Associations of depression status with plasma levels of candidate lipid and amino acid metabolites: a meta-analysis of individual data from ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-08-28

AUTHORS

Tianyi Huang, Raji Balasubramanian, Yubing Yao, Clary B. Clish, Aladdin H. Shadyab, Buyun Liu, Shelley S. Tworoger, Kathryn M. Rexrode, JoAnn E. Manson, Laura D. Kubzansky, Susan E. Hankinson

ABSTRACT

Recent animal and small clinical studies have suggested depression is related to altered lipid and amino acid profiles. However, this has not been examined in a population-based sample, particularly in women. We identified multiple metabolites associated with depression as potential candidates from prior studies. Cross-sectional data from three independent samples of postmenopausal women were analyzed, including women from the Women’s Health Initiative-Observational Study (WHI-OS, n = 926), the WHI-Hormone Trials (WHI-HT; n = 1,325), and the Nurses’ Health Study II Mind-Body Study (NHSII-MBS; n = 218). Positive depression status was defined as having any of the following: elevated depressive symptoms, antidepressant use, or depression history. Plasma metabolites were measured using liquid chromatography-tandem mass spectrometry (21 phosphatidylcholines (PCs), 7 lysophosphatidylethanolamines, 5 ceramides, 3 branched chain amino acids, and 9 neurotransmitters). Associations between depression status and metabolites were evaluated using multivariable linear regression; results were pooled by random-effects meta-analysis with multiple testing adjustment using the false discovery rate (FDR). Prevalence rates of positive depression status were 24.4% (WHI-OS), 25.7% (WHI-HT), and 44.7% (NHSII-MBS). After multivariable adjustment, positive depression status was associated with higher levels of glutamate and PC 36 : 1/38 : 3, and lower levels of tryptophan and GABA-to-glutamate and GABA-to-glutamine ratio (FDR-p < 0.05). Positive associations with LPE 18 : 0/18 : 1 and inverse associations with valine and serotonin were also observed, although these associations did not survive FDR adjustment. Associations of positive depression status with several candidate metabolites including PC 36 : 1/38 : 3 and amino acids involved in neurotransmission suggest potential depression-related metabolic alterations in postmenopausal women, with possible implications for later chronic disease. More... »

PAGES

3315-3327

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41380-020-00870-9

DOI

http://dx.doi.org/10.1038/s41380-020-00870-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1130391626

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/32859999


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cross-Sectional Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Depression", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lipids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Observational Studies as Topic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Postmenopause", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Channing Division of Network Medicine, Department of Medicine, Brigham and Women\u2019s Hospital, and Harvard Medical School, Boston, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.62560.37", 
          "name": [
            "Channing Division of Network Medicine, Department of Medicine, Brigham and Women\u2019s Hospital, and Harvard Medical School, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Tianyi", 
        "id": "sg:person.0664445073.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664445073.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biostatistics and Epidemiology, University of Massachusetts Amherst, Amherst, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.266683.f", 
          "name": [
            "Department of Biostatistics and Epidemiology, University of Massachusetts Amherst, Amherst, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Balasubramanian", 
        "givenName": "Raji", 
        "id": "sg:person.0576733734.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576733734.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biostatistics and Epidemiology, University of Massachusetts Amherst, Amherst, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.266683.f", 
          "name": [
            "Department of Biostatistics and Epidemiology, University of Massachusetts Amherst, Amherst, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yao", 
        "givenName": "Yubing", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Broad Institute of MIT and Harvard, Boston, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.66859.34", 
          "name": [
            "Broad Institute of MIT and Harvard, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Clish", 
        "givenName": "Clary B.", 
        "id": "sg:person.0764632420.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764632420.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Family Medicine and Public Health, University of California San Diego School of Medicine, La Jolla, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.266100.3", 
          "name": [
            "Department of Family Medicine and Public Health, University of California San Diego School of Medicine, La Jolla, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shadyab", 
        "givenName": "Aladdin H.", 
        "id": "sg:person.01241355132.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01241355132.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA, USA", 
          "id": "http://www.grid.ac/institutes/grid.214572.7", 
          "name": [
            "Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Buyun", 
        "id": "sg:person.01362606576.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362606576.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA", 
            "Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tworoger", 
        "givenName": "Shelley S.", 
        "id": "sg:person.0773072764.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773072764.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Preventive Medicine, Department of Medicine, Brigham and Women\u2019s Hospital and Harvard Medical School, Boston, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.62560.37", 
          "name": [
            "Division of Women\u2019s Health, Department of Medicine, Brigham and Women\u2019s Hospital, Boston, MA, USA", 
            "Division of Preventive Medicine, Department of Medicine, Brigham and Women\u2019s Hospital and Harvard Medical School, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rexrode", 
        "givenName": "Kathryn M.", 
        "id": "sg:person.015173757137.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015173757137.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Preventive Medicine, Department of Medicine, Brigham and Women\u2019s Hospital and Harvard Medical School, Boston, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.62560.37", 
          "name": [
            "Channing Division of Network Medicine, Department of Medicine, Brigham and Women\u2019s Hospital, and Harvard Medical School, Boston, MA, USA", 
            "Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA", 
            "Division of Preventive Medicine, Department of Medicine, Brigham and Women\u2019s Hospital and Harvard Medical School, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Manson", 
        "givenName": "JoAnn E.", 
        "id": "sg:person.011571562657.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011571562657.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kubzansky", 
        "givenName": "Laura D.", 
        "id": "sg:person.01242343053.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242343053.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biostatistics and Epidemiology, University of Massachusetts Amherst, Amherst, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.266683.f", 
          "name": [
            "Channing Division of Network Medicine, Department of Medicine, Brigham and Women\u2019s Hospital, and Harvard Medical School, Boston, MA, USA", 
            "Department of Biostatistics and Epidemiology, University of Massachusetts Amherst, Amherst, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hankinson", 
        "givenName": "Susan E.", 
        "id": "sg:person.012525753462.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012525753462.54"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00216-015-8565-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021800995", 
          "https://doi.org/10.1007/s00216-015-8565-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/7854_2014_363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015214363", 
          "https://doi.org/10.1007/7854_2014_363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41398-018-0183-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105413228", 
          "https://doi.org/10.1038/s41398-018-0183-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10552-019-01176-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1113875412", 
          "https://doi.org/10.1007/s10552-019-01176-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm.2307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002009671", 
          "https://doi.org/10.1038/nm.2307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41398-018-0349-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111573952", 
          "https://doi.org/10.1038/s41398-018-0349-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.mp.4001021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018491212", 
          "https://doi.org/10.1038/sj.mp.4001021"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2020-08-28", 
    "datePublishedReg": "2020-08-28", 
    "description": "Recent animal and small clinical studies have suggested depression is related to altered lipid and amino acid profiles. However, this has not been examined in a population-based sample, particularly in women. We identified multiple metabolites associated with depression as potential candidates from prior studies. Cross-sectional data from three independent samples of postmenopausal women were analyzed, including women from the Women\u2019s Health Initiative-Observational Study (WHI-OS, n\u2009=\u2009926), the WHI-Hormone Trials (WHI-HT; n\u2009=\u20091,325), and the Nurses\u2019 Health Study II Mind-Body Study (NHSII-MBS; n\u2009=\u2009218). Positive depression status was defined as having any of the following: elevated depressive symptoms, antidepressant use, or depression history. Plasma metabolites were measured using liquid chromatography-tandem mass spectrometry (21 phosphatidylcholines (PCs), 7 lysophosphatidylethanolamines, 5 ceramides, 3 branched chain amino acids, and 9 neurotransmitters). Associations between depression status and metabolites were evaluated using multivariable linear regression; results were pooled by random-effects meta-analysis with multiple testing adjustment using the false discovery rate (FDR). Prevalence rates of positive depression status were 24.4% (WHI-OS), 25.7% (WHI-HT), and 44.7% (NHSII-MBS). After multivariable adjustment, positive depression status was associated with higher levels of glutamate and PC 36\u2009:\u20091/38\u2009:\u20093, and lower levels of tryptophan and GABA-to-glutamate and GABA-to-glutamine ratio (FDR-p\u2009<\u20090.05). Positive associations with LPE 18\u2009:\u20090/18\u2009:\u20091 and inverse associations with valine and serotonin were also observed, although these associations did not survive FDR adjustment. Associations of positive depression status with several candidate metabolites including PC 36\u2009:\u20091/38\u2009:\u20093 and amino acids involved in neurotransmission suggest potential depression-related metabolic alterations in postmenopausal women, with possible implications for later chronic disease.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41380-020-00870-9", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2481653", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7026698", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2345722", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2705365", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7725091", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6499502", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6500111", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6501657", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6501532", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7752271", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6499588", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2438997", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2472314", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1115540", 
        "issn": [
          "1359-4184", 
          "1476-5578"
        ], 
        "name": "Molecular Psychiatry", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "26"
      }
    ], 
    "keywords": [
      "depression status", 
      "postmenopausal women", 
      "Women's Health Initiative Observational Study", 
      "Mind-Body Study", 
      "later chronic disease", 
      "US postmenopausal women", 
      "small clinical studies", 
      "elevated depressive symptoms", 
      "population-based sample", 
      "multivariable linear regression", 
      "amino acid metabolites", 
      "multivariable adjustment", 
      "antidepressant use", 
      "plasma levels", 
      "inverse association", 
      "chronic diseases", 
      "clinical studies", 
      "prevalence rates", 
      "depressive symptoms", 
      "metabolic alterations", 
      "depression history", 
      "plasma metabolites", 
      "recent animal", 
      "acid metabolites", 
      "liquid chromatography-tandem mass spectrometry", 
      "cross-sectional data", 
      "women", 
      "multiple testing adjustment", 
      "chromatography-tandem mass spectrometry", 
      "FDR adjustment", 
      "glutamine ratio", 
      "independent samples", 
      "positive association", 
      "GABA", 
      "association", 
      "false discovery rate", 
      "candidate lipid", 
      "amino acid profile", 
      "candidate metabolites", 
      "depression", 
      "status", 
      "multiple metabolites", 
      "metabolites", 
      "glutamate", 
      "individual data", 
      "acid profile", 
      "low levels", 
      "prior studies", 
      "linear regression", 
      "high levels", 
      "lipids", 
      "adjustment", 
      "serotonin", 
      "neurotransmission", 
      "symptoms", 
      "nurses", 
      "levels", 
      "disease", 
      "study", 
      "trials", 
      "amino acids", 
      "possible implications", 
      "alterations", 
      "animals", 
      "rate", 
      "discovery rate", 
      "potential candidate", 
      "regression", 
      "samples", 
      "data", 
      "valine", 
      "history", 
      "mass spectrometry", 
      "tryptophan", 
      "profile", 
      "acid", 
      "use", 
      "candidates", 
      "ratio", 
      "implications", 
      "results", 
      "spectrometry"
    ], 
    "name": "Associations of depression status with plasma levels of candidate lipid and amino acid metabolites: a meta-analysis of individual data from three independent samples of US postmenopausal women", 
    "pagination": "3315-3327", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1130391626"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41380-020-00870-9"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "32859999"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41380-020-00870-9", 
      "https://app.dimensions.ai/details/publication/pub.1130391626"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_863.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41380-020-00870-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41380-020-00870-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41380-020-00870-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41380-020-00870-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41380-020-00870-9'


 

This table displays all metadata directly associated to this object as RDF triples.

329 TRIPLES      21 PREDICATES      124 URIs      108 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41380-020-00870-9 schema:about N32693509244641e68fe89f5c5d88828c
2 N47063448f1f449d993022d8aa7021242
3 N54fcaf4773034c58a3063b8779d02bab
4 N6be1a95c112b48578c4bf3477670de1a
5 N7d6d5b519ddb423d85b759a89637f38c
6 N843691e6ac8441abbc69987ca26716d0
7 Nab0d1a74087249bdab3d0fd6125ba522
8 Nd12dfb5acd304f2cb301001649868240
9 Nf0165ac11cae4727b157f8e8dbf2fd7e
10 anzsrc-for:11
11 anzsrc-for:1103
12 anzsrc-for:1117
13 schema:author N44cef1f504af4ccba6e9bd160004c53c
14 schema:citation sg:pub.10.1007/7854_2014_363
15 sg:pub.10.1007/s00216-015-8565-x
16 sg:pub.10.1007/s10552-019-01176-0
17 sg:pub.10.1038/nm.2307
18 sg:pub.10.1038/s41398-018-0183-x
19 sg:pub.10.1038/s41398-018-0349-6
20 sg:pub.10.1038/sj.mp.4001021
21 schema:datePublished 2020-08-28
22 schema:datePublishedReg 2020-08-28
23 schema:description Recent animal and small clinical studies have suggested depression is related to altered lipid and amino acid profiles. However, this has not been examined in a population-based sample, particularly in women. We identified multiple metabolites associated with depression as potential candidates from prior studies. Cross-sectional data from three independent samples of postmenopausal women were analyzed, including women from the Women’s Health Initiative-Observational Study (WHI-OS, n = 926), the WHI-Hormone Trials (WHI-HT; n = 1,325), and the Nurses’ Health Study II Mind-Body Study (NHSII-MBS; n = 218). Positive depression status was defined as having any of the following: elevated depressive symptoms, antidepressant use, or depression history. Plasma metabolites were measured using liquid chromatography-tandem mass spectrometry (21 phosphatidylcholines (PCs), 7 lysophosphatidylethanolamines, 5 ceramides, 3 branched chain amino acids, and 9 neurotransmitters). Associations between depression status and metabolites were evaluated using multivariable linear regression; results were pooled by random-effects meta-analysis with multiple testing adjustment using the false discovery rate (FDR). Prevalence rates of positive depression status were 24.4% (WHI-OS), 25.7% (WHI-HT), and 44.7% (NHSII-MBS). After multivariable adjustment, positive depression status was associated with higher levels of glutamate and PC 36 : 1/38 : 3, and lower levels of tryptophan and GABA-to-glutamate and GABA-to-glutamine ratio (FDR-p < 0.05). Positive associations with LPE 18 : 0/18 : 1 and inverse associations with valine and serotonin were also observed, although these associations did not survive FDR adjustment. Associations of positive depression status with several candidate metabolites including PC 36 : 1/38 : 3 and amino acids involved in neurotransmission suggest potential depression-related metabolic alterations in postmenopausal women, with possible implications for later chronic disease.
24 schema:genre article
25 schema:isAccessibleForFree true
26 schema:isPartOf N0c074d7f7db04d968fc3ecfe50f1ddfd
27 N38cb63b721424adc8402296aca89df6f
28 sg:journal.1115540
29 schema:keywords FDR adjustment
30 GABA
31 Mind-Body Study
32 US postmenopausal women
33 Women's Health Initiative Observational Study
34 acid
35 acid metabolites
36 acid profile
37 adjustment
38 alterations
39 amino acid metabolites
40 amino acid profile
41 amino acids
42 animals
43 antidepressant use
44 association
45 candidate lipid
46 candidate metabolites
47 candidates
48 chromatography-tandem mass spectrometry
49 chronic diseases
50 clinical studies
51 cross-sectional data
52 data
53 depression
54 depression history
55 depression status
56 depressive symptoms
57 discovery rate
58 disease
59 elevated depressive symptoms
60 false discovery rate
61 glutamate
62 glutamine ratio
63 high levels
64 history
65 implications
66 independent samples
67 individual data
68 inverse association
69 later chronic disease
70 levels
71 linear regression
72 lipids
73 liquid chromatography-tandem mass spectrometry
74 low levels
75 mass spectrometry
76 metabolic alterations
77 metabolites
78 multiple metabolites
79 multiple testing adjustment
80 multivariable adjustment
81 multivariable linear regression
82 neurotransmission
83 nurses
84 plasma levels
85 plasma metabolites
86 population-based sample
87 positive association
88 possible implications
89 postmenopausal women
90 potential candidate
91 prevalence rates
92 prior studies
93 profile
94 rate
95 ratio
96 recent animal
97 regression
98 results
99 samples
100 serotonin
101 small clinical studies
102 spectrometry
103 status
104 study
105 symptoms
106 trials
107 tryptophan
108 use
109 valine
110 women
111 schema:name Associations of depression status with plasma levels of candidate lipid and amino acid metabolites: a meta-analysis of individual data from three independent samples of US postmenopausal women
112 schema:pagination 3315-3327
113 schema:productId N3c7b614c8af042f59b8c23cebead2ba5
114 N92b271529d7f47f4bfdfae71e57b74b1
115 Nbeca1e4402254b7794db83d266504505
116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1130391626
117 https://doi.org/10.1038/s41380-020-00870-9
118 schema:sdDatePublished 2022-09-02T16:06
119 schema:sdLicense https://scigraph.springernature.com/explorer/license/
120 schema:sdPublisher N6a0f61f964cb4bcdb50fe08cd3f0bdfc
121 schema:url https://doi.org/10.1038/s41380-020-00870-9
122 sgo:license sg:explorer/license/
123 sgo:sdDataset articles
124 rdf:type schema:ScholarlyArticle
125 N0145cf67c0c34c5fb5cf93e8dc47cd34 rdf:first sg:person.01241355132.07
126 rdf:rest N3586bfe34ef44007940b037fb195b7e6
127 N0c074d7f7db04d968fc3ecfe50f1ddfd schema:issueNumber 7
128 rdf:type schema:PublicationIssue
129 N245a73b5686e448ab9861d2b40851f3c rdf:first sg:person.0773072764.66
130 rdf:rest Nfe2994cb3a3746db875bdd18a7983446
131 N2e5c4c59351945ff8d8965f3975c2ab4 rdf:first sg:person.0576733734.54
132 rdf:rest N905e972db01e4891b65b8c1c8a771d01
133 N32693509244641e68fe89f5c5d88828c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Female
135 rdf:type schema:DefinedTerm
136 N3586bfe34ef44007940b037fb195b7e6 rdf:first sg:person.01362606576.79
137 rdf:rest N245a73b5686e448ab9861d2b40851f3c
138 N38cb63b721424adc8402296aca89df6f schema:volumeNumber 26
139 rdf:type schema:PublicationVolume
140 N3c7b614c8af042f59b8c23cebead2ba5 schema:name doi
141 schema:value 10.1038/s41380-020-00870-9
142 rdf:type schema:PropertyValue
143 N44cef1f504af4ccba6e9bd160004c53c rdf:first sg:person.0664445073.14
144 rdf:rest N2e5c4c59351945ff8d8965f3975c2ab4
145 N47063448f1f449d993022d8aa7021242 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Cross-Sectional Studies
147 rdf:type schema:DefinedTerm
148 N54fcaf4773034c58a3063b8779d02bab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Depression
150 rdf:type schema:DefinedTerm
151 N6a0f61f964cb4bcdb50fe08cd3f0bdfc schema:name Springer Nature - SN SciGraph project
152 rdf:type schema:Organization
153 N6be1a95c112b48578c4bf3477670de1a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Amino Acids
155 rdf:type schema:DefinedTerm
156 N7d6d5b519ddb423d85b759a89637f38c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Lipids
158 rdf:type schema:DefinedTerm
159 N843691e6ac8441abbc69987ca26716d0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Animals
161 rdf:type schema:DefinedTerm
162 N905e972db01e4891b65b8c1c8a771d01 rdf:first Ncc18b15ebc98423b9c5c328bab56b45f
163 rdf:rest Ne92b63cff92e48fc9ffcfab878ac65c6
164 N92b271529d7f47f4bfdfae71e57b74b1 schema:name dimensions_id
165 schema:value pub.1130391626
166 rdf:type schema:PropertyValue
167 Naac79eb79cdb41d7a3154b6edf572391 rdf:first sg:person.011571562657.02
168 rdf:rest Nb98adf8816fa4071b3db5f46c2f61f71
169 Nab0d1a74087249bdab3d0fd6125ba522 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Observational Studies as Topic
171 rdf:type schema:DefinedTerm
172 Nb98adf8816fa4071b3db5f46c2f61f71 rdf:first sg:person.01242343053.06
173 rdf:rest Nd245742514cd48c08e4f7c071c04a1ff
174 Nbeca1e4402254b7794db83d266504505 schema:name pubmed_id
175 schema:value 32859999
176 rdf:type schema:PropertyValue
177 Ncc18b15ebc98423b9c5c328bab56b45f schema:affiliation grid-institutes:grid.266683.f
178 schema:familyName Yao
179 schema:givenName Yubing
180 rdf:type schema:Person
181 Nd12dfb5acd304f2cb301001649868240 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
182 schema:name Postmenopause
183 rdf:type schema:DefinedTerm
184 Nd245742514cd48c08e4f7c071c04a1ff rdf:first sg:person.012525753462.54
185 rdf:rest rdf:nil
186 Ne92b63cff92e48fc9ffcfab878ac65c6 rdf:first sg:person.0764632420.16
187 rdf:rest N0145cf67c0c34c5fb5cf93e8dc47cd34
188 Nf0165ac11cae4727b157f8e8dbf2fd7e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
189 schema:name Humans
190 rdf:type schema:DefinedTerm
191 Nfe2994cb3a3746db875bdd18a7983446 rdf:first sg:person.015173757137.34
192 rdf:rest Naac79eb79cdb41d7a3154b6edf572391
193 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
194 schema:name Medical and Health Sciences
195 rdf:type schema:DefinedTerm
196 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
197 schema:name Clinical Sciences
198 rdf:type schema:DefinedTerm
199 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
200 schema:name Public Health and Health Services
201 rdf:type schema:DefinedTerm
202 sg:grant.2345722 http://pending.schema.org/fundedItem sg:pub.10.1038/s41380-020-00870-9
203 rdf:type schema:MonetaryGrant
204 sg:grant.2438997 http://pending.schema.org/fundedItem sg:pub.10.1038/s41380-020-00870-9
205 rdf:type schema:MonetaryGrant
206 sg:grant.2472314 http://pending.schema.org/fundedItem sg:pub.10.1038/s41380-020-00870-9
207 rdf:type schema:MonetaryGrant
208 sg:grant.2481653 http://pending.schema.org/fundedItem sg:pub.10.1038/s41380-020-00870-9
209 rdf:type schema:MonetaryGrant
210 sg:grant.2705365 http://pending.schema.org/fundedItem sg:pub.10.1038/s41380-020-00870-9
211 rdf:type schema:MonetaryGrant
212 sg:grant.6499502 http://pending.schema.org/fundedItem sg:pub.10.1038/s41380-020-00870-9
213 rdf:type schema:MonetaryGrant
214 sg:grant.6499588 http://pending.schema.org/fundedItem sg:pub.10.1038/s41380-020-00870-9
215 rdf:type schema:MonetaryGrant
216 sg:grant.6500111 http://pending.schema.org/fundedItem sg:pub.10.1038/s41380-020-00870-9
217 rdf:type schema:MonetaryGrant
218 sg:grant.6501532 http://pending.schema.org/fundedItem sg:pub.10.1038/s41380-020-00870-9
219 rdf:type schema:MonetaryGrant
220 sg:grant.6501657 http://pending.schema.org/fundedItem sg:pub.10.1038/s41380-020-00870-9
221 rdf:type schema:MonetaryGrant
222 sg:grant.7026698 http://pending.schema.org/fundedItem sg:pub.10.1038/s41380-020-00870-9
223 rdf:type schema:MonetaryGrant
224 sg:grant.7725091 http://pending.schema.org/fundedItem sg:pub.10.1038/s41380-020-00870-9
225 rdf:type schema:MonetaryGrant
226 sg:grant.7752271 http://pending.schema.org/fundedItem sg:pub.10.1038/s41380-020-00870-9
227 rdf:type schema:MonetaryGrant
228 sg:journal.1115540 schema:issn 1359-4184
229 1476-5578
230 schema:name Molecular Psychiatry
231 schema:publisher Springer Nature
232 rdf:type schema:Periodical
233 sg:person.011571562657.02 schema:affiliation grid-institutes:grid.62560.37
234 schema:familyName Manson
235 schema:givenName JoAnn E.
236 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011571562657.02
237 rdf:type schema:Person
238 sg:person.01241355132.07 schema:affiliation grid-institutes:grid.266100.3
239 schema:familyName Shadyab
240 schema:givenName Aladdin H.
241 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01241355132.07
242 rdf:type schema:Person
243 sg:person.01242343053.06 schema:affiliation grid-institutes:grid.38142.3c
244 schema:familyName Kubzansky
245 schema:givenName Laura D.
246 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242343053.06
247 rdf:type schema:Person
248 sg:person.012525753462.54 schema:affiliation grid-institutes:grid.266683.f
249 schema:familyName Hankinson
250 schema:givenName Susan E.
251 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012525753462.54
252 rdf:type schema:Person
253 sg:person.01362606576.79 schema:affiliation grid-institutes:grid.214572.7
254 schema:familyName Liu
255 schema:givenName Buyun
256 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362606576.79
257 rdf:type schema:Person
258 sg:person.015173757137.34 schema:affiliation grid-institutes:grid.62560.37
259 schema:familyName Rexrode
260 schema:givenName Kathryn M.
261 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015173757137.34
262 rdf:type schema:Person
263 sg:person.0576733734.54 schema:affiliation grid-institutes:grid.266683.f
264 schema:familyName Balasubramanian
265 schema:givenName Raji
266 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576733734.54
267 rdf:type schema:Person
268 sg:person.0664445073.14 schema:affiliation grid-institutes:grid.62560.37
269 schema:familyName Huang
270 schema:givenName Tianyi
271 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664445073.14
272 rdf:type schema:Person
273 sg:person.0764632420.16 schema:affiliation grid-institutes:grid.66859.34
274 schema:familyName Clish
275 schema:givenName Clary B.
276 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764632420.16
277 rdf:type schema:Person
278 sg:person.0773072764.66 schema:affiliation grid-institutes:grid.38142.3c
279 schema:familyName Tworoger
280 schema:givenName Shelley S.
281 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773072764.66
282 rdf:type schema:Person
283 sg:pub.10.1007/7854_2014_363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015214363
284 https://doi.org/10.1007/7854_2014_363
285 rdf:type schema:CreativeWork
286 sg:pub.10.1007/s00216-015-8565-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021800995
287 https://doi.org/10.1007/s00216-015-8565-x
288 rdf:type schema:CreativeWork
289 sg:pub.10.1007/s10552-019-01176-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113875412
290 https://doi.org/10.1007/s10552-019-01176-0
291 rdf:type schema:CreativeWork
292 sg:pub.10.1038/nm.2307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002009671
293 https://doi.org/10.1038/nm.2307
294 rdf:type schema:CreativeWork
295 sg:pub.10.1038/s41398-018-0183-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1105413228
296 https://doi.org/10.1038/s41398-018-0183-x
297 rdf:type schema:CreativeWork
298 sg:pub.10.1038/s41398-018-0349-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111573952
299 https://doi.org/10.1038/s41398-018-0349-6
300 rdf:type schema:CreativeWork
301 sg:pub.10.1038/sj.mp.4001021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018491212
302 https://doi.org/10.1038/sj.mp.4001021
303 rdf:type schema:CreativeWork
304 grid-institutes:grid.214572.7 schema:alternateName Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA, USA
305 schema:name Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA, USA
306 rdf:type schema:Organization
307 grid-institutes:grid.266100.3 schema:alternateName Department of Family Medicine and Public Health, University of California San Diego School of Medicine, La Jolla, CA, USA
308 schema:name Department of Family Medicine and Public Health, University of California San Diego School of Medicine, La Jolla, CA, USA
309 rdf:type schema:Organization
310 grid-institutes:grid.266683.f schema:alternateName Department of Biostatistics and Epidemiology, University of Massachusetts Amherst, Amherst, MA, USA
311 schema:name Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
312 Department of Biostatistics and Epidemiology, University of Massachusetts Amherst, Amherst, MA, USA
313 rdf:type schema:Organization
314 grid-institutes:grid.38142.3c schema:alternateName Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
315 Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
316 schema:name Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
317 Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
318 Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
319 rdf:type schema:Organization
320 grid-institutes:grid.62560.37 schema:alternateName Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
321 Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
322 schema:name Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
323 Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
324 Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
325 Division of Women’s Health, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
326 rdf:type schema:Organization
327 grid-institutes:grid.66859.34 schema:alternateName Broad Institute of MIT and Harvard, Boston, MA, USA
328 schema:name Broad Institute of MIT and Harvard, Boston, MA, USA
329 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...