Consistent microbial dynamics and functional community patterns derived from first principles View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Hadrien Delattre, Elie Desmond-Le Quéméner, Christian Duquennoi, Ahlem Filali, Théodore Bouchez

ABSTRACT

Microbial communities are key engines that drive earth's biogeochemical cycles. However, existing ecosystem models have only limited ability to predict microbial dynamics and require the calibration of multiple population-specific empirical equations. In contrast, we build on a new kinetic "Microbial Transition State" (MTS) theory of growth derived from first principles. We show how the theory coupled to simple mass and energy balance calculations provides a framework with intrinsically important qualitative properties to model microbial community dynamics. We first show how the theory can simultaneously account for the influence of all the resources needed for growth (electron donor, acceptor, and nutrients) while still producing consistent dynamics that fulfill the Liebig rule of a single limiting substrate. We also show consistent patterns of energy-dependent microbial successions in mixed culture without the need for calibration of population-specific parameters. We then show how this approach can be used to model a simplified activated sludge community. To this end, we compare MTS-derived dynamics with those of a widely used activated sludge model and show that similar growth yields and overall dynamics can be obtained using two parameters instead of twelve. This new kinetic theory of growth grounded by a set of generic physical principles parsimoniously gives rise to consistent microbial population and community dynamics, thereby paving the way for the development of a new class of more predictive microbial ecosystem models. More... »

PAGES

263-276

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41396-018-0272-0

DOI

http://dx.doi.org/10.1038/s41396-018-0272-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106829810

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30194430


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Research Institute of Science and Technology for Environment and Agriculture", 
          "id": "https://www.grid.ac/institutes/grid.48142.3b", 
          "name": [
            "Irstea, UR HBAN, F-92761, Antony, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Delattre", 
        "givenName": "Hadrien", 
        "id": "sg:person.011052473335.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011052473335.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de Biotechnologie de l'Environnement", 
          "id": "https://www.grid.ac/institutes/grid.419083.7", 
          "name": [
            "Irstea, UR HBAN, F-92761, Antony, France", 
            "LBE, University of Montpellier, INRA, Narbonne, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qu\u00e9m\u00e9ner", 
        "givenName": "Elie Desmond-Le", 
        "id": "sg:person.012303402257.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012303402257.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Research Institute of Science and Technology for Environment and Agriculture", 
          "id": "https://www.grid.ac/institutes/grid.48142.3b", 
          "name": [
            "Irstea, UR HBAN, F-92761, Antony, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Duquennoi", 
        "givenName": "Christian", 
        "id": "sg:person.01005643273.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005643273.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Research Institute of Science and Technology for Environment and Agriculture", 
          "id": "https://www.grid.ac/institutes/grid.48142.3b", 
          "name": [
            "Irstea, UR HBAN, F-92761, Antony, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Filali", 
        "givenName": "Ahlem", 
        "id": "sg:person.01372232177.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372232177.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Research Institute of Science and Technology for Environment and Agriculture", 
          "id": "https://www.grid.ac/institutes/grid.48142.3b", 
          "name": [
            "Irstea, UR HBAN, F-92761, Antony, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bouchez", 
        "givenName": "Th\u00e9odore", 
        "id": "sg:person.01150143330.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150143330.25"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.bej.2006.05.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000962658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.95.12.6578", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003821328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11234", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007740093", 
          "https://doi.org/10.1038/nature11234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ismej.2015.69", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008282158", 
          "https://doi.org/10.1038/ismej.2015.69"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.80.1.305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008334002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep21871", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010990287", 
          "https://doi.org/10.1038/srep21871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4314/wsa.v27i3.4986", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012037936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4314/wsa.v27i3.4986", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012037936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2006rg000210", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014117900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tree.2006.02.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014600667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1601070113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016416634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compchemeng.2016.12.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017566162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.20767", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017928974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.20767", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017928974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb.2011.6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019249960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb.2011.6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019249960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2010.09.112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020281519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ismej.2007.7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020507223", 
          "https://doi.org/10.1038/ismej.2007.7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0126739", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023044629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0290(19960905)51:5<597::aid-bit12>3.0.co;2-f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023464251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tibtech.2008.04.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023524613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1034/j.1600-0706.2003.12479.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024751858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1389-1723(03)70135-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026056474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c3ee42754d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026353949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0290(19980920)59:6<732::aid-bit10>3.0.co;2-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029120124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.22325", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033394092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.22325", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033394092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470054581.eib084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034500070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470054581.eib084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034500070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10643380802000974", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034989178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.21250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035039101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es301422r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035099404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.260390806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036389504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1758-2229.12110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038370347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0040-6031(97)00357-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039498084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep33696", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040124255", 
          "https://doi.org/10.1038/srep33696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41559-016-0015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042654297", 
          "https://doi.org/10.1038/s41559-016-0015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ismej.2016.45", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043038872", 
          "https://doi.org/10.1038/ismej.2016.45"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.mi.03.100149.002103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047102495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.260380104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047572922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cep.2007.02.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048698123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1153213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053637244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s002531540005760x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054811869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s002531540005760x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054811869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1749604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057811599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/420777", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058711777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aaf4507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062667678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2166/wst.2009.223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069143243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3546712", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070368502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2475/03.2011.01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070838656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2175/106143008x304776", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077812547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1081376454", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083313546", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083313547", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02", 
    "datePublishedReg": "2019-02-01", 
    "description": "Microbial communities are key engines that drive earth's biogeochemical cycles. However, existing ecosystem models have only limited ability to predict microbial dynamics and require the calibration of multiple population-specific empirical equations. In contrast, we build on a new kinetic \"Microbial Transition State\" (MTS) theory of growth derived from first principles. We show how the theory coupled to simple mass and energy balance calculations provides a framework with intrinsically important qualitative properties to model microbial community dynamics. We first show how the theory can simultaneously account for the influence of all the resources needed for growth (electron donor, acceptor, and nutrients) while still producing consistent dynamics that fulfill the Liebig rule of a single limiting substrate. We also show consistent patterns of energy-dependent microbial successions in mixed culture without the need for calibration of population-specific parameters. We then show how this approach can be used to model a simplified activated sludge community. To this end, we compare MTS-derived dynamics with those of a widely used activated sludge model and show that similar growth yields and overall dynamics can be obtained using two parameters instead of twelve. This new kinetic theory of growth grounded by a set of generic physical principles parsimoniously gives rise to consistent microbial population and community dynamics, thereby paving the way for the development of a new class of more predictive microbial ecosystem models.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41396-018-0272-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1038436", 
        "issn": [
          "1751-7362", 
          "1751-7370"
        ], 
        "name": "The ISME Journal", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "name": "Consistent microbial dynamics and functional community patterns derived from first principles", 
    "pagination": "263-276", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e042287b870793bdf7fd1707e888113bdfa12887c97ec8c02ee558af1fa56179"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30194430"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101301086"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41396-018-0272-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106829810"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41396-018-0272-0", 
      "https://app.dimensions.ai/details/publication/pub.1106829810"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29194_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41396-018-0272-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41396-018-0272-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41396-018-0272-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41396-018-0272-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41396-018-0272-0'


 

This table displays all metadata directly associated to this object as RDF triples.

249 TRIPLES      21 PREDICATES      77 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41396-018-0272-0 schema:about anzsrc-for:06
2 anzsrc-for:0605
3 schema:author Ndb6184e9d16544b1a6e718bc4205c822
4 schema:citation sg:pub.10.1038/ismej.2007.7
5 sg:pub.10.1038/ismej.2015.69
6 sg:pub.10.1038/ismej.2016.45
7 sg:pub.10.1038/nature11234
8 sg:pub.10.1038/s41559-016-0015
9 sg:pub.10.1038/srep21871
10 sg:pub.10.1038/srep33696
11 https://app.dimensions.ai/details/publication/pub.1081376454
12 https://app.dimensions.ai/details/publication/pub.1083313546
13 https://app.dimensions.ai/details/publication/pub.1083313547
14 https://doi.org/10.1002/(sici)1097-0290(19960905)51:5<597::aid-bit12>3.0.co;2-f
15 https://doi.org/10.1002/(sici)1097-0290(19980920)59:6<732::aid-bit10>3.0.co;2-7
16 https://doi.org/10.1002/9780470054581.eib084
17 https://doi.org/10.1002/bit.20767
18 https://doi.org/10.1002/bit.21250
19 https://doi.org/10.1002/bit.22325
20 https://doi.org/10.1002/bit.260380104
21 https://doi.org/10.1002/bit.260390806
22 https://doi.org/10.1016/j.bej.2006.05.022
23 https://doi.org/10.1016/j.biortech.2010.09.112
24 https://doi.org/10.1016/j.cep.2007.02.016
25 https://doi.org/10.1016/j.compchemeng.2016.12.020
26 https://doi.org/10.1016/j.tibtech.2008.04.003
27 https://doi.org/10.1016/j.tree.2006.02.002
28 https://doi.org/10.1016/s0040-6031(97)00357-2
29 https://doi.org/10.1016/s1389-1723(03)70135-2
30 https://doi.org/10.1017/s002531540005760x
31 https://doi.org/10.1021/es301422r
32 https://doi.org/10.1029/2006rg000210
33 https://doi.org/10.1034/j.1600-0706.2003.12479.x
34 https://doi.org/10.1038/msb.2011.6
35 https://doi.org/10.1039/c3ee42754d
36 https://doi.org/10.1063/1.1749604
37 https://doi.org/10.1073/pnas.1601070113
38 https://doi.org/10.1073/pnas.80.1.305
39 https://doi.org/10.1073/pnas.95.12.6578
40 https://doi.org/10.1080/10643380802000974
41 https://doi.org/10.1086/420777
42 https://doi.org/10.1111/1758-2229.12110
43 https://doi.org/10.1126/science.1153213
44 https://doi.org/10.1126/science.aaf4507
45 https://doi.org/10.1146/annurev.mi.03.100149.002103
46 https://doi.org/10.1371/journal.pone.0126739
47 https://doi.org/10.2166/wst.2009.223
48 https://doi.org/10.2175/106143008x304776
49 https://doi.org/10.2307/3546712
50 https://doi.org/10.2475/03.2011.01
51 https://doi.org/10.4314/wsa.v27i3.4986
52 schema:datePublished 2019-02
53 schema:datePublishedReg 2019-02-01
54 schema:description Microbial communities are key engines that drive earth's biogeochemical cycles. However, existing ecosystem models have only limited ability to predict microbial dynamics and require the calibration of multiple population-specific empirical equations. In contrast, we build on a new kinetic "Microbial Transition State" (MTS) theory of growth derived from first principles. We show how the theory coupled to simple mass and energy balance calculations provides a framework with intrinsically important qualitative properties to model microbial community dynamics. We first show how the theory can simultaneously account for the influence of all the resources needed for growth (electron donor, acceptor, and nutrients) while still producing consistent dynamics that fulfill the Liebig rule of a single limiting substrate. We also show consistent patterns of energy-dependent microbial successions in mixed culture without the need for calibration of population-specific parameters. We then show how this approach can be used to model a simplified activated sludge community. To this end, we compare MTS-derived dynamics with those of a widely used activated sludge model and show that similar growth yields and overall dynamics can be obtained using two parameters instead of twelve. This new kinetic theory of growth grounded by a set of generic physical principles parsimoniously gives rise to consistent microbial population and community dynamics, thereby paving the way for the development of a new class of more predictive microbial ecosystem models.
55 schema:genre research_article
56 schema:inLanguage en
57 schema:isAccessibleForFree false
58 schema:isPartOf Nc52775f88f1648b49c286633a391e547
59 Nf383dc26f1504306ae49425534d27c8c
60 sg:journal.1038436
61 schema:name Consistent microbial dynamics and functional community patterns derived from first principles
62 schema:pagination 263-276
63 schema:productId N0b67e77b5b694f0daf99f32c6a1efd01
64 N72f2556875da496c9b069b732b87edf1
65 N7d27e7047554439d8999e5f3415dc677
66 N9a41a913f0e04be5b781a6b92231b03c
67 Na1152ed722ec42b19a0289fd7eeccce0
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106829810
69 https://doi.org/10.1038/s41396-018-0272-0
70 schema:sdDatePublished 2019-04-11T11:53
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher N0caa88d717e043d891271d4be7cd541a
73 schema:url https://www.nature.com/articles/s41396-018-0272-0
74 sgo:license sg:explorer/license/
75 sgo:sdDataset articles
76 rdf:type schema:ScholarlyArticle
77 N0b67e77b5b694f0daf99f32c6a1efd01 schema:name doi
78 schema:value 10.1038/s41396-018-0272-0
79 rdf:type schema:PropertyValue
80 N0caa88d717e043d891271d4be7cd541a schema:name Springer Nature - SN SciGraph project
81 rdf:type schema:Organization
82 N1ba7df0bd4864e288131d790dd70610d rdf:first sg:person.01150143330.25
83 rdf:rest rdf:nil
84 N1fd65bda327b481491c0fdc22fd7e744 rdf:first sg:person.012303402257.63
85 rdf:rest Nd40a070e5c0c45c8a3a706b8fbe2e4a7
86 N72f2556875da496c9b069b732b87edf1 schema:name readcube_id
87 schema:value e042287b870793bdf7fd1707e888113bdfa12887c97ec8c02ee558af1fa56179
88 rdf:type schema:PropertyValue
89 N7d27e7047554439d8999e5f3415dc677 schema:name dimensions_id
90 schema:value pub.1106829810
91 rdf:type schema:PropertyValue
92 N86a4aeb857704bd3b879649c07be8b51 rdf:first sg:person.01372232177.16
93 rdf:rest N1ba7df0bd4864e288131d790dd70610d
94 N9a41a913f0e04be5b781a6b92231b03c schema:name nlm_unique_id
95 schema:value 101301086
96 rdf:type schema:PropertyValue
97 Na1152ed722ec42b19a0289fd7eeccce0 schema:name pubmed_id
98 schema:value 30194430
99 rdf:type schema:PropertyValue
100 Nc52775f88f1648b49c286633a391e547 schema:issueNumber 2
101 rdf:type schema:PublicationIssue
102 Nd40a070e5c0c45c8a3a706b8fbe2e4a7 rdf:first sg:person.01005643273.06
103 rdf:rest N86a4aeb857704bd3b879649c07be8b51
104 Ndb6184e9d16544b1a6e718bc4205c822 rdf:first sg:person.011052473335.51
105 rdf:rest N1fd65bda327b481491c0fdc22fd7e744
106 Nf383dc26f1504306ae49425534d27c8c schema:volumeNumber 13
107 rdf:type schema:PublicationVolume
108 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
109 schema:name Biological Sciences
110 rdf:type schema:DefinedTerm
111 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
112 schema:name Microbiology
113 rdf:type schema:DefinedTerm
114 sg:journal.1038436 schema:issn 1751-7362
115 1751-7370
116 schema:name The ISME Journal
117 rdf:type schema:Periodical
118 sg:person.01005643273.06 schema:affiliation https://www.grid.ac/institutes/grid.48142.3b
119 schema:familyName Duquennoi
120 schema:givenName Christian
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005643273.06
122 rdf:type schema:Person
123 sg:person.011052473335.51 schema:affiliation https://www.grid.ac/institutes/grid.48142.3b
124 schema:familyName Delattre
125 schema:givenName Hadrien
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011052473335.51
127 rdf:type schema:Person
128 sg:person.01150143330.25 schema:affiliation https://www.grid.ac/institutes/grid.48142.3b
129 schema:familyName Bouchez
130 schema:givenName Théodore
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150143330.25
132 rdf:type schema:Person
133 sg:person.012303402257.63 schema:affiliation https://www.grid.ac/institutes/grid.419083.7
134 schema:familyName Quéméner
135 schema:givenName Elie Desmond-Le
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012303402257.63
137 rdf:type schema:Person
138 sg:person.01372232177.16 schema:affiliation https://www.grid.ac/institutes/grid.48142.3b
139 schema:familyName Filali
140 schema:givenName Ahlem
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372232177.16
142 rdf:type schema:Person
143 sg:pub.10.1038/ismej.2007.7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020507223
144 https://doi.org/10.1038/ismej.2007.7
145 rdf:type schema:CreativeWork
146 sg:pub.10.1038/ismej.2015.69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008282158
147 https://doi.org/10.1038/ismej.2015.69
148 rdf:type schema:CreativeWork
149 sg:pub.10.1038/ismej.2016.45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043038872
150 https://doi.org/10.1038/ismej.2016.45
151 rdf:type schema:CreativeWork
152 sg:pub.10.1038/nature11234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007740093
153 https://doi.org/10.1038/nature11234
154 rdf:type schema:CreativeWork
155 sg:pub.10.1038/s41559-016-0015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042654297
156 https://doi.org/10.1038/s41559-016-0015
157 rdf:type schema:CreativeWork
158 sg:pub.10.1038/srep21871 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010990287
159 https://doi.org/10.1038/srep21871
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/srep33696 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040124255
162 https://doi.org/10.1038/srep33696
163 rdf:type schema:CreativeWork
164 https://app.dimensions.ai/details/publication/pub.1081376454 schema:CreativeWork
165 https://app.dimensions.ai/details/publication/pub.1083313546 schema:CreativeWork
166 https://app.dimensions.ai/details/publication/pub.1083313547 schema:CreativeWork
167 https://doi.org/10.1002/(sici)1097-0290(19960905)51:5<597::aid-bit12>3.0.co;2-f schema:sameAs https://app.dimensions.ai/details/publication/pub.1023464251
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1002/(sici)1097-0290(19980920)59:6<732::aid-bit10>3.0.co;2-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029120124
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1002/9780470054581.eib084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034500070
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1002/bit.20767 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017928974
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1002/bit.21250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035039101
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1002/bit.22325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033394092
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1002/bit.260380104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047572922
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1002/bit.260390806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036389504
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.bej.2006.05.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000962658
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.biortech.2010.09.112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020281519
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.cep.2007.02.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048698123
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.compchemeng.2016.12.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017566162
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/j.tibtech.2008.04.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023524613
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/j.tree.2006.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014600667
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/s0040-6031(97)00357-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039498084
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/s1389-1723(03)70135-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026056474
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1017/s002531540005760x schema:sameAs https://app.dimensions.ai/details/publication/pub.1054811869
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1021/es301422r schema:sameAs https://app.dimensions.ai/details/publication/pub.1035099404
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1029/2006rg000210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014117900
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1034/j.1600-0706.2003.12479.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1024751858
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1038/msb.2011.6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019249960
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1039/c3ee42754d schema:sameAs https://app.dimensions.ai/details/publication/pub.1026353949
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1063/1.1749604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057811599
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1073/pnas.1601070113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016416634
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1073/pnas.80.1.305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008334002
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1073/pnas.95.12.6578 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003821328
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1080/10643380802000974 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034989178
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1086/420777 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058711777
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1111/1758-2229.12110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038370347
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1126/science.1153213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053637244
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1126/science.aaf4507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062667678
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1146/annurev.mi.03.100149.002103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047102495
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1371/journal.pone.0126739 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023044629
232 rdf:type schema:CreativeWork
233 https://doi.org/10.2166/wst.2009.223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069143243
234 rdf:type schema:CreativeWork
235 https://doi.org/10.2175/106143008x304776 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077812547
236 rdf:type schema:CreativeWork
237 https://doi.org/10.2307/3546712 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070368502
238 rdf:type schema:CreativeWork
239 https://doi.org/10.2475/03.2011.01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070838656
240 rdf:type schema:CreativeWork
241 https://doi.org/10.4314/wsa.v27i3.4986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012037936
242 rdf:type schema:CreativeWork
243 https://www.grid.ac/institutes/grid.419083.7 schema:alternateName Laboratoire de Biotechnologie de l'Environnement
244 schema:name Irstea, UR HBAN, F-92761, Antony, France
245 LBE, University of Montpellier, INRA, Narbonne, France
246 rdf:type schema:Organization
247 https://www.grid.ac/institutes/grid.48142.3b schema:alternateName National Research Institute of Science and Technology for Environment and Agriculture
248 schema:name Irstea, UR HBAN, F-92761, Antony, France
249 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...