Pathogen population structure can explain hospital outbreaks View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-07-25

AUTHORS

Fabrizio Spagnolo, Pierre Cristofari, Nicholas P. Tatonetti, Lev R. Ginzburg, Daniel E. Dykhuizen

ABSTRACT

Hospitalized patients are at risk for increased length of stay, illness, or death due to hospital acquired infections. The majority of hospital transmission models describe dynamics on the level of the host rather than on the level of the pathogens themselves. Accordingly, epidemiologists often cannot complete transmission chains without direct evidence of either host–host contact or a large reservoir population. Here, we propose an ecology-based model to explain the transmission of pathogens in hospitals. The model is based upon metapopulation biology, which describes a group of interacting localized populations and island biogeography, which provides a basis for how pathogens may be moving between locales. Computational simulation trials are used to assess the applicability of the model. Results indicate that pathogens survive for extended periods without the need for large reservoirs by living in localized ephemeral populations while continuously transmitting pathogens to new seed populations. Computational simulations show small populations spending significant portions of time at sizes too small to be detected by most surveillance protocols and that the number and type of these ephemeral populations enable the overall pathogen population to be sustained. By modeling hospital pathogens as a metapopulation, many observations characteristic of hospital acquired infection outbreaks for which there has previously been no sufficient biological explanation, including how and why empirically successful interventions work, can now be accounted for using population dynamic hypotheses. Epidemiological links between temporally isolated outbreaks are explained via pathogen population dynamics and potential outbreak intervention targets are identified. More... »

PAGES

2835-2843

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41396-018-0235-5

DOI

http://dx.doi.org/10.1038/s41396-018-0235-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105804441

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30046167


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cross Infection", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Disease Outbreaks", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hospitals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Theoretical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Monte Carlo Method", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Population Dynamics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ecology, Evolution and Environmental Biology Department, Columbia University, 10027, New York, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.21729.3f", 
          "name": [
            "Ecology, Evolution and Environmental Biology Department, Columbia University, 10027, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Spagnolo", 
        "givenName": "Fabrizio", 
        "id": "sg:person.01045520222.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01045520222.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Astronomy Department, Columbia University, 10027, New York, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.21729.3f", 
          "name": [
            "Department of Biomedical Informatics, Columbia University Medical Center, 10032, New York, NY, USA", 
            "Astronomy Department, Columbia University, 10027, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cristofari", 
        "givenName": "Pierre", 
        "id": "sg:person.015727411364.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015727411364.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Medicine, Columbia University, 10032, New York, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.21729.3f", 
          "name": [
            "Department of Biomedical Informatics, Columbia University Medical Center, 10032, New York, NY, USA", 
            "Department of Systems Biology, Columbia University Medical Center, 10032, New York, NY, USA", 
            "Department of Medicine, Columbia University, 10032, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tatonetti", 
        "givenName": "Nicholas P.", 
        "id": "sg:person.0651210417.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651210417.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Applied Biomathematics, 11733, Setauket, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.422751.7", 
          "name": [
            "Applied Biomathematics, 11733, Setauket, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ginzburg", 
        "givenName": "Lev R.", 
        "id": "sg:person.015102730643.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015102730643.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Ecology and Evolution, Stony Brook University, 11794, Stony Brook, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.36425.36", 
          "name": [
            "Department of Ecology and Evolution, Stony Brook University, 11794, Stony Brook, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dykhuizen", 
        "givenName": "Daniel E.", 
        "id": "sg:person.0673064451.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673064451.52"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1471-2334-13-294", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047261820", 
          "https://doi.org/10.1186/1471-2334-13-294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13756-017-0203-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085378375", 
          "https://doi.org/10.1186/s13756-017-0203-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2334-6-130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023539223", 
          "https://doi.org/10.1186/1471-2334-6-130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12879-015-0880-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032941099", 
          "https://doi.org/10.1186/s12879-015-0880-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-07-25", 
    "datePublishedReg": "2018-07-25", 
    "description": "Hospitalized patients are at risk for increased length of stay, illness, or death due to hospital acquired infections. The majority of hospital transmission models describe dynamics on the level of the host rather than on the level of the pathogens themselves. Accordingly, epidemiologists often cannot complete transmission chains without direct evidence of either host\u2013host contact or a large reservoir population. Here, we propose an ecology-based model to explain the transmission of pathogens in hospitals. The model is based upon metapopulation biology, which describes a group of interacting localized populations and island biogeography, which provides a basis for how pathogens may be moving between locales. Computational simulation trials are used to assess the applicability of the model. Results indicate that pathogens survive for extended periods without the need for large reservoirs by living in localized ephemeral populations while continuously transmitting pathogens to new seed populations. Computational simulations show small populations spending significant portions of time at sizes too small to be detected by most surveillance protocols and that the number and type of these ephemeral populations enable the overall pathogen population to be sustained. By modeling hospital pathogens as a metapopulation, many observations characteristic of hospital acquired infection outbreaks for which there has previously been no sufficient biological explanation, including how and why empirically successful interventions work, can now be accounted for using population dynamic hypotheses. Epidemiological links between temporally isolated outbreaks are explained via pathogen population dynamics and potential outbreak intervention targets are identified.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41396-018-0235-5", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1038436", 
        "issn": [
          "1751-7362", 
          "1751-7370"
        ], 
        "name": "The ISME Journal: Multidisciplinary Journal of Microbial Ecology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "keywords": [
      "ephemeral populations", 
      "ecology-based model", 
      "large reservoir populations", 
      "pathogen population dynamics", 
      "pathogen population structure", 
      "host-host contact", 
      "most surveillance protocols", 
      "metapopulation biology", 
      "island biogeography", 
      "length of stay", 
      "population structure", 
      "pathogen populations", 
      "transmission of pathogens", 
      "population dynamics", 
      "seed population", 
      "reservoir populations", 
      "surveillance protocol", 
      "hospital outbreaks", 
      "small population", 
      "hospital transmission model", 
      "pathogens", 
      "hospital pathogens", 
      "epidemiological link", 
      "infection outbreaks", 
      "hospital", 
      "intervention targets", 
      "large reservoir", 
      "biological explanation", 
      "biogeography", 
      "direct evidence", 
      "metapopulation", 
      "outbreak", 
      "population", 
      "intervention work", 
      "biology", 
      "transmission chain", 
      "patients", 
      "stay", 
      "illness", 
      "infection", 
      "host", 
      "trials", 
      "dynamic hypothesis", 
      "death", 
      "extended period", 
      "risk", 
      "levels", 
      "significant portion", 
      "epidemiologists", 
      "transmission model", 
      "target", 
      "group", 
      "majority", 
      "dynamics", 
      "evidence", 
      "period", 
      "hypothesis", 
      "protocol", 
      "reservoir", 
      "portion", 
      "chain", 
      "locales", 
      "transmission", 
      "basis", 
      "need", 
      "observation characteristics", 
      "simulation trials", 
      "structure", 
      "link", 
      "number", 
      "contact", 
      "length", 
      "model", 
      "types", 
      "time", 
      "size", 
      "results", 
      "computational simulations", 
      "characteristics", 
      "explanation", 
      "work", 
      "applicability", 
      "simulations", 
      "Computational simulation trials", 
      "localized ephemeral populations", 
      "new seed populations", 
      "overall pathogen population", 
      "sufficient biological explanation", 
      "successful interventions work", 
      "population dynamic hypotheses", 
      "potential outbreak intervention targets", 
      "outbreak intervention targets"
    ], 
    "name": "Pathogen population structure can explain hospital outbreaks", 
    "pagination": "2835-2843", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105804441"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41396-018-0235-5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30046167"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41396-018-0235-5", 
      "https://app.dimensions.ai/details/publication/pub.1105804441"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_765.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41396-018-0235-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41396-018-0235-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41396-018-0235-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41396-018-0235-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41396-018-0235-5'


 

This table displays all metadata directly associated to this object as RDF triples.

246 TRIPLES      22 PREDICATES      131 URIs      118 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41396-018-0235-5 schema:about N14ab481b41d4426f9410db5b1d69c6a7
2 N4d3d65b13517477fb5dff0dac3014097
3 N72a4a645243e41d992c195a42f0df321
4 N826ecee24bb045d39917cae01c28d610
5 N95564a18c90a453484e2fd4cc6284bd4
6 Naca764017fd5487bbad93c987cb8e857
7 Nd7fda6dd259e45cd9612c033dc5da1ff
8 Neef9188922964e2093d03f2bdf5153e4
9 anzsrc-for:05
10 anzsrc-for:06
11 anzsrc-for:10
12 schema:author N46581a6e9a9a4416bb36e78ea6fa415e
13 schema:citation sg:pub.10.1186/1471-2334-13-294
14 sg:pub.10.1186/1471-2334-6-130
15 sg:pub.10.1186/s12879-015-0880-5
16 sg:pub.10.1186/s13756-017-0203-2
17 schema:datePublished 2018-07-25
18 schema:datePublishedReg 2018-07-25
19 schema:description Hospitalized patients are at risk for increased length of stay, illness, or death due to hospital acquired infections. The majority of hospital transmission models describe dynamics on the level of the host rather than on the level of the pathogens themselves. Accordingly, epidemiologists often cannot complete transmission chains without direct evidence of either host–host contact or a large reservoir population. Here, we propose an ecology-based model to explain the transmission of pathogens in hospitals. The model is based upon metapopulation biology, which describes a group of interacting localized populations and island biogeography, which provides a basis for how pathogens may be moving between locales. Computational simulation trials are used to assess the applicability of the model. Results indicate that pathogens survive for extended periods without the need for large reservoirs by living in localized ephemeral populations while continuously transmitting pathogens to new seed populations. Computational simulations show small populations spending significant portions of time at sizes too small to be detected by most surveillance protocols and that the number and type of these ephemeral populations enable the overall pathogen population to be sustained. By modeling hospital pathogens as a metapopulation, many observations characteristic of hospital acquired infection outbreaks for which there has previously been no sufficient biological explanation, including how and why empirically successful interventions work, can now be accounted for using population dynamic hypotheses. Epidemiological links between temporally isolated outbreaks are explained via pathogen population dynamics and potential outbreak intervention targets are identified.
20 schema:genre article
21 schema:inLanguage en
22 schema:isAccessibleForFree true
23 schema:isPartOf N7c37f92d11574e6f8155ceaca575fd48
24 Nc4804a20ae254516b6ebb9f6af30f102
25 sg:journal.1038436
26 schema:keywords Computational simulation trials
27 applicability
28 basis
29 biogeography
30 biological explanation
31 biology
32 chain
33 characteristics
34 computational simulations
35 contact
36 death
37 direct evidence
38 dynamic hypothesis
39 dynamics
40 ecology-based model
41 ephemeral populations
42 epidemiological link
43 epidemiologists
44 evidence
45 explanation
46 extended period
47 group
48 hospital
49 hospital outbreaks
50 hospital pathogens
51 hospital transmission model
52 host
53 host-host contact
54 hypothesis
55 illness
56 infection
57 infection outbreaks
58 intervention targets
59 intervention work
60 island biogeography
61 large reservoir
62 large reservoir populations
63 length
64 length of stay
65 levels
66 link
67 locales
68 localized ephemeral populations
69 majority
70 metapopulation
71 metapopulation biology
72 model
73 most surveillance protocols
74 need
75 new seed populations
76 number
77 observation characteristics
78 outbreak
79 outbreak intervention targets
80 overall pathogen population
81 pathogen population dynamics
82 pathogen population structure
83 pathogen populations
84 pathogens
85 patients
86 period
87 population
88 population dynamic hypotheses
89 population dynamics
90 population structure
91 portion
92 potential outbreak intervention targets
93 protocol
94 reservoir
95 reservoir populations
96 results
97 risk
98 seed population
99 significant portion
100 simulation trials
101 simulations
102 size
103 small population
104 stay
105 structure
106 successful interventions work
107 sufficient biological explanation
108 surveillance protocol
109 target
110 time
111 transmission
112 transmission chain
113 transmission model
114 transmission of pathogens
115 trials
116 types
117 work
118 schema:name Pathogen population structure can explain hospital outbreaks
119 schema:pagination 2835-2843
120 schema:productId N2556bdd6bced4b9f99397595fec11cd6
121 N2e670fbcfcec4081b2e6fba3235439e5
122 Ncb2feb429a644202a728fc1c2fde1895
123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105804441
124 https://doi.org/10.1038/s41396-018-0235-5
125 schema:sdDatePublished 2021-11-01T18:32
126 schema:sdLicense https://scigraph.springernature.com/explorer/license/
127 schema:sdPublisher Nc5c6f428cc954e8fae0bcd22a1317126
128 schema:url https://doi.org/10.1038/s41396-018-0235-5
129 sgo:license sg:explorer/license/
130 sgo:sdDataset articles
131 rdf:type schema:ScholarlyArticle
132 N14ab481b41d4426f9410db5b1d69c6a7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Disease Outbreaks
134 rdf:type schema:DefinedTerm
135 N21acdf1b41c34241a923300102932607 rdf:first sg:person.015102730643.26
136 rdf:rest N56aff265c9a14fbabaa9815e0b91f53e
137 N2556bdd6bced4b9f99397595fec11cd6 schema:name doi
138 schema:value 10.1038/s41396-018-0235-5
139 rdf:type schema:PropertyValue
140 N2e670fbcfcec4081b2e6fba3235439e5 schema:name pubmed_id
141 schema:value 30046167
142 rdf:type schema:PropertyValue
143 N371869c1abc246edbc118cb165e0452f rdf:first sg:person.015727411364.89
144 rdf:rest N4e76af3963dd49008765ba90bfbb21dc
145 N46581a6e9a9a4416bb36e78ea6fa415e rdf:first sg:person.01045520222.83
146 rdf:rest N371869c1abc246edbc118cb165e0452f
147 N4d3d65b13517477fb5dff0dac3014097 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Monte Carlo Method
149 rdf:type schema:DefinedTerm
150 N4e76af3963dd49008765ba90bfbb21dc rdf:first sg:person.0651210417.29
151 rdf:rest N21acdf1b41c34241a923300102932607
152 N56aff265c9a14fbabaa9815e0b91f53e rdf:first sg:person.0673064451.52
153 rdf:rest rdf:nil
154 N72a4a645243e41d992c195a42f0df321 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Computer Simulation
156 rdf:type schema:DefinedTerm
157 N7c37f92d11574e6f8155ceaca575fd48 schema:issueNumber 12
158 rdf:type schema:PublicationIssue
159 N826ecee24bb045d39917cae01c28d610 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Population Dynamics
161 rdf:type schema:DefinedTerm
162 N95564a18c90a453484e2fd4cc6284bd4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Hospitals
164 rdf:type schema:DefinedTerm
165 Naca764017fd5487bbad93c987cb8e857 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Humans
167 rdf:type schema:DefinedTerm
168 Nc4804a20ae254516b6ebb9f6af30f102 schema:volumeNumber 12
169 rdf:type schema:PublicationVolume
170 Nc5c6f428cc954e8fae0bcd22a1317126 schema:name Springer Nature - SN SciGraph project
171 rdf:type schema:Organization
172 Ncb2feb429a644202a728fc1c2fde1895 schema:name dimensions_id
173 schema:value pub.1105804441
174 rdf:type schema:PropertyValue
175 Nd7fda6dd259e45cd9612c033dc5da1ff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Models, Theoretical
177 rdf:type schema:DefinedTerm
178 Neef9188922964e2093d03f2bdf5153e4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Cross Infection
180 rdf:type schema:DefinedTerm
181 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
182 schema:name Environmental Sciences
183 rdf:type schema:DefinedTerm
184 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
185 schema:name Biological Sciences
186 rdf:type schema:DefinedTerm
187 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
188 schema:name Technology
189 rdf:type schema:DefinedTerm
190 sg:journal.1038436 schema:issn 1751-7362
191 1751-7370
192 schema:name The ISME Journal: Multidisciplinary Journal of Microbial Ecology
193 schema:publisher Springer Nature
194 rdf:type schema:Periodical
195 sg:person.01045520222.83 schema:affiliation grid-institutes:grid.21729.3f
196 schema:familyName Spagnolo
197 schema:givenName Fabrizio
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01045520222.83
199 rdf:type schema:Person
200 sg:person.015102730643.26 schema:affiliation grid-institutes:grid.422751.7
201 schema:familyName Ginzburg
202 schema:givenName Lev R.
203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015102730643.26
204 rdf:type schema:Person
205 sg:person.015727411364.89 schema:affiliation grid-institutes:grid.21729.3f
206 schema:familyName Cristofari
207 schema:givenName Pierre
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015727411364.89
209 rdf:type schema:Person
210 sg:person.0651210417.29 schema:affiliation grid-institutes:grid.21729.3f
211 schema:familyName Tatonetti
212 schema:givenName Nicholas P.
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651210417.29
214 rdf:type schema:Person
215 sg:person.0673064451.52 schema:affiliation grid-institutes:grid.36425.36
216 schema:familyName Dykhuizen
217 schema:givenName Daniel E.
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673064451.52
219 rdf:type schema:Person
220 sg:pub.10.1186/1471-2334-13-294 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047261820
221 https://doi.org/10.1186/1471-2334-13-294
222 rdf:type schema:CreativeWork
223 sg:pub.10.1186/1471-2334-6-130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023539223
224 https://doi.org/10.1186/1471-2334-6-130
225 rdf:type schema:CreativeWork
226 sg:pub.10.1186/s12879-015-0880-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032941099
227 https://doi.org/10.1186/s12879-015-0880-5
228 rdf:type schema:CreativeWork
229 sg:pub.10.1186/s13756-017-0203-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085378375
230 https://doi.org/10.1186/s13756-017-0203-2
231 rdf:type schema:CreativeWork
232 grid-institutes:grid.21729.3f schema:alternateName Astronomy Department, Columbia University, 10027, New York, NY, USA
233 Department of Medicine, Columbia University, 10032, New York, NY, USA
234 Ecology, Evolution and Environmental Biology Department, Columbia University, 10027, New York, NY, USA
235 schema:name Astronomy Department, Columbia University, 10027, New York, NY, USA
236 Department of Biomedical Informatics, Columbia University Medical Center, 10032, New York, NY, USA
237 Department of Medicine, Columbia University, 10032, New York, NY, USA
238 Department of Systems Biology, Columbia University Medical Center, 10032, New York, NY, USA
239 Ecology, Evolution and Environmental Biology Department, Columbia University, 10027, New York, NY, USA
240 rdf:type schema:Organization
241 grid-institutes:grid.36425.36 schema:alternateName Department of Ecology and Evolution, Stony Brook University, 11794, Stony Brook, NY, USA
242 schema:name Department of Ecology and Evolution, Stony Brook University, 11794, Stony Brook, NY, USA
243 rdf:type schema:Organization
244 grid-institutes:grid.422751.7 schema:alternateName Applied Biomathematics, 11733, Setauket, NY, USA
245 schema:name Applied Biomathematics, 11733, Setauket, NY, USA
246 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...