Gammaproteobacteria mediating utilization of methyl-, sulfur- and petroleum organic compounds in deep ocean hydrothermal plumes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-08-20

AUTHORS

Zhichao Zhou, Yang Liu, Jie Pan, Brandi R. Cron, Brandy M. Toner, Karthik Anantharaman, John A. Breier, Gregory J. Dick, Meng Li

ABSTRACT

Deep-sea hydrothermal plumes are considered natural laboratories for understanding ecological and biogeochemical interactions. Previous studies focused on interactions between microorganisms and inorganic, reduced hydrothermal inputs including sulfur, hydrogen, iron, and manganese. However, little is known about transformations of organic compounds, especially methylated, sulfur-containing compounds, and petroleum hydrocarbons. Here, we reconstructed nine gammaproteobacterial metagenome-assembled genomes, affiliated with Methylococcales, Methylophaga, and Cycloclasticus, from three hydrothermal ecosystems. We present evidence that these three groups have high transcriptional activities of genes encoding cycling of C1-compounds, petroleum hydrocarbons, and organic sulfur in hydrothermal plumes. This includes oxidation of methanethiol, the simplest thermochemically-derived organic sulfur, for energy metabolism in Methylococcales and Cycloclasticus. Together with active transcription of genes for thiosulfate and methane oxidation in Methylococcales, these results suggest an adaptive strategy of versatile and simultaneous use of multiple available electron donors. Meanwhile, the first near-complete MAG of hydrothermal Methylophaga aminisulfidivorans and its transcriptional profile point to active chemotaxis targeting small organic compounds. Petroleum hydrocarbon-degrading Cycloclasticus are abundant and active in plumes of oil spills as well as deep-sea vents, suggesting that they are indigenous and effectively respond to stimulus of hydrocarbons in the deep sea. These findings suggest that these three groups of Gammaproteobacteria transform organic carbon and sulfur compounds via versatile and opportunistic metabolism and modulate biogeochemistry in plumes of hydrothermal systems as well as oil spills, thus contributing broad ecological impact to the deep ocean globally. More... »

PAGES

3136-3148

References to SciGraph publications

  • 2014-03-13. Picocyanobacteria containing a novel pigment gene cluster dominate the brackish water Baltic Sea in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2014-11-17. Fast and sensitive protein alignment using DIAMOND in NATURE METHODS
  • 2013-08-01. Transcriptional response of bathypelagic marine bacterioplankton to the Deepwater Horizon oil spill in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2017-04-04. Niche partitioning of diverse sulfur-oxidizing bacteria at hydrothermal vents in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2015-01-20. VizBin - an application for reference-independent visualization and human-augmented binning of metagenomic data in MICROBIOME
  • 2015-11-17. Genomic and transcriptomic evidence for scavenging of diverse organic compounds by widespread deep-sea archaea in NATURE COMMUNICATIONS
  • 2015-06-05. Metagenomic resolution of microbial functions in deep-sea hydrothermal plumes across the Eastern Lau Spreading Center in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2012-06-14. Genome-enabled transcriptomics reveals archaeal populations that drive nitrification in a deep-sea hydrothermal plume in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2014-02-05. Microbial iron uptake as a mechanism for dispersing iron from deep-sea hydrothermal vents in NATURE COMMUNICATIONS
  • 2012-06-14. The metatranscriptome of a deep-sea hydrothermal plume is dominated by water column methanotrophs and lithotrophs in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2017-09-11. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life in NATURE MICROBIOLOGY
  • 2019-03-13. The microbiomes of deep-sea hydrothermal vents: distributed globally, shaped locally in NATURE REVIEWS MICROBIOLOGY
  • 2006-07-30. Genome sequence of the ubiquitous hydrocarbon-degrading marine bacterium Alcanivorax borkumensis in NATURE BIOTECHNOLOGY
  • 2018-11-27. Expansive microbial metabolic versatility and biodiversity in dynamic Guaymas Basin hydrothermal sediments in NATURE COMMUNICATIONS
  • 2014-05-13. PQQ-dependent methanol dehydrogenases: rare-earth elements make a difference in APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
  • 2015-03-25. A novel pathway producing dimethylsulphide in bacteria is widespread in soil environments in NATURE COMMUNICATIONS
  • 2017-06-19. Short-chain alkanes fuel mussel and sponge Cycloclasticus symbionts from deep-sea gas and oil seeps in NATURE MICROBIOLOGY
  • 2004-09-14. Marine microorganisms and global nutrient cycles in NATURE
  • 2010-11-03. Genomic and functional adaptation in surface ocean planktonic prokaryotes in NATURE
  • 2015-04-13. Genomic resolution of linkages in carbon, nitrogen, and sulfur cycling among widespread estuary sediment bacteria in MICROBIOME
  • 2017-08-23. Genomic insights into potential interdependencies in microbial hydrocarbon and nutrient cycling in hydrothermal sediments in MICROBIOME
  • 2017-10-24. Bacterial SBP56 identified as a Cu-dependent methanethiol oxidase widely distributed in the biosphere in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2018-05-28. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy in NATURE MICROBIOLOGY
  • 2017-01-13. New insights into marine group III Euryarchaeota, from dark to light in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2012-06-21. Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to Deepwater Horizon oil spill in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2016-10-24. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system in NATURE COMMUNICATIONS
  • 2012-03-04. Fast gapped-read alignment with Bowtie 2 in NATURE METHODS
  • 2014-12-09. Spatially resolved sampling reveals dynamic microbial communities in rising hydrothermal plumes across a back-arc basin in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41396-020-00745-5

    DOI

    http://dx.doi.org/10.1038/s41396-020-00745-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1130210975

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/32820229


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Environmental Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Technology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Ecosystem", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gammaproteobacteria", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Hydrothermal Vents", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Oceans and Seas", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Petroleum", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phylogeny", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Piscirickettsiaceae", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Seawater", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sulfur", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Bacteriology, University of Wisconsin\u2013Madison, 53706, Madison, WI, USA", 
              "id": "http://www.grid.ac/institutes/grid.14003.36", 
              "name": [
                "Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, 518060, Shenzhen, China", 
                "Department of Bacteriology, University of Wisconsin\u2013Madison, 53706, Madison, WI, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhou", 
            "givenName": "Zhichao", 
            "id": "sg:person.01257470070.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01257470070.21"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, 518060, Shenzhen, China", 
              "id": "http://www.grid.ac/institutes/grid.263488.3", 
              "name": [
                "Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, 518060, Shenzhen, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Yang", 
            "id": "sg:person.010545225064.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010545225064.14"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, 518060, Shenzhen, China", 
              "id": "http://www.grid.ac/institutes/grid.263488.3", 
              "name": [
                "Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, 518060, Shenzhen, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pan", 
            "givenName": "Jie", 
            "id": "sg:person.0733716612.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733716612.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Earth and Environmental Sciences, University of Minnesota Twin Cities, 55455, Minneapolis, MN, USA", 
              "id": "http://www.grid.ac/institutes/grid.17635.36", 
              "name": [
                "Department of Earth and Environmental Sciences, University of Minnesota Twin Cities, 55455, Minneapolis, MN, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cron", 
            "givenName": "Brandi R.", 
            "id": "sg:person.01327353517.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327353517.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Soil, Water, and Climate, University of Minnesota Twin Cities, 55108, St. Paul, MN, USA", 
              "id": "http://www.grid.ac/institutes/grid.17635.36", 
              "name": [
                "Department of Earth and Environmental Sciences, University of Minnesota Twin Cities, 55455, Minneapolis, MN, USA", 
                "Department of Soil, Water, and Climate, University of Minnesota Twin Cities, 55108, St. Paul, MN, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Toner", 
            "givenName": "Brandy M.", 
            "id": "sg:person.01036756211.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036756211.44"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Bacteriology, University of Wisconsin\u2013Madison, 53706, Madison, WI, USA", 
              "id": "http://www.grid.ac/institutes/grid.14003.36", 
              "name": [
                "Department of Bacteriology, University of Wisconsin\u2013Madison, 53706, Madison, WI, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Anantharaman", 
            "givenName": "Karthik", 
            "id": "sg:person.0714252516.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714252516.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Earth, Environmental, and Marine Sciences, The University of Texas Rio Grande Valley, 78539, Edinburg, TX, USA", 
              "id": "http://www.grid.ac/institutes/grid.449717.8", 
              "name": [
                "School of Earth, Environmental, and Marine Sciences, The University of Texas Rio Grande Valley, 78539, Edinburg, TX, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Breier", 
            "givenName": "John A.", 
            "id": "sg:person.0717100154.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717100154.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Earth and Environmental Sciences, University of Michigan, 48109, Ann Arbor, MI, USA", 
              "id": "http://www.grid.ac/institutes/grid.214458.e", 
              "name": [
                "Department of Earth and Environmental Sciences, University of Michigan, 48109, Ann Arbor, MI, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dick", 
            "givenName": "Gregory J.", 
            "id": "sg:person.01030501116.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030501116.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, 518060, Shenzhen, China", 
              "id": "http://www.grid.ac/institutes/grid.263488.3", 
              "name": [
                "Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, 518060, Shenzhen, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Meng", 
            "id": "sg:person.0715634401.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715634401.25"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/ismej.2012.63", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035843725", 
              "https://doi.org/10.1038/ismej.2012.63"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.3176", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023901695", 
              "https://doi.org/10.1038/nmeth.3176"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09530", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036986614", 
              "https://doi.org/10.1038/nature09530"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2016.188", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015275875", 
              "https://doi.org/10.1038/ismej.2016.188"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2013.129", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047851331", 
              "https://doi.org/10.1038/ismej.2013.129"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-018-07418-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110105615", 
              "https://doi.org/10.1038/s41467-018-07418-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2015.81", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023964718", 
              "https://doi.org/10.1038/ismej.2015.81"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41564-017-0012-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091527308", 
              "https://doi.org/10.1038/s41564-017-0012-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2017.37", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084511778", 
              "https://doi.org/10.1038/ismej.2017.37"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40168-017-0322-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091310054", 
              "https://doi.org/10.1186/s40168-017-0322-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms9933", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010303711", 
              "https://doi.org/10.1038/ncomms9933"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms7579", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001787078", 
              "https://doi.org/10.1038/ncomms7579"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04159", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036822963", 
              "https://doi.org/10.1038/nature04159"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2014.228", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030711964", 
              "https://doi.org/10.1038/ismej.2014.228"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41564-018-0171-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104243589", 
              "https://doi.org/10.1038/s41564-018-0171-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms4192", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050322991", 
              "https://doi.org/10.1038/ncomms4192"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms13219", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035143030", 
              "https://doi.org/10.1038/ncomms13219"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40168-015-0077-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036864474", 
              "https://doi.org/10.1186/s40168-015-0077-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2012.64", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013864277", 
              "https://doi.org/10.1038/ismej.2012.64"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1923", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006541515", 
              "https://doi.org/10.1038/nmeth.1923"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2012.59", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024036989", 
              "https://doi.org/10.1038/ismej.2012.59"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2017.148", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092332516", 
              "https://doi.org/10.1038/ismej.2017.148"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41579-019-0160-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112734607", 
              "https://doi.org/10.1038/s41579-019-0160-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00253-014-5766-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051962560", 
              "https://doi.org/10.1007/s00253-014-5766-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2014.35", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041933950", 
              "https://doi.org/10.1038/ismej.2014.35"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmicrobiol.2017.93", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086070577", 
              "https://doi.org/10.1038/nmicrobiol.2017.93"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40168-014-0066-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014330538", 
              "https://doi.org/10.1186/s40168-014-0066-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1232", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004032284", 
              "https://doi.org/10.1038/nbt1232"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2020-08-20", 
        "datePublishedReg": "2020-08-20", 
        "description": "Deep-sea hydrothermal plumes are considered natural laboratories for understanding ecological and biogeochemical interactions. Previous studies focused on interactions between microorganisms and inorganic, reduced hydrothermal inputs including sulfur, hydrogen, iron, and manganese. However, little is known about transformations of organic compounds, especially methylated, sulfur-containing compounds, and petroleum hydrocarbons. Here, we reconstructed nine gammaproteobacterial metagenome-assembled genomes, affiliated with Methylococcales, Methylophaga, and Cycloclasticus, from three hydrothermal ecosystems. We present evidence that these three groups have high transcriptional activities of genes encoding cycling of C1-compounds, petroleum hydrocarbons, and organic sulfur in hydrothermal plumes. This includes oxidation of methanethiol, the simplest thermochemically-derived organic sulfur, for energy metabolism in Methylococcales and Cycloclasticus. Together with active transcription of genes for thiosulfate and methane oxidation in Methylococcales, these results suggest an adaptive strategy of versatile and simultaneous use of multiple available electron donors. Meanwhile, the first near-complete MAG of hydrothermal Methylophaga aminisulfidivorans and its transcriptional profile point to active chemotaxis targeting small organic compounds. Petroleum hydrocarbon-degrading Cycloclasticus are abundant and active in plumes of oil spills as well as deep-sea vents, suggesting that they are indigenous and effectively respond to stimulus of hydrocarbons in the deep sea. These findings suggest that these three groups of Gammaproteobacteria transform organic carbon and sulfur compounds via versatile and opportunistic metabolism and modulate biogeochemistry in plumes of hydrothermal systems as well as oil spills, thus contributing broad ecological impact to the deep ocean globally.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41396-020-00745-5", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8916703", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3117584", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8891373", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1038436", 
            "issn": [
              "1751-7362", 
              "1751-7370"
            ], 
            "name": "The ISME Journal: Multidisciplinary Journal of Microbial Ecology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "12", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "14"
          }
        ], 
        "keywords": [
          "hydrothermal plumes", 
          "organic compounds", 
          "deep-sea hydrothermal plume", 
          "petroleum hydrocarbons", 
          "organic sulfur", 
          "deep-sea vents", 
          "oil spill", 
          "group of Gammaproteobacteria", 
          "metagenome-assembled genomes", 
          "broader ecological impacts", 
          "hydrothermal input", 
          "small organic compounds", 
          "available electron donors", 
          "hydrothermal system", 
          "deep ocean", 
          "biogeochemical interactions", 
          "oxidation of methanethiol", 
          "sulfur-containing compounds", 
          "natural laboratory", 
          "hydrothermal ecosystems", 
          "deep sea", 
          "higher transcriptional activity", 
          "organic carbon", 
          "plume", 
          "complete MAGs", 
          "methane oxidation", 
          "active transcription", 
          "Methylophaga aminisulfidivorans", 
          "transcriptional activity", 
          "Cycloclasticus", 
          "Methylococcales", 
          "electron donor", 
          "C1 compounds", 
          "sulfur compounds", 
          "ecological impacts", 
          "compounds", 
          "energy metabolism", 
          "profile points", 
          "sulfur", 
          "active chemotaxis", 
          "Gammaproteobacteria", 
          "hydrocarbons", 
          "genes", 
          "oxidation", 
          "spill", 
          "adaptive strategies", 
          "Ocean", 
          "biogeochemistry", 
          "vents", 
          "Sea", 
          "metabolism", 
          "genome", 
          "Methylophaga", 
          "transcription", 
          "hydrothermal", 
          "ecosystems", 
          "methanethiol", 
          "cycling", 
          "hydrogen", 
          "carbon", 
          "methyl", 
          "microorganisms", 
          "previous studies", 
          "thiosulfate", 
          "manganese", 
          "chemotaxis", 
          "interaction", 
          "input", 
          "iron", 
          "donors", 
          "impact", 
          "simultaneous use", 
          "activity", 
          "evidence", 
          "transformation", 
          "group", 
          "stimuli", 
          "laboratory", 
          "utilization", 
          "results", 
          "strategies", 
          "findings", 
          "system", 
          "study", 
          "point", 
          "use", 
          "mag"
        ], 
        "name": "Gammaproteobacteria mediating utilization of methyl-, sulfur- and petroleum organic compounds in deep ocean hydrothermal plumes", 
        "pagination": "3136-3148", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1130210975"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41396-020-00745-5"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "32820229"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41396-020-00745-5", 
          "https://app.dimensions.ai/details/publication/pub.1130210975"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:37", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_853.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41396-020-00745-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41396-020-00745-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41396-020-00745-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41396-020-00745-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41396-020-00745-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    378 TRIPLES      22 PREDICATES      151 URIs      114 LITERALS      16 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41396-020-00745-5 schema:about N1b8c8238d0734c07bb8f6dbc61ca0d91
    2 N26db875b135d447e84b1cbedf0aa232b
    3 N687eea673d48497eaba13d339be6cd0b
    4 N6c37495f4c914dfb93f5b814f52c8034
    5 N7169a6e199c146e7801d11cc1ab0cf02
    6 N90531e1d21a44f6ebab1a9840baec27a
    7 N912a8fe13f44476a8be742cb7f5aa9ae
    8 Nd203207a46544484b8b8cbf38b59f2ca
    9 Nde7d870cbe994157a5978ec26c2a2e42
    10 anzsrc-for:05
    11 anzsrc-for:06
    12 anzsrc-for:10
    13 schema:author N3a4ae790c80b41f39b12183f673b4b8e
    14 schema:citation sg:pub.10.1007/s00253-014-5766-8
    15 sg:pub.10.1038/ismej.2012.59
    16 sg:pub.10.1038/ismej.2012.63
    17 sg:pub.10.1038/ismej.2012.64
    18 sg:pub.10.1038/ismej.2013.129
    19 sg:pub.10.1038/ismej.2014.228
    20 sg:pub.10.1038/ismej.2014.35
    21 sg:pub.10.1038/ismej.2015.81
    22 sg:pub.10.1038/ismej.2016.188
    23 sg:pub.10.1038/ismej.2017.148
    24 sg:pub.10.1038/ismej.2017.37
    25 sg:pub.10.1038/nature04159
    26 sg:pub.10.1038/nature09530
    27 sg:pub.10.1038/nbt1232
    28 sg:pub.10.1038/ncomms13219
    29 sg:pub.10.1038/ncomms4192
    30 sg:pub.10.1038/ncomms7579
    31 sg:pub.10.1038/ncomms9933
    32 sg:pub.10.1038/nmeth.1923
    33 sg:pub.10.1038/nmeth.3176
    34 sg:pub.10.1038/nmicrobiol.2017.93
    35 sg:pub.10.1038/s41467-018-07418-0
    36 sg:pub.10.1038/s41564-017-0012-7
    37 sg:pub.10.1038/s41564-018-0171-1
    38 sg:pub.10.1038/s41579-019-0160-2
    39 sg:pub.10.1186/s40168-014-0066-1
    40 sg:pub.10.1186/s40168-015-0077-6
    41 sg:pub.10.1186/s40168-017-0322-2
    42 schema:datePublished 2020-08-20
    43 schema:datePublishedReg 2020-08-20
    44 schema:description Deep-sea hydrothermal plumes are considered natural laboratories for understanding ecological and biogeochemical interactions. Previous studies focused on interactions between microorganisms and inorganic, reduced hydrothermal inputs including sulfur, hydrogen, iron, and manganese. However, little is known about transformations of organic compounds, especially methylated, sulfur-containing compounds, and petroleum hydrocarbons. Here, we reconstructed nine gammaproteobacterial metagenome-assembled genomes, affiliated with Methylococcales, Methylophaga, and Cycloclasticus, from three hydrothermal ecosystems. We present evidence that these three groups have high transcriptional activities of genes encoding cycling of C1-compounds, petroleum hydrocarbons, and organic sulfur in hydrothermal plumes. This includes oxidation of methanethiol, the simplest thermochemically-derived organic sulfur, for energy metabolism in Methylococcales and Cycloclasticus. Together with active transcription of genes for thiosulfate and methane oxidation in Methylococcales, these results suggest an adaptive strategy of versatile and simultaneous use of multiple available electron donors. Meanwhile, the first near-complete MAG of hydrothermal Methylophaga aminisulfidivorans and its transcriptional profile point to active chemotaxis targeting small organic compounds. Petroleum hydrocarbon-degrading Cycloclasticus are abundant and active in plumes of oil spills as well as deep-sea vents, suggesting that they are indigenous and effectively respond to stimulus of hydrocarbons in the deep sea. These findings suggest that these three groups of Gammaproteobacteria transform organic carbon and sulfur compounds via versatile and opportunistic metabolism and modulate biogeochemistry in plumes of hydrothermal systems as well as oil spills, thus contributing broad ecological impact to the deep ocean globally.
    45 schema:genre article
    46 schema:inLanguage en
    47 schema:isAccessibleForFree true
    48 schema:isPartOf N34ecdf89d4e34967bda1791813ca4546
    49 Nc9e3d23fb8934a92bab471aa1e84bbe2
    50 sg:journal.1038436
    51 schema:keywords C1 compounds
    52 Cycloclasticus
    53 Gammaproteobacteria
    54 Methylococcales
    55 Methylophaga
    56 Methylophaga aminisulfidivorans
    57 Ocean
    58 Sea
    59 active chemotaxis
    60 active transcription
    61 activity
    62 adaptive strategies
    63 available electron donors
    64 biogeochemical interactions
    65 biogeochemistry
    66 broader ecological impacts
    67 carbon
    68 chemotaxis
    69 complete MAGs
    70 compounds
    71 cycling
    72 deep ocean
    73 deep sea
    74 deep-sea hydrothermal plume
    75 deep-sea vents
    76 donors
    77 ecological impacts
    78 ecosystems
    79 electron donor
    80 energy metabolism
    81 evidence
    82 findings
    83 genes
    84 genome
    85 group
    86 group of Gammaproteobacteria
    87 higher transcriptional activity
    88 hydrocarbons
    89 hydrogen
    90 hydrothermal
    91 hydrothermal ecosystems
    92 hydrothermal input
    93 hydrothermal plumes
    94 hydrothermal system
    95 impact
    96 input
    97 interaction
    98 iron
    99 laboratory
    100 mag
    101 manganese
    102 metabolism
    103 metagenome-assembled genomes
    104 methane oxidation
    105 methanethiol
    106 methyl
    107 microorganisms
    108 natural laboratory
    109 oil spill
    110 organic carbon
    111 organic compounds
    112 organic sulfur
    113 oxidation
    114 oxidation of methanethiol
    115 petroleum hydrocarbons
    116 plume
    117 point
    118 previous studies
    119 profile points
    120 results
    121 simultaneous use
    122 small organic compounds
    123 spill
    124 stimuli
    125 strategies
    126 study
    127 sulfur
    128 sulfur compounds
    129 sulfur-containing compounds
    130 system
    131 thiosulfate
    132 transcription
    133 transcriptional activity
    134 transformation
    135 use
    136 utilization
    137 vents
    138 schema:name Gammaproteobacteria mediating utilization of methyl-, sulfur- and petroleum organic compounds in deep ocean hydrothermal plumes
    139 schema:pagination 3136-3148
    140 schema:productId N0235ab645d3e4c9c8c03bf7495dd897b
    141 Na5c5e2cdd1804650a88d134d65a3c03f
    142 Ndbc55fcc407e4bbfbd445d45b1e272a2
    143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1130210975
    144 https://doi.org/10.1038/s41396-020-00745-5
    145 schema:sdDatePublished 2022-05-20T07:37
    146 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    147 schema:sdPublisher N856f387b42d2461294b7ec655a09635b
    148 schema:url https://doi.org/10.1038/s41396-020-00745-5
    149 sgo:license sg:explorer/license/
    150 sgo:sdDataset articles
    151 rdf:type schema:ScholarlyArticle
    152 N0235ab645d3e4c9c8c03bf7495dd897b schema:name doi
    153 schema:value 10.1038/s41396-020-00745-5
    154 rdf:type schema:PropertyValue
    155 N1b8c8238d0734c07bb8f6dbc61ca0d91 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    156 schema:name Ecosystem
    157 rdf:type schema:DefinedTerm
    158 N26db875b135d447e84b1cbedf0aa232b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    159 schema:name Hydrothermal Vents
    160 rdf:type schema:DefinedTerm
    161 N34ecdf89d4e34967bda1791813ca4546 schema:volumeNumber 14
    162 rdf:type schema:PublicationVolume
    163 N3752f7b994774dcebb824150c0854f2d rdf:first sg:person.0714252516.09
    164 rdf:rest N634aa1eb4ba345f381f957ff2937abdc
    165 N3a4ae790c80b41f39b12183f673b4b8e rdf:first sg:person.01257470070.21
    166 rdf:rest Nee1f975a154f471b8b8c791162bdc57e
    167 N5ea1339816d547f4b33fbaff1a519cde rdf:first sg:person.01327353517.02
    168 rdf:rest Na250ba3f66214f65b5e46db003a91673
    169 N634aa1eb4ba345f381f957ff2937abdc rdf:first sg:person.0717100154.32
    170 rdf:rest Nb51c37f370f5471cb4223e31220a68a0
    171 N687eea673d48497eaba13d339be6cd0b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    172 schema:name Sulfur
    173 rdf:type schema:DefinedTerm
    174 N6c37495f4c914dfb93f5b814f52c8034 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    175 schema:name Gammaproteobacteria
    176 rdf:type schema:DefinedTerm
    177 N7169a6e199c146e7801d11cc1ab0cf02 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    178 schema:name Seawater
    179 rdf:type schema:DefinedTerm
    180 N856f387b42d2461294b7ec655a09635b schema:name Springer Nature - SN SciGraph project
    181 rdf:type schema:Organization
    182 N90531e1d21a44f6ebab1a9840baec27a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    183 schema:name Piscirickettsiaceae
    184 rdf:type schema:DefinedTerm
    185 N912a8fe13f44476a8be742cb7f5aa9ae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    186 schema:name Oceans and Seas
    187 rdf:type schema:DefinedTerm
    188 Na250ba3f66214f65b5e46db003a91673 rdf:first sg:person.01036756211.44
    189 rdf:rest N3752f7b994774dcebb824150c0854f2d
    190 Na5c5e2cdd1804650a88d134d65a3c03f schema:name pubmed_id
    191 schema:value 32820229
    192 rdf:type schema:PropertyValue
    193 Nb51c37f370f5471cb4223e31220a68a0 rdf:first sg:person.01030501116.39
    194 rdf:rest Nb63cccf45d1a406e8563c2a1462bb1a7
    195 Nb63cccf45d1a406e8563c2a1462bb1a7 rdf:first sg:person.0715634401.25
    196 rdf:rest rdf:nil
    197 Nc9e3d23fb8934a92bab471aa1e84bbe2 schema:issueNumber 12
    198 rdf:type schema:PublicationIssue
    199 Nd203207a46544484b8b8cbf38b59f2ca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    200 schema:name Petroleum
    201 rdf:type schema:DefinedTerm
    202 Ndbc55fcc407e4bbfbd445d45b1e272a2 schema:name dimensions_id
    203 schema:value pub.1130210975
    204 rdf:type schema:PropertyValue
    205 Nde7d870cbe994157a5978ec26c2a2e42 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    206 schema:name Phylogeny
    207 rdf:type schema:DefinedTerm
    208 Nee1f975a154f471b8b8c791162bdc57e rdf:first sg:person.010545225064.14
    209 rdf:rest Nfa31155afccf4eb6ab1f7f7c97183bea
    210 Nfa31155afccf4eb6ab1f7f7c97183bea rdf:first sg:person.0733716612.34
    211 rdf:rest N5ea1339816d547f4b33fbaff1a519cde
    212 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
    213 schema:name Environmental Sciences
    214 rdf:type schema:DefinedTerm
    215 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    216 schema:name Biological Sciences
    217 rdf:type schema:DefinedTerm
    218 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
    219 schema:name Technology
    220 rdf:type schema:DefinedTerm
    221 sg:grant.3117584 http://pending.schema.org/fundedItem sg:pub.10.1038/s41396-020-00745-5
    222 rdf:type schema:MonetaryGrant
    223 sg:grant.8891373 http://pending.schema.org/fundedItem sg:pub.10.1038/s41396-020-00745-5
    224 rdf:type schema:MonetaryGrant
    225 sg:grant.8916703 http://pending.schema.org/fundedItem sg:pub.10.1038/s41396-020-00745-5
    226 rdf:type schema:MonetaryGrant
    227 sg:journal.1038436 schema:issn 1751-7362
    228 1751-7370
    229 schema:name The ISME Journal: Multidisciplinary Journal of Microbial Ecology
    230 schema:publisher Springer Nature
    231 rdf:type schema:Periodical
    232 sg:person.01030501116.39 schema:affiliation grid-institutes:grid.214458.e
    233 schema:familyName Dick
    234 schema:givenName Gregory J.
    235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030501116.39
    236 rdf:type schema:Person
    237 sg:person.01036756211.44 schema:affiliation grid-institutes:grid.17635.36
    238 schema:familyName Toner
    239 schema:givenName Brandy M.
    240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036756211.44
    241 rdf:type schema:Person
    242 sg:person.010545225064.14 schema:affiliation grid-institutes:grid.263488.3
    243 schema:familyName Liu
    244 schema:givenName Yang
    245 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010545225064.14
    246 rdf:type schema:Person
    247 sg:person.01257470070.21 schema:affiliation grid-institutes:grid.14003.36
    248 schema:familyName Zhou
    249 schema:givenName Zhichao
    250 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01257470070.21
    251 rdf:type schema:Person
    252 sg:person.01327353517.02 schema:affiliation grid-institutes:grid.17635.36
    253 schema:familyName Cron
    254 schema:givenName Brandi R.
    255 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327353517.02
    256 rdf:type schema:Person
    257 sg:person.0714252516.09 schema:affiliation grid-institutes:grid.14003.36
    258 schema:familyName Anantharaman
    259 schema:givenName Karthik
    260 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714252516.09
    261 rdf:type schema:Person
    262 sg:person.0715634401.25 schema:affiliation grid-institutes:grid.263488.3
    263 schema:familyName Li
    264 schema:givenName Meng
    265 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715634401.25
    266 rdf:type schema:Person
    267 sg:person.0717100154.32 schema:affiliation grid-institutes:grid.449717.8
    268 schema:familyName Breier
    269 schema:givenName John A.
    270 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717100154.32
    271 rdf:type schema:Person
    272 sg:person.0733716612.34 schema:affiliation grid-institutes:grid.263488.3
    273 schema:familyName Pan
    274 schema:givenName Jie
    275 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733716612.34
    276 rdf:type schema:Person
    277 sg:pub.10.1007/s00253-014-5766-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051962560
    278 https://doi.org/10.1007/s00253-014-5766-8
    279 rdf:type schema:CreativeWork
    280 sg:pub.10.1038/ismej.2012.59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024036989
    281 https://doi.org/10.1038/ismej.2012.59
    282 rdf:type schema:CreativeWork
    283 sg:pub.10.1038/ismej.2012.63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035843725
    284 https://doi.org/10.1038/ismej.2012.63
    285 rdf:type schema:CreativeWork
    286 sg:pub.10.1038/ismej.2012.64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013864277
    287 https://doi.org/10.1038/ismej.2012.64
    288 rdf:type schema:CreativeWork
    289 sg:pub.10.1038/ismej.2013.129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047851331
    290 https://doi.org/10.1038/ismej.2013.129
    291 rdf:type schema:CreativeWork
    292 sg:pub.10.1038/ismej.2014.228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030711964
    293 https://doi.org/10.1038/ismej.2014.228
    294 rdf:type schema:CreativeWork
    295 sg:pub.10.1038/ismej.2014.35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041933950
    296 https://doi.org/10.1038/ismej.2014.35
    297 rdf:type schema:CreativeWork
    298 sg:pub.10.1038/ismej.2015.81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023964718
    299 https://doi.org/10.1038/ismej.2015.81
    300 rdf:type schema:CreativeWork
    301 sg:pub.10.1038/ismej.2016.188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015275875
    302 https://doi.org/10.1038/ismej.2016.188
    303 rdf:type schema:CreativeWork
    304 sg:pub.10.1038/ismej.2017.148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092332516
    305 https://doi.org/10.1038/ismej.2017.148
    306 rdf:type schema:CreativeWork
    307 sg:pub.10.1038/ismej.2017.37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084511778
    308 https://doi.org/10.1038/ismej.2017.37
    309 rdf:type schema:CreativeWork
    310 sg:pub.10.1038/nature04159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036822963
    311 https://doi.org/10.1038/nature04159
    312 rdf:type schema:CreativeWork
    313 sg:pub.10.1038/nature09530 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036986614
    314 https://doi.org/10.1038/nature09530
    315 rdf:type schema:CreativeWork
    316 sg:pub.10.1038/nbt1232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004032284
    317 https://doi.org/10.1038/nbt1232
    318 rdf:type schema:CreativeWork
    319 sg:pub.10.1038/ncomms13219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035143030
    320 https://doi.org/10.1038/ncomms13219
    321 rdf:type schema:CreativeWork
    322 sg:pub.10.1038/ncomms4192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050322991
    323 https://doi.org/10.1038/ncomms4192
    324 rdf:type schema:CreativeWork
    325 sg:pub.10.1038/ncomms7579 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001787078
    326 https://doi.org/10.1038/ncomms7579
    327 rdf:type schema:CreativeWork
    328 sg:pub.10.1038/ncomms9933 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010303711
    329 https://doi.org/10.1038/ncomms9933
    330 rdf:type schema:CreativeWork
    331 sg:pub.10.1038/nmeth.1923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006541515
    332 https://doi.org/10.1038/nmeth.1923
    333 rdf:type schema:CreativeWork
    334 sg:pub.10.1038/nmeth.3176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023901695
    335 https://doi.org/10.1038/nmeth.3176
    336 rdf:type schema:CreativeWork
    337 sg:pub.10.1038/nmicrobiol.2017.93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086070577
    338 https://doi.org/10.1038/nmicrobiol.2017.93
    339 rdf:type schema:CreativeWork
    340 sg:pub.10.1038/s41467-018-07418-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110105615
    341 https://doi.org/10.1038/s41467-018-07418-0
    342 rdf:type schema:CreativeWork
    343 sg:pub.10.1038/s41564-017-0012-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091527308
    344 https://doi.org/10.1038/s41564-017-0012-7
    345 rdf:type schema:CreativeWork
    346 sg:pub.10.1038/s41564-018-0171-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104243589
    347 https://doi.org/10.1038/s41564-018-0171-1
    348 rdf:type schema:CreativeWork
    349 sg:pub.10.1038/s41579-019-0160-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112734607
    350 https://doi.org/10.1038/s41579-019-0160-2
    351 rdf:type schema:CreativeWork
    352 sg:pub.10.1186/s40168-014-0066-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014330538
    353 https://doi.org/10.1186/s40168-014-0066-1
    354 rdf:type schema:CreativeWork
    355 sg:pub.10.1186/s40168-015-0077-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036864474
    356 https://doi.org/10.1186/s40168-015-0077-6
    357 rdf:type schema:CreativeWork
    358 sg:pub.10.1186/s40168-017-0322-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091310054
    359 https://doi.org/10.1186/s40168-017-0322-2
    360 rdf:type schema:CreativeWork
    361 grid-institutes:grid.14003.36 schema:alternateName Department of Bacteriology, University of Wisconsin–Madison, 53706, Madison, WI, USA
    362 schema:name Department of Bacteriology, University of Wisconsin–Madison, 53706, Madison, WI, USA
    363 Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, 518060, Shenzhen, China
    364 rdf:type schema:Organization
    365 grid-institutes:grid.17635.36 schema:alternateName Department of Earth and Environmental Sciences, University of Minnesota Twin Cities, 55455, Minneapolis, MN, USA
    366 Department of Soil, Water, and Climate, University of Minnesota Twin Cities, 55108, St. Paul, MN, USA
    367 schema:name Department of Earth and Environmental Sciences, University of Minnesota Twin Cities, 55455, Minneapolis, MN, USA
    368 Department of Soil, Water, and Climate, University of Minnesota Twin Cities, 55108, St. Paul, MN, USA
    369 rdf:type schema:Organization
    370 grid-institutes:grid.214458.e schema:alternateName Department of Earth and Environmental Sciences, University of Michigan, 48109, Ann Arbor, MI, USA
    371 schema:name Department of Earth and Environmental Sciences, University of Michigan, 48109, Ann Arbor, MI, USA
    372 rdf:type schema:Organization
    373 grid-institutes:grid.263488.3 schema:alternateName Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, 518060, Shenzhen, China
    374 schema:name Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, 518060, Shenzhen, China
    375 rdf:type schema:Organization
    376 grid-institutes:grid.449717.8 schema:alternateName School of Earth, Environmental, and Marine Sciences, The University of Texas Rio Grande Valley, 78539, Edinburg, TX, USA
    377 schema:name School of Earth, Environmental, and Marine Sciences, The University of Texas Rio Grande Valley, 78539, Edinburg, TX, USA
    378 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...