconsin\u2013Madison, Madison, WI, USA", 
              "id": "http://www.grid.ac/institutes/grid.14003.36", 
              "name": [
                "Department of Bacteriology, University of Wisconsin\u2013Madison, Madison, WI, USA", 
                "Department of Integrative Biology, University of Wisconsin\u2013Madison, Madison, WI, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tran", 
            "givenName": "Patricia Q.", 
            "id": "sg:person.010006076536.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010006076536.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Bacteriology, University of Wisconsin\u2013Madison, Madison, WI, USA", 
              "id": "http://www.grid.ac/institutes/grid.14003.36", 
              "name": [
                "Department of Bacteriology, University of Wisconsin\u2013Madison, Madison, WI, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bachand", 
            "givenName": "Samantha C.", 
            "id": "sg:person.010712665065.77", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010712665065.77"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Natural Resources and the Environment, Cornell University, Ithaca, NY, USA", 
              "id": "http://www.grid.ac/institutes/grid.5386.8", 
              "name": [
                "Department of Natural Resources and the Environment, Cornell University, Ithaca, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "McIntyre", 
            "givenName": "Peter B.", 
            "id": "sg:person.01004464675.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004464675.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Ecosystem Research, Leibniz Institute for Freshwater Ecology and Inland Fisheries, Berlin, Germany", 
              "id": "http://www.grid.ac/institutes/grid.419247.d", 
              "name": [
                "Department of Ecosystem Research, Leibniz Institute for Freshwater Ecology and Inland Fisheries, Berlin, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kraemer", 
            "givenName": "Benjamin M.", 
            "id": "sg:person.010104276315.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010104276315.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biological Sciences, Wright State University, Dayton, OH, USA", 
              "id": "http://www.grid.ac/institutes/grid.268333.f", 
              "name": [
                "Department of Biological Sciences, Wright State University, Dayton, OH, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vadeboncoeur", 
            "givenName": "Yvonne", 
            "id": "sg:person.01363743223.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363743223.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Tanzania Fisheries Research Institute (TAFIRI), Dar es Salaam, Tanzania", 
              "id": "http://www.grid.ac/institutes/grid.463660.1", 
              "name": [
                "Tanzania Fisheries Research Institute (TAFIRI), Dar es Salaam, Tanzania"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kimirei", 
            "givenName": "Ismael A.", 
            "id": "sg:person.01334557423.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334557423.67"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Ministry of Livestock and Fisheries, Dodoma, Tanzania", 
              "id": "http://www.grid.ac/institutes/grid.463465.6", 
              "name": [
                "Ministry of Livestock and Fisheries, Dodoma, Tanzania"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tamatamah", 
            "givenName": "Rashid", 
            "id": "sg:person.01365550145.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365550145.04"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Civil and Environmental Engineering, University of Wisconsin\u2013Madison, Madison, WI, USA", 
              "id": "http://www.grid.ac/institutes/grid.14003.36", 
              "name": [
                "Department of Bacteriology, University of Wisconsin\u2013Madison, Madison, WI, USA", 
                "Department of Civil and Environmental Engineering, University of Wisconsin\u2013Madison, Madison, WI, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "McMahon", 
            "givenName": "Katherine D.", 
            "id": "sg:person.01007375500.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01007375500.45"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Bacteriology, University of Wisconsin\u2013Madison, Madison, WI, USA", 
              "id": "http://www.grid.ac/institutes/grid.14003.36", 
              "name": [
                "Department of Bacteriology, University of Wisconsin\u2013Madison, Madison, WI, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Anantharaman", 
            "givenName": "Karthik", 
            "id": "sg:person.0714252516.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714252516.09"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11356-018-1389-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100960114", 
              "https://doi.org/10.1007/s11356-018-1389-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11120-005-3250-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041490123", 
              "https://doi.org/10.1007/s11120-005-3250-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-11-119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026423599", 
              "https://doi.org/10.1186/1471-2105-11-119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms3705", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032540296", 
              "https://doi.org/10.1038/ncomms3705"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1003706002126", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045460581", 
              "https://doi.org/10.1023/a:1003706002126"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.3893", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091105392", 
              "https://doi.org/10.1038/nbt.3893"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmicrobiol.2016.48", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010598799", 
              "https://doi.org/10.1038/nmicrobiol.2016.48"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-018-07641-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110204842", 
              "https://doi.org/10.1038/s41467-018-07641-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms6350", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023362023", 
              "https://doi.org/10.1038/ncomms6350"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2007.50", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031411729", 
              "https://doi.org/10.1038/ismej.2007.50"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:hydr.0000033125.87313.53", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049092968", 
              "https://doi.org/10.1023/b:hydr.0000033125.87313.53"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41564-018-0171-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104243589", 
              "https://doi.org/10.1038/s41564-018-0171-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41576-018-0043-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106151844", 
              "https://doi.org/10.1038/s41576-018-0043-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.4229", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106359945", 
              "https://doi.org/10.1038/nbt.4229"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmicrobiol.2016.170", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007760660", 
              "https://doi.org/10.1038/nmicrobiol.2016.170"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2015.241", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032868433", 
              "https://doi.org/10.1038/ismej.2015.241"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2017.126", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090891867", 
              "https://doi.org/10.1038/ismej.2017.126"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms13219", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035143030", 
              "https://doi.org/10.1038/ncomms13219"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-02-09", 
        "datePublishedReg": "2021-02-09", 
        "description": "Lake Tanganyika (LT) is the largest tropical freshwater lake, and the largest body of anoxic freshwater on Earth\u2019s surface. LT\u2019s mixed oxygenated surface waters float atop a permanently anoxic layer and host rich animal biodiversity. However, little is known about microorganisms inhabiting LT\u2019s 1470\u00a0meter deep\u00a0water column and their contributions to nutrient cycling, which affect ecosystem-level function and productivity. Here, we applied genome-resolved metagenomics and environmental analyses to link specific taxa to key biogeochemical processes across a vertical depth gradient in LT. We reconstructed 523 unique metagenome-assembled genomes (MAGs) from 34 bacterial and archaeal phyla, including many rarely observed in freshwater lakes. We identified sharp contrasts in community composition and metabolic potential with an abundance of typical freshwater taxa in oxygenated mixed upper layers, and Archaea and uncultured Candidate Phyla in deep anoxic waters. Genomic capacity for nitrogen and sulfur cycling was abundant in MAGs recovered from anoxic waters, highlighting microbial contributions to the productive surface layers via recycling of upwelled nutrients, and greenhouse gases such as nitrous oxide. Overall, our study provides a blueprint for incorporation of aquatic microbial genomics in the representation of tropical freshwater lakes, especially in the context of ongoing climate change, which is predicted to bring increased stratification and anoxia to freshwater lakes.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41396-021-00898-x", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3095001", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3117751", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3005666", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1038436", 
            "issn": [
              "1751-7362", 
              "1751-7370"
            ], 
            "name": "The ISME Journal: Multidisciplinary Journal of Microbial Ecology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "15"
          }
        ], 
        "keywords": [
          "freshwater lakes", 
          "metagenome-assembled genomes", 
          "tropical freshwater lake", 
          "Lake Tanganyika", 
          "anoxic waters", 
          "typical freshwater taxa", 
          "unique metagenome-assembled genomes", 
          "deep anoxic waters", 
          "mixed upper layer", 
          "productive surface layer", 
          "key biogeochemical processes", 
          "anoxic freshwater", 
          "ecosystem-level functions", 
          "freshwater taxa", 
          "ongoing climate change", 
          "vertical depth gradient", 
          "upwelled nutrients", 
          "role of microbes", 
          "biogeochemical processes", 
          "sulfur cycling", 
          "Earth's surface", 
          "anoxic layers", 
          "water column", 
          "biogeochemical cycling", 
          "surface water", 
          "candidate phyla", 
          "archaeal phyla", 
          "microbial genomics", 
          "greenhouse gases", 
          "climate change", 
          "animal biodiversity", 
          "community composition", 
          "metabolic potential", 
          "freshwater", 
          "lakes", 
          "upper layer", 
          "genomic capacity", 
          "nutrient cycling", 
          "specific taxa", 
          "microbial contribution", 
          "depth gradient", 
          "surface layer", 
          "nitrous oxide", 
          "phyla", 
          "metagenomics", 
          "taxa", 
          "water", 
          "cycling", 
          "Tanganyika", 
          "archaea", 
          "genome", 
          "genomics", 
          "biodiversity", 
          "layer", 
          "anoxia", 
          "microbes", 
          "abundance", 
          "meters", 
          "gases", 
          "environmental analysis", 
          "surface", 
          "stratification", 
          "gradient", 
          "nutrients", 
          "contribution", 
          "composition", 
          "column", 
          "large body", 
          "sharp contrast", 
          "recycling", 
          "productivity", 
          "role", 
          "nitrogen", 
          "changes", 
          "function", 
          "contrast", 
          "body", 
          "blueprint", 
          "process", 
          "incorporation", 
          "potential", 
          "analysis", 
          "oxide", 
          "capacity", 
          "study", 
          "representation", 
          "context", 
          "lt"
        ], 
        "name": "Depth-discrete metagenomics reveals the roles of microbes in biogeochemical cycling in the tropical freshwater Lake Tanganyika", 
        "pagination": "1971-1986", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1135273151"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41396-021-00898-x"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "33564113"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41396-021-00898-x", 
          "https://app.dimensions.ai/details/publication/pub.1135273151"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:39", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_913.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41396-021-00898-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41396-021-00898-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41396-021-00898-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41396-021-00898-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41396-021-00898-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    323 TRIPLES      22 PREDICATES      137 URIs      111 LITERALS      12 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41396-021-00898-x schema:about N011bceb556354aafb974a42462dc1f15
    2 N21e79a0e47214bb0b135f555f830ccad
    3 N664c96ffe91142b2aec879669e149755
    4 N9d5091af442641e09ab444762a548d4f
    5 Ncba420668b9b49ce978cb21ec84616dd
    6 anzsrc-for:06
    7 anzsrc-for:0605
    8 schema:author Nc96ed1ef3b2140e1a20f60ab5699d3c3
    9 schema:citation sg:pub.10.1007/s11120-005-3250-0
    10 sg:pub.10.1007/s11356-018-1389-4
    11 sg:pub.10.1023/a:1003706002126
    12 sg:pub.10.1023/b:hydr.0000033125.87313.53
    13 sg:pub.10.1038/ismej.2007.50
    14 sg:pub.10.1038/ismej.2015.241
    15 sg:pub.10.1038/ismej.2017.126
    16 sg:pub.10.1038/nbt.3893
    17 sg:pub.10.1038/nbt.4229
    18 sg:pub.10.1038/ncomms13219
    19 sg:pub.10.1038/ncomms3705
    20 sg:pub.10.1038/ncomms6350
    21 sg:pub.10.1038/nmicrobiol.2016.170
    22 sg:pub.10.1038/nmicrobiol.2016.48
    23 sg:pub.10.1038/s41467-018-07641-9
    24 sg:pub.10.1038/s41564-018-0171-1
    25 sg:pub.10.1038/s41576-018-0043-9
    26 sg:pub.10.1186/1471-2105-11-119
    27 schema:datePublished 2021-02-09
    28 schema:datePublishedReg 2021-02-09
    29 schema:description Lake Tanganyika (LT) is the largest tropical freshwater lake, and the largest body of anoxic freshwater on Earth’s surface. LT’s mixed oxygenated surface waters float atop a permanently anoxic layer and host rich animal biodiversity. However, little is known about microorganisms inhabiting LT’s 1470 meter deep water column and their contributions to nutrient cycling, which affect ecosystem-level function and productivity. Here, we applied genome-resolved metagenomics and environmental analyses to link specific taxa to key biogeochemical processes across a vertical depth gradient in LT. We reconstructed 523 unique metagenome-assembled genomes (MAGs) from 34 bacterial and archaeal phyla, including many rarely observed in freshwater lakes. We identified sharp contrasts in community composition and metabolic potential with an abundance of typical freshwater taxa in oxygenated mixed upper layers, and Archaea and uncultured Candidate Phyla in deep anoxic waters. Genomic capacity for nitrogen and sulfur cycling was abundant in MAGs recovered from anoxic waters, highlighting microbial contributions to the productive surface layers via recycling of upwelled nutrients, and greenhouse gases such as nitrous oxide. Overall, our study provides a blueprint for incorporation of aquatic microbial genomics in the representation of tropical freshwater lakes, especially in the context of ongoing climate change, which is predicted to bring increased stratification and anoxia to freshwater lakes.
    30 schema:genre article
    31 schema:inLanguage en
    32 schema:isAccessibleForFree true
    33 schema:isPartOf N8e0d7183e3d345459dfb9e97692fa1f4
    34 Nf5f3a6d69cc6409b97ef0576f3be1646
    35 sg:journal.1038436
    36 schema:keywords Earth's surface
    37 Lake Tanganyika
    38 Tanganyika
    39 abundance
    40 analysis
    41 animal biodiversity
    42 anoxia
    43 anoxic freshwater
    44 anoxic layers
    45 anoxic waters
    46 archaea
    47 archaeal phyla
    48 biodiversity
    49 biogeochemical cycling
    50 biogeochemical processes
    51 blueprint
    52 body
    53 candidate phyla
    54 capacity
    55 changes
    56 climate change
    57 column
    58 community composition
    59 composition
    60 context
    61 contrast
    62 contribution
    63 cycling
    64 deep anoxic waters
    65 depth gradient
    66 ecosystem-level functions
    67 environmental analysis
    68 freshwater
    69 freshwater lakes
    70 freshwater taxa
    71 function
    72 gases
    73 genome
    74 genomic capacity
    75 genomics
    76 gradient
    77 greenhouse gases
    78 incorporation
    79 key biogeochemical processes
    80 lakes
    81 large body
    82 layer
    83 lt
    84 metabolic potential
    85 metagenome-assembled genomes
    86 metagenomics
    87 meters
    88 microbes
    89 microbial contribution
    90 microbial genomics
    91 mixed upper layer
    92 nitrogen
    93 nitrous oxide
    94 nutrient cycling
    95 nutrients
    96 ongoing climate change
    97 oxide
    98 phyla
    99 potential
    100 process
    101 productive surface layer
    102 productivity
    103 recycling
    104 representation
    105 role
    106 role of microbes
    107 sharp contrast
    108 specific taxa
    109 stratification
    110 study
    111 sulfur cycling
    112 surface
    113 surface layer
    114 surface water
    115 taxa
    116 tropical freshwater lake
    117 typical freshwater taxa
    118 unique metagenome-assembled genomes
    119 upper layer
    120 upwelled nutrients
    121 vertical depth gradient
    122 water
    123 water column
    124 schema:name Depth-discrete metagenomics reveals the roles of microbes in biogeochemical cycling in the tropical freshwater Lake Tanganyika
    125 schema:pagination 1971-1986
    126 schema:productId N203d2551bdf8459a8d79d6dc9e2d0531
    127 N48890d353c22415fa9e2720902ab7248
    128 Nbc72c42228744801bea5b003cdb0cf07
    129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1135273151
    130 https://doi.org/10.1038/s41396-021-00898-x
    131 schema:sdDatePublished 2022-05-20T07:39
    132 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    133 schema:sdPublisher Necb7c53bd4f641b78de0571969453b57
    134 schema:url https://doi.org/10.1038/s41396-021-00898-x
    135 sgo:license sg:explorer/license/
    136 sgo:sdDataset articles
    137 rdf:type schema:ScholarlyArticle
    138 N011bceb556354aafb974a42462dc1f15 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    139 schema:name Lakes
    140 rdf:type schema:DefinedTerm
    141 N203d2551bdf8459a8d79d6dc9e2d0531 schema:name pubmed_id
    142 schema:value 33564113
    143 rdf:type schema:PropertyValue
    144 N21e79a0e47214bb0b135f555f830ccad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    145 schema:name Metagenome
    146 rdf:type schema:DefinedTerm
    147 N2e9c868e2d064ccaa386ebf5c9d22834 rdf:first sg:person.01007375500.45
    148 rdf:rest N568f602645414ae09e9ee974b4076bf4
    149 N48890d353c22415fa9e2720902ab7248 schema:name doi
    150 schema:value 10.1038/s41396-021-00898-x
    151 rdf:type schema:PropertyValue
    152 N568f602645414ae09e9ee974b4076bf4 rdf:first sg:person.0714252516.09
    153 rdf:rest rdf:nil
    154 N664c96ffe91142b2aec879669e149755 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    155 schema:name Tanzania
    156 rdf:type schema:DefinedTerm
    157 N6925123bc35d48568436fa27d4699612 rdf:first sg:person.010104276315.09
    158 rdf:rest N6d72047ee15d4fb2a56d85ec2931acff
    159 N6d72047ee15d4fb2a56d85ec2931acff rdf:first sg:person.01363743223.08
    160 rdf:rest Na4a7eaba281f4765be27e1fb7e53f6dd
    161 N8692269493b74c909092380dfa677ffb rdf:first sg:person.01004464675.20
    162 rdf:rest N6925123bc35d48568436fa27d4699612
    163 N8e0d7183e3d345459dfb9e97692fa1f4 schema:issueNumber 7
    164 rdf:type schema:PublicationIssue
    165 N98e8edad59f544ab8f3e3e7fce98c81b rdf:first sg:person.01365550145.04
    166 rdf:rest N2e9c868e2d064ccaa386ebf5c9d22834
    167 N9d5091af442641e09ab444762a548d4f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    168 schema:name Ecosystem
    169 rdf:type schema:DefinedTerm
    170 Na4a7eaba281f4765be27e1fb7e53f6dd rdf:first sg:person.01334557423.67
    171 rdf:rest N98e8edad59f544ab8f3e3e7fce98c81b
    172 Nbc72c42228744801bea5b003cdb0cf07 schema:name dimensions_id
    173 schema:value pub.1135273151
    174 rdf:type schema:PropertyValue
    175 Nc96ed1ef3b2140e1a20f60ab5699d3c3 rdf:first sg:person.010006076536.32
    176 rdf:rest Nf0e06688db684617b03537ffefc9d598
    177 Ncba420668b9b49ce978cb21ec84616dd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    178 schema:name Metagenomics
    179 rdf:type schema:DefinedTerm
    180 Necb7c53bd4f641b78de0571969453b57 schema:name Springer Nature - SN SciGraph project
    181 rdf:type schema:Organization
    182 Nf0e06688db684617b03537ffefc9d598 rdf:first sg:person.010712665065.77
    183 rdf:rest N8692269493b74c909092380dfa677ffb
    184 Nf5f3a6d69cc6409b97ef0576f3be1646 schema:volumeNumber 15
    185 rdf:type schema:PublicationVolume
    186 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    187 schema:name Biological Sciences
    188 rdf:type schema:DefinedTerm
    189 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
    190 schema:name Microbiology
    191 rdf:type schema:DefinedTerm
    192 sg:grant.3005666 http://pending.schema.org/fundedItem sg:pub.10.1038/s41396-021-00898-x
    193 rdf:type schema:MonetaryGrant
    194 sg:grant.3095001 http://pending.schema.org/fundedItem sg:pub.10.1038/s41396-021-00898-x
    195 rdf:type schema:MonetaryGrant
    196 sg:grant.3117751 http://pending.schema.org/fundedItem sg:pub.10.1038/s41396-021-00898-x
    197 rdf:type schema:MonetaryGrant
    198 sg:journal.1038436 schema:issn 1751-7362
    199 1751-7370
    200 schema:name The ISME Journal: Multidisciplinary Journal of Microbial Ecology
    201 schema:publisher Springer Nature
    202 rdf:type schema:Periodical
    203 sg:person.010006076536.32 schema:affiliation grid-institutes:grid.14003.36
    204 schema:familyName Tran
    205 schema:givenName Patricia Q.
    206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010006076536.32
    207 rdf:type schema:Person
    208 sg:person.01004464675.20 schema:affiliation grid-institutes:grid.5386.8
    209 schema:familyName McIntyre
    210 schema:givenName Peter B.
    211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004464675.20
    212 rdf:type schema:Person
    213 sg:person.01007375500.45 schema:affiliation grid-institutes:grid.14003.36
    214 schema:familyName McMahon
    215 schema:givenName Katherine D.
    216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01007375500.45
    217 rdf:type schema:Person
    218 sg:person.010104276315.09 schema:affiliation grid-institutes:grid.419247.d
    219 schema:familyName Kraemer
    220 schema:givenName Benjamin M.
    221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010104276315.09
    222 rdf:type schema:Person
    223 sg:person.010712665065.77 schema:affiliation grid-institutes:grid.14003.36
    224 schema:familyName Bachand
    225 schema:givenName Samantha C.
    226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010712665065.77
    227 rdf:type schema:Person
    228 sg:person.01334557423.67 schema:affiliation grid-institutes:grid.463660.1
    229 schema:familyName Kimirei
    230 schema:givenName Ismael A.
    231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334557423.67
    232 rdf:type schema:Person
    233 sg:person.01363743223.08 schema:affiliation grid-institutes:grid.268333.f
    234 schema:familyName Vadeboncoeur
    235 schema:givenName Yvonne
    236 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363743223.08
    237 rdf:type schema:Person
    238 sg:person.01365550145.04 schema:affiliation grid-institutes:grid.463465.6
    239 schema:familyName Tamatamah
    240 schema:givenName Rashid
    241 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365550145.04
    242 rdf:type schema:Person
    243 sg:person.0714252516.09 schema:affiliation grid-institutes:grid.14003.36
    244 schema:familyName Anantharaman
    245 schema:givenName Karthik
    246 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714252516.09
    247 rdf:type schema:Person
    248 sg:pub.10.1007/s11120-005-3250-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041490123
    249 https://doi.org/10.1007/s11120-005-3250-0
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1007/s11356-018-1389-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100960114
    252 https://doi.org/10.1007/s11356-018-1389-4
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1023/a:1003706002126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045460581
    255 https://doi.org/10.1023/a:1003706002126
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1023/b:hydr.0000033125.87313.53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049092968
    258 https://doi.org/10.1023/b:hydr.0000033125.87313.53
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1038/ismej.2007.50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031411729
    261 https://doi.org/10.1038/ismej.2007.50
    262 rdf:type schema:CreativeWork
    263 sg:pub.10.1038/ismej.2015.241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032868433
    264 https://doi.org/10.1038/ismej.2015.241
    265 rdf:type schema:CreativeWork
    266 sg:pub.10.1038/ismej.2017.126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090891867
    267 https://doi.org/10.1038/ismej.2017.126
    268 rdf:type schema:CreativeWork
    269 sg:pub.10.1038/nbt.3893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091105392
    270 https://doi.org/10.1038/nbt.3893
    271 rdf:type schema:CreativeWork
    272 sg:pub.10.1038/nbt.4229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106359945
    273 https://doi.org/10.1038/nbt.4229
    274 rdf:type schema:CreativeWork
    275 sg:pub.10.1038/ncomms13219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035143030
    276 https://doi.org/10.1038/ncomms13219
    277 rdf:type schema:CreativeWork
    278 sg:pub.10.1038/ncomms3705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032540296
    279 https://doi.org/10.1038/ncomms3705
    280 rdf:type schema:CreativeWork
    281 sg:pub.10.1038/ncomms6350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023362023
    282 https://doi.org/10.1038/ncomms6350
    283 rdf:type schema:CreativeWork
    284 sg:pub.10.1038/nmicrobiol.2016.170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007760660
    285 https://doi.org/10.1038/nmicrobiol.2016.170
    286 rdf:type schema:CreativeWork
    287 sg:pub.10.1038/nmicrobiol.2016.48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010598799
    288 https://doi.org/10.1038/nmicrobiol.2016.48
    289 rdf:type schema:CreativeWork
    290 sg:pub.10.1038/s41467-018-07641-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110204842
    291 https://doi.org/10.1038/s41467-018-07641-9
    292 rdf:type schema:CreativeWork
    293 sg:pub.10.1038/s41564-018-0171-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104243589
    294 https://doi.org/10.1038/s41564-018-0171-1
    295 rdf:type schema:CreativeWork
    296 sg:pub.10.1038/s41576-018-0043-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106151844
    297 https://doi.org/10.1038/s41576-018-0043-9
    298 rdf:type schema:CreativeWork
    299 sg:pub.10.1186/1471-2105-11-119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026423599
    300 https://doi.org/10.1186/1471-2105-11-119
    301 rdf:type schema:CreativeWork
    302 grid-institutes:grid.14003.36 schema:alternateName Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, USA
    303 Department of Civil and Environmental Engineering, University of Wisconsin–Madison, Madison, WI, USA
    304 Department of Integrative Biology, University of Wisconsin–Madison, Madison, WI, USA
    305 schema:name Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, USA
    306 Department of Civil and Environmental Engineering, University of Wisconsin–Madison, Madison, WI, USA
    307 Department of Integrative Biology, University of Wisconsin–Madison, Madison, WI, USA
    308 rdf:type schema:Organization
    309 grid-institutes:grid.268333.f schema:alternateName Department of Biological Sciences, Wright State University, Dayton, OH, USA
    310 schema:name Department of Biological Sciences, Wright State University, Dayton, OH, USA
    311 rdf:type schema:Organization
    312 grid-institutes:grid.419247.d schema:alternateName Department of Ecosystem Research, Leibniz Institute for Freshwater Ecology and Inland Fisheries, Berlin, Germany
    313 schema:name Department of Ecosystem Research, Leibniz Institute for Freshwater Ecology and Inland Fisheries, Berlin, Germany
    314 rdf:type schema:Organization
    315 grid-institutes:grid.463465.6 schema:alternateName Ministry of Livestock and Fisheries, Dodoma, Tanzania
    316 schema:name Ministry of Livestock and Fisheries, Dodoma, Tanzania
    317 rdf:type schema:Organization
    318 grid-institutes:grid.463660.1 schema:alternateName Tanzania Fisheries Research Institute (TAFIRI), Dar es Salaam, Tanzania
    319 schema:name Tanzania Fisheries Research Institute (TAFIRI), Dar es Salaam, Tanzania
    320 rdf:type schema:Organization
    321 grid-institutes:grid.5386.8 schema:alternateName Department of Natural Resources and the Environment, Cornell University, Ithaca, NY, USA
    322 schema:name Department of Natural Resources and the Environment, Cornell University, Ithaca, NY, USA
    323 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...