Comparative genomic inference suggests mixotrophic lifestyle for Thorarchaeota View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-02-14

AUTHORS

Yang Liu, Zhichao Zhou, Jie Pan, Brett J. Baker, Ji-Dong Gu, Meng Li

ABSTRACT

Thorarchaeota are a new archaeal phylum within the Asgard superphylum, whose ancestors have been proposed to play possible ecological roles in cellular evolution. However, little is known about the lifestyles of these uncultured archaea. To provide a better resolution of the ecological roles and metabolic capacity of Thorarchaeota, we obtained Thorarchaeota genomes reconstructed from metagenomes of different depth layers in mangrove and mudflat sediments. These genomes from deep anoxic layers suggest the presence of Thorarchaeota with the potential to degrade organic matter, fix inorganic carbon, reduce sulfur/sulfate and produce acetate. In particular, Thorarchaeota may be involved in ethanol production, nitrogen fixation, nitrite reduction, and arsenic detoxification. Interestingly, these Thorarchaeotal genomes are inferred to contain the tetrahydromethanopterin and tetrahydrofolate Wood–Ljungdahl (WL) pathways for CO2 reduction, and the latter WL pathway appears to have originated from bacteria. These archaea are predicted to be able to use various inorganic and organic carbon sources, possessing genes inferred to encode ribulose bisphosphate carboxylase-like proteins (normally without RuBisCO activity) and a near-complete Calvin–Benson–Bassham cycle. The existence of eukaryotic selenocysteine insertion sequences and many genes for proteins previously considered eukaryote-specific in Thorarchaeota genomes provide new insights into their evolutionary roles in the origin of eukaryotic cellular complexity. Resolving the metabolic capacities of these enigmatic archaea and their origins will enhance our understanding of the origins of eukaryotes and their roles in ecosystems. More... »

PAGES

1021-1031

References to SciGraph publications

  • 2016-02-15. Genomic inference of the metabolism of cosmopolitan subsurface Archaea, Hadesarchaea in NATURE MICROBIOLOGY
  • 2012-10-07. A RubisCO-like protein links SAM metabolism with isoprenoid biosynthesis in NATURE CHEMICAL BIOLOGY
  • 2009-08-21. Community-wide analysis of microbial genome sequence signatures in GENOME BIOLOGY
  • 2016-01-13. Distribution and accumulation of mercury and copper in mangrove sediments in Shenzhen, the world’s most rapid urbanized city in ENVIRONMENTAL MONITORING AND ASSESSMENT
  • 2016-09-13. Influence of Macrofaunal Burrows on Extracellular Enzyme Activity and Microbial Abundance in Subtropical Mangrove Sediment in MICROBIAL ECOLOGY
  • 2016-10-17. Thermophilic archaea activate butane via alkyl-coenzyme M formation in NATURE
  • 2010-05-10. Autotrophic carbon fixation in archaea in NATURE REVIEWS MICROBIOLOGY
  • 2016-10-03. Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota in NATURE MICROBIOLOGY
  • 2016-04-04. Lokiarchaeon is hydrogen dependent in NATURE MICROBIOLOGY
  • 2013-12-04. The changing carbon cycle of the coastal ocean in NATURE
  • 2011-10-28. Using MCL to Extract Clusters from Networks in BACTERIAL MOLECULAR NETWORKS
  • 1995-02-01. Enzymes and coenzymes of the carbon monoxide dehydrogenase pathway for autotrophic CO2 fixation in Archaeoglobus lithotrophicus and the lack of carbon monoxide dehydrogenase in the heterotrophic A. profundus in ARCHIVES OF MICROBIOLOGY
  • 2015-05-06. Complex archaea that bridge the gap between prokaryotes and eukaryotes in NATURE
  • 2016-04-04. Genomic and enzymatic evidence for acetogenesis among multiple lineages of the archaeal phylum Bathyarchaeota widespread in marine sediments in NATURE MICROBIOLOGY
  • 2014-11-26. Biology of a widespread uncultivated archaeon that contributes to carbon fixation in the subsurface in NATURE COMMUNICATIONS
  • 2010-03-08. Prodigal: prokaryotic gene recognition and translation initiation site identification in BMC BIOINFORMATICS
  • 2012-10-19. The genome sequence of Propionibacterium acidipropionici provides insights into its biotechnological and industrial potential in BMC GENOMICS
  • 2010-07-13. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments in BMC ECOLOGY AND EVOLUTION
  • 2016-05-03. RubisCO of a nucleoside pathway known from Archaea is found in diverse uncultivated phyla in bacteria in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2017-01-11. Asgard archaea illuminate the origin of eukaryotic cellular complexity in NATURE
  • 2016-01-29. Genomic reconstruction of a novel, deeply branched sediment archaeal phylum with pathways for acetogenesis and sulfur reduction in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41396-018-0060-x

    DOI

    http://dx.doi.org/10.1038/s41396-018-0060-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1100925149

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/29445130


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Archaea", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Carbon", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Carbon Cycle", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Eukaryota", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome, Archaeal", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genomics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Geologic Sediments", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Metagenome", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Photosynthesis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phylogeny", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Ribulose-Bisphosphate Carboxylase", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China", 
              "id": "http://www.grid.ac/institutes/grid.263488.3", 
              "name": [
                "Institute for Advanced Study, Shenzhen University, Shenzhen, China", 
                "Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Yang", 
            "id": "sg:person.010545225064.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010545225064.14"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China", 
              "id": "http://www.grid.ac/institutes/grid.194645.b", 
              "name": [
                "Institute for Advanced Study, Shenzhen University, Shenzhen, China", 
                "Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhou", 
            "givenName": "Zhichao", 
            "id": "sg:person.01257470070.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01257470070.21"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China", 
              "id": "http://www.grid.ac/institutes/grid.263488.3", 
              "name": [
                "Institute for Advanced Study, Shenzhen University, Shenzhen, China", 
                "Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pan", 
            "givenName": "Jie", 
            "id": "sg:person.0733716612.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733716612.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Marine Science, University of Texas Austin, Marine Science Institute, 750 Channel View Drive, 78373, Port Aransas, TX, USA", 
              "id": "http://www.grid.ac/institutes/grid.89336.37", 
              "name": [
                "Department of Marine Science, University of Texas Austin, Marine Science Institute, 750 Channel View Drive, 78373, Port Aransas, TX, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Baker", 
            "givenName": "Brett J.", 
            "id": "sg:person.0651757375.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651757375.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China", 
              "id": "http://www.grid.ac/institutes/grid.194645.b", 
              "name": [
                "Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gu", 
            "givenName": "Ji-Dong", 
            "id": "sg:person.0627416505.60", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627416505.60"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Advanced Study, Shenzhen University, Shenzhen, China", 
              "id": "http://www.grid.ac/institutes/grid.263488.3", 
              "name": [
                "Institute for Advanced Study, Shenzhen University, Shenzhen, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Meng", 
            "id": "sg:person.0715634401.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715634401.25"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00381784", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041907645", 
              "https://doi.org/10.1007/bf00381784"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2009-10-8-r85", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014147708", 
              "https://doi.org/10.1186/gb-2009-10-8-r85"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2148-10-210", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001075316", 
              "https://doi.org/10.1186/1471-2148-10-210"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-11-119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026423599", 
              "https://doi.org/10.1186/1471-2105-11-119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2016.53", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044447226", 
              "https://doi.org/10.1038/ismej.2016.53"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature20152", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036617231", 
              "https://doi.org/10.1038/nature20152"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-13-562", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030093784", 
              "https://doi.org/10.1186/1471-2164-13-562"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmicrobiol.2016.170", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007760660", 
              "https://doi.org/10.1038/nmicrobiol.2016.170"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmicrobiol.2016.34", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040680448", 
              "https://doi.org/10.1038/nmicrobiol.2016.34"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature21031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022254641", 
              "https://doi.org/10.1038/nature21031"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2015.233", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025562769", 
              "https://doi.org/10.1038/ismej.2015.233"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmicrobiol.2016.35", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002489826", 
              "https://doi.org/10.1038/nmicrobiol.2016.35"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00248-016-0844-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002289004", 
              "https://doi.org/10.1007/s00248-016-0844-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms6497", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037086599", 
              "https://doi.org/10.1038/ncomms6497"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro2365", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000545292", 
              "https://doi.org/10.1038/nrmicro2365"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-61779-361-5_15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021477415", 
              "https://doi.org/10.1007/978-1-61779-361-5_15"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmicrobiol.2016.2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009322467", 
              "https://doi.org/10.1038/nmicrobiol.2016.2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchembio.1087", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030747670", 
              "https://doi.org/10.1038/nchembio.1087"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature14447", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007474518", 
              "https://doi.org/10.1038/nature14447"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12857", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015681401", 
              "https://doi.org/10.1038/nature12857"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10661-016-5103-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003142121", 
              "https://doi.org/10.1007/s10661-016-5103-z"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-02-14", 
        "datePublishedReg": "2018-02-14", 
        "description": "Thorarchaeota are a new archaeal phylum within the Asgard superphylum, whose ancestors have been proposed to play possible ecological roles in cellular evolution. However, little is known about the lifestyles of these uncultured archaea. To provide a better resolution of the ecological roles and metabolic capacity of Thorarchaeota, we obtained Thorarchaeota genomes reconstructed from metagenomes of different depth layers in mangrove and mudflat sediments. These genomes from deep anoxic layers suggest the presence of Thorarchaeota with the potential to degrade organic matter, fix inorganic carbon, reduce sulfur/sulfate and produce acetate. In particular, Thorarchaeota may be involved in ethanol production, nitrogen fixation, nitrite reduction, and arsenic detoxification. Interestingly, these Thorarchaeotal genomes are inferred to contain the tetrahydromethanopterin and tetrahydrofolate Wood\u2013Ljungdahl (WL) pathways for CO2 reduction, and the latter WL pathway appears to have originated from bacteria. These archaea are predicted to be able to use various inorganic and organic carbon sources, possessing genes inferred to encode ribulose bisphosphate carboxylase-like proteins (normally without RuBisCO activity) and a near-complete Calvin\u2013Benson\u2013Bassham cycle. The existence of eukaryotic selenocysteine insertion sequences and many genes for proteins previously considered eukaryote-specific in Thorarchaeota genomes provide new insights into their evolutionary roles in the origin of eukaryotic cellular complexity. Resolving the metabolic capacities of these enigmatic archaea and their origins will enhance our understanding of the origins of eukaryotes and their roles in ecosystems.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41396-018-0060-x", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1038436", 
            "issn": [
              "1751-7362", 
              "1751-7370"
            ], 
            "name": "The ISME Journal: Multidisciplinary Journal of Microbial Ecology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "12"
          }
        ], 
        "keywords": [
          "ecological role", 
          "new archaeal phylum", 
          "eukaryotic cellular complexity", 
          "origin of eukaryotes", 
          "Wood-Ljungdahl pathway", 
          "possible ecological role", 
          "metabolic capacity", 
          "selenocysteine insertion sequence", 
          "Asgard superphylum", 
          "archaeal phyla", 
          "WL pathway", 
          "uncultured archaea", 
          "genomic inference", 
          "mixotrophic lifestyle", 
          "Calvin-Benson", 
          "cellular evolution", 
          "Bassham cycle", 
          "Thorarchaeota", 
          "evolutionary role", 
          "cellular complexity", 
          "arsenic detoxification", 
          "nitrogen fixation", 
          "genome", 
          "deeper anoxic layers", 
          "organic carbon source", 
          "insertion sequence", 
          "archaea", 
          "carbon source", 
          "genes", 
          "mudflat sediments", 
          "protein", 
          "anoxic layers", 
          "new insights", 
          "nitrite reduction", 
          "pathway", 
          "ethanol production", 
          "inorganic carbon", 
          "superphylum", 
          "eukaryotes", 
          "sulfur/sulfate", 
          "metagenomes", 
          "phyla", 
          "ancestor", 
          "tetrahydromethanopterin", 
          "different depth layers", 
          "role", 
          "ecosystems", 
          "mangroves", 
          "bacteria", 
          "detoxification", 
          "origin", 
          "sequence", 
          "organic matter", 
          "depth layers", 
          "evolution", 
          "insights", 
          "production", 
          "cycle", 
          "understanding", 
          "fixation", 
          "lifestyle", 
          "capacity", 
          "sediments", 
          "presence", 
          "inference", 
          "carbon", 
          "better resolution", 
          "potential", 
          "sulfate", 
          "reduction", 
          "source", 
          "existence", 
          "resolution", 
          "complexity", 
          "matter", 
          "layer", 
          "CO2 reduction"
        ], 
        "name": "Comparative genomic inference suggests mixotrophic lifestyle for Thorarchaeota", 
        "pagination": "1021-1031", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1100925149"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41396-018-0060-x"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "29445130"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41396-018-0060-x", 
          "https://app.dimensions.ai/details/publication/pub.1100925149"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:38", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_774.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41396-018-0060-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41396-018-0060-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41396-018-0060-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41396-018-0060-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41396-018-0060-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    310 TRIPLES      21 PREDICATES      134 URIs      105 LITERALS      18 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41396-018-0060-x schema:about N10e94ab4ac0b4d23beffea87b0a34ddf
    2 N3b9b9c501ce1431da135e1a271d6421a
    3 N4859122676de47509282bb719c01bbd6
    4 N852001182bdb4de4a1d7e2d154ef5070
    5 N9dfc2df5efd9430b99e716dd3b837106
    6 Na1500b7f10214e7b883ddf837a177e35
    7 Nab93fa374e5f4fac8bffdb0ae45f0bdd
    8 Nafa3a49728dc4659befe1b0827777ca4
    9 Nbb43094fa9224369802aeb8854ef1c30
    10 Nbf5afa1d2be845f69cc5eea07e4a9d36
    11 Nc2e5120e01554c77b5ab0a6573cae824
    12 anzsrc-for:06
    13 anzsrc-for:0604
    14 schema:author Nd3de9eb765e94ece856d8823136fe67a
    15 schema:citation sg:pub.10.1007/978-1-61779-361-5_15
    16 sg:pub.10.1007/bf00381784
    17 sg:pub.10.1007/s00248-016-0844-3
    18 sg:pub.10.1007/s10661-016-5103-z
    19 sg:pub.10.1038/ismej.2015.233
    20 sg:pub.10.1038/ismej.2016.53
    21 sg:pub.10.1038/nature12857
    22 sg:pub.10.1038/nature14447
    23 sg:pub.10.1038/nature20152
    24 sg:pub.10.1038/nature21031
    25 sg:pub.10.1038/nchembio.1087
    26 sg:pub.10.1038/ncomms6497
    27 sg:pub.10.1038/nmicrobiol.2016.170
    28 sg:pub.10.1038/nmicrobiol.2016.2
    29 sg:pub.10.1038/nmicrobiol.2016.34
    30 sg:pub.10.1038/nmicrobiol.2016.35
    31 sg:pub.10.1038/nrmicro2365
    32 sg:pub.10.1186/1471-2105-11-119
    33 sg:pub.10.1186/1471-2148-10-210
    34 sg:pub.10.1186/1471-2164-13-562
    35 sg:pub.10.1186/gb-2009-10-8-r85
    36 schema:datePublished 2018-02-14
    37 schema:datePublishedReg 2018-02-14
    38 schema:description Thorarchaeota are a new archaeal phylum within the Asgard superphylum, whose ancestors have been proposed to play possible ecological roles in cellular evolution. However, little is known about the lifestyles of these uncultured archaea. To provide a better resolution of the ecological roles and metabolic capacity of Thorarchaeota, we obtained Thorarchaeota genomes reconstructed from metagenomes of different depth layers in mangrove and mudflat sediments. These genomes from deep anoxic layers suggest the presence of Thorarchaeota with the potential to degrade organic matter, fix inorganic carbon, reduce sulfur/sulfate and produce acetate. In particular, Thorarchaeota may be involved in ethanol production, nitrogen fixation, nitrite reduction, and arsenic detoxification. Interestingly, these Thorarchaeotal genomes are inferred to contain the tetrahydromethanopterin and tetrahydrofolate Wood–Ljungdahl (WL) pathways for CO2 reduction, and the latter WL pathway appears to have originated from bacteria. These archaea are predicted to be able to use various inorganic and organic carbon sources, possessing genes inferred to encode ribulose bisphosphate carboxylase-like proteins (normally without RuBisCO activity) and a near-complete Calvin–Benson–Bassham cycle. The existence of eukaryotic selenocysteine insertion sequences and many genes for proteins previously considered eukaryote-specific in Thorarchaeota genomes provide new insights into their evolutionary roles in the origin of eukaryotic cellular complexity. Resolving the metabolic capacities of these enigmatic archaea and their origins will enhance our understanding of the origins of eukaryotes and their roles in ecosystems.
    39 schema:genre article
    40 schema:isAccessibleForFree true
    41 schema:isPartOf N555465ccf98449b7b355dc0c8bceb1ed
    42 Nd396be37ce1d4ab9b16da4e59e9f9661
    43 sg:journal.1038436
    44 schema:keywords Asgard superphylum
    45 Bassham cycle
    46 CO2 reduction
    47 Calvin-Benson
    48 Thorarchaeota
    49 WL pathway
    50 Wood-Ljungdahl pathway
    51 ancestor
    52 anoxic layers
    53 archaea
    54 archaeal phyla
    55 arsenic detoxification
    56 bacteria
    57 better resolution
    58 capacity
    59 carbon
    60 carbon source
    61 cellular complexity
    62 cellular evolution
    63 complexity
    64 cycle
    65 deeper anoxic layers
    66 depth layers
    67 detoxification
    68 different depth layers
    69 ecological role
    70 ecosystems
    71 ethanol production
    72 eukaryotes
    73 eukaryotic cellular complexity
    74 evolution
    75 evolutionary role
    76 existence
    77 fixation
    78 genes
    79 genome
    80 genomic inference
    81 inference
    82 inorganic carbon
    83 insertion sequence
    84 insights
    85 layer
    86 lifestyle
    87 mangroves
    88 matter
    89 metabolic capacity
    90 metagenomes
    91 mixotrophic lifestyle
    92 mudflat sediments
    93 new archaeal phylum
    94 new insights
    95 nitrite reduction
    96 nitrogen fixation
    97 organic carbon source
    98 organic matter
    99 origin
    100 origin of eukaryotes
    101 pathway
    102 phyla
    103 possible ecological role
    104 potential
    105 presence
    106 production
    107 protein
    108 reduction
    109 resolution
    110 role
    111 sediments
    112 selenocysteine insertion sequence
    113 sequence
    114 source
    115 sulfate
    116 sulfur/sulfate
    117 superphylum
    118 tetrahydromethanopterin
    119 uncultured archaea
    120 understanding
    121 schema:name Comparative genomic inference suggests mixotrophic lifestyle for Thorarchaeota
    122 schema:pagination 1021-1031
    123 schema:productId N013202dcb4354135a7b30cf68aaf487a
    124 N20310eea5add4bb38548e3022508f075
    125 Nc55c702d377c400c94ac52821acf210a
    126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100925149
    127 https://doi.org/10.1038/s41396-018-0060-x
    128 schema:sdDatePublished 2022-12-01T06:38
    129 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    130 schema:sdPublisher Nd5bbf01e91e94ba1a23d8bdb48422c99
    131 schema:url https://doi.org/10.1038/s41396-018-0060-x
    132 sgo:license sg:explorer/license/
    133 sgo:sdDataset articles
    134 rdf:type schema:ScholarlyArticle
    135 N013202dcb4354135a7b30cf68aaf487a schema:name dimensions_id
    136 schema:value pub.1100925149
    137 rdf:type schema:PropertyValue
    138 N10e94ab4ac0b4d23beffea87b0a34ddf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    139 schema:name Photosynthesis
    140 rdf:type schema:DefinedTerm
    141 N1bc04af95324416293697bb03988e4a8 rdf:first sg:person.0733716612.34
    142 rdf:rest N3f90d9e220424b94b7797366edafefb4
    143 N20310eea5add4bb38548e3022508f075 schema:name pubmed_id
    144 schema:value 29445130
    145 rdf:type schema:PropertyValue
    146 N3b9b9c501ce1431da135e1a271d6421a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    147 schema:name Carbon Cycle
    148 rdf:type schema:DefinedTerm
    149 N3f90d9e220424b94b7797366edafefb4 rdf:first sg:person.0651757375.15
    150 rdf:rest Nf6f2fefd2bdd419396c8f1491a5cd90c
    151 N4859122676de47509282bb719c01bbd6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    152 schema:name Phylogeny
    153 rdf:type schema:DefinedTerm
    154 N555465ccf98449b7b355dc0c8bceb1ed schema:issueNumber 4
    155 rdf:type schema:PublicationIssue
    156 N5c5669c276994b30af813360aa6ba495 rdf:first sg:person.0715634401.25
    157 rdf:rest rdf:nil
    158 N852001182bdb4de4a1d7e2d154ef5070 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    159 schema:name Genome, Archaeal
    160 rdf:type schema:DefinedTerm
    161 N9dfc2df5efd9430b99e716dd3b837106 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    162 schema:name Carbon
    163 rdf:type schema:DefinedTerm
    164 Na1500b7f10214e7b883ddf837a177e35 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    165 schema:name Eukaryota
    166 rdf:type schema:DefinedTerm
    167 Nab93fa374e5f4fac8bffdb0ae45f0bdd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    168 schema:name Ribulose-Bisphosphate Carboxylase
    169 rdf:type schema:DefinedTerm
    170 Nafa3a49728dc4659befe1b0827777ca4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    171 schema:name Genomics
    172 rdf:type schema:DefinedTerm
    173 Nbb43094fa9224369802aeb8854ef1c30 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    174 schema:name Archaea
    175 rdf:type schema:DefinedTerm
    176 Nbf5afa1d2be845f69cc5eea07e4a9d36 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    177 schema:name Geologic Sediments
    178 rdf:type schema:DefinedTerm
    179 Nc2e5120e01554c77b5ab0a6573cae824 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    180 schema:name Metagenome
    181 rdf:type schema:DefinedTerm
    182 Nc55c702d377c400c94ac52821acf210a schema:name doi
    183 schema:value 10.1038/s41396-018-0060-x
    184 rdf:type schema:PropertyValue
    185 Nd396be37ce1d4ab9b16da4e59e9f9661 schema:volumeNumber 12
    186 rdf:type schema:PublicationVolume
    187 Nd3de9eb765e94ece856d8823136fe67a rdf:first sg:person.010545225064.14
    188 rdf:rest Ne69fc23821e64768a9b1d921f0c567b4
    189 Nd5bbf01e91e94ba1a23d8bdb48422c99 schema:name Springer Nature - SN SciGraph project
    190 rdf:type schema:Organization
    191 Ne69fc23821e64768a9b1d921f0c567b4 rdf:first sg:person.01257470070.21
    192 rdf:rest N1bc04af95324416293697bb03988e4a8
    193 Nf6f2fefd2bdd419396c8f1491a5cd90c rdf:first sg:person.0627416505.60
    194 rdf:rest N5c5669c276994b30af813360aa6ba495
    195 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    196 schema:name Biological Sciences
    197 rdf:type schema:DefinedTerm
    198 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    199 schema:name Genetics
    200 rdf:type schema:DefinedTerm
    201 sg:journal.1038436 schema:issn 1751-7362
    202 1751-7370
    203 schema:name The ISME Journal: Multidisciplinary Journal of Microbial Ecology
    204 schema:publisher Springer Nature
    205 rdf:type schema:Periodical
    206 sg:person.010545225064.14 schema:affiliation grid-institutes:grid.263488.3
    207 schema:familyName Liu
    208 schema:givenName Yang
    209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010545225064.14
    210 rdf:type schema:Person
    211 sg:person.01257470070.21 schema:affiliation grid-institutes:grid.194645.b
    212 schema:familyName Zhou
    213 schema:givenName Zhichao
    214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01257470070.21
    215 rdf:type schema:Person
    216 sg:person.0627416505.60 schema:affiliation grid-institutes:grid.194645.b
    217 schema:familyName Gu
    218 schema:givenName Ji-Dong
    219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627416505.60
    220 rdf:type schema:Person
    221 sg:person.0651757375.15 schema:affiliation grid-institutes:grid.89336.37
    222 schema:familyName Baker
    223 schema:givenName Brett J.
    224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651757375.15
    225 rdf:type schema:Person
    226 sg:person.0715634401.25 schema:affiliation grid-institutes:grid.263488.3
    227 schema:familyName Li
    228 schema:givenName Meng
    229 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715634401.25
    230 rdf:type schema:Person
    231 sg:person.0733716612.34 schema:affiliation grid-institutes:grid.263488.3
    232 schema:familyName Pan
    233 schema:givenName Jie
    234 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733716612.34
    235 rdf:type schema:Person
    236 sg:pub.10.1007/978-1-61779-361-5_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021477415
    237 https://doi.org/10.1007/978-1-61779-361-5_15
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1007/bf00381784 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041907645
    240 https://doi.org/10.1007/bf00381784
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1007/s00248-016-0844-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002289004
    243 https://doi.org/10.1007/s00248-016-0844-3
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1007/s10661-016-5103-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1003142121
    246 https://doi.org/10.1007/s10661-016-5103-z
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1038/ismej.2015.233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025562769
    249 https://doi.org/10.1038/ismej.2015.233
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1038/ismej.2016.53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044447226
    252 https://doi.org/10.1038/ismej.2016.53
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1038/nature12857 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015681401
    255 https://doi.org/10.1038/nature12857
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1038/nature14447 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007474518
    258 https://doi.org/10.1038/nature14447
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1038/nature20152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036617231
    261 https://doi.org/10.1038/nature20152
    262 rdf:type schema:CreativeWork
    263 sg:pub.10.1038/nature21031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022254641
    264 https://doi.org/10.1038/nature21031
    265 rdf:type schema:CreativeWork
    266 sg:pub.10.1038/nchembio.1087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030747670
    267 https://doi.org/10.1038/nchembio.1087
    268 rdf:type schema:CreativeWork
    269 sg:pub.10.1038/ncomms6497 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037086599
    270 https://doi.org/10.1038/ncomms6497
    271 rdf:type schema:CreativeWork
    272 sg:pub.10.1038/nmicrobiol.2016.170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007760660
    273 https://doi.org/10.1038/nmicrobiol.2016.170
    274 rdf:type schema:CreativeWork
    275 sg:pub.10.1038/nmicrobiol.2016.2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009322467
    276 https://doi.org/10.1038/nmicrobiol.2016.2
    277 rdf:type schema:CreativeWork
    278 sg:pub.10.1038/nmicrobiol.2016.34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040680448
    279 https://doi.org/10.1038/nmicrobiol.2016.34
    280 rdf:type schema:CreativeWork
    281 sg:pub.10.1038/nmicrobiol.2016.35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002489826
    282 https://doi.org/10.1038/nmicrobiol.2016.35
    283 rdf:type schema:CreativeWork
    284 sg:pub.10.1038/nrmicro2365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000545292
    285 https://doi.org/10.1038/nrmicro2365
    286 rdf:type schema:CreativeWork
    287 sg:pub.10.1186/1471-2105-11-119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026423599
    288 https://doi.org/10.1186/1471-2105-11-119
    289 rdf:type schema:CreativeWork
    290 sg:pub.10.1186/1471-2148-10-210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001075316
    291 https://doi.org/10.1186/1471-2148-10-210
    292 rdf:type schema:CreativeWork
    293 sg:pub.10.1186/1471-2164-13-562 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030093784
    294 https://doi.org/10.1186/1471-2164-13-562
    295 rdf:type schema:CreativeWork
    296 sg:pub.10.1186/gb-2009-10-8-r85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014147708
    297 https://doi.org/10.1186/gb-2009-10-8-r85
    298 rdf:type schema:CreativeWork
    299 grid-institutes:grid.194645.b schema:alternateName Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
    300 schema:name Institute for Advanced Study, Shenzhen University, Shenzhen, China
    301 Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
    302 rdf:type schema:Organization
    303 grid-institutes:grid.263488.3 schema:alternateName Institute for Advanced Study, Shenzhen University, Shenzhen, China
    304 Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
    305 schema:name Institute for Advanced Study, Shenzhen University, Shenzhen, China
    306 Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
    307 rdf:type schema:Organization
    308 grid-institutes:grid.89336.37 schema:alternateName Department of Marine Science, University of Texas Austin, Marine Science Institute, 750 Channel View Drive, 78373, Port Aransas, TX, USA
    309 schema:name Department of Marine Science, University of Texas Austin, Marine Science Institute, 750 Channel View Drive, 78373, Port Aransas, TX, USA
    310 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...