Combined quantitative measures of ER, PR, HER2, and KI67 provide more prognostic information than categorical combinations in luminal breast cancer. View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04-11

AUTHORS

Mustapha Abubakar, Jonine Figueroa, H Raza Ali, Fiona Blows, Jolanta Lissowska, Carlos Caldas, Douglas F Easton, Mark E Sherman, Montserrat Garcia-Closas, Mitch Dowsett, Paul D Pharoah

ABSTRACT

Although most women with luminal breast cancer do well on endocrine therapy alone, some will develop fatal recurrence thereby necessitating the need to prospectively determine those for whom additional cytotoxic therapy will be beneficial. Categorical combinations of immunohistochemical measures of ER, PR, HER2, and KI67 are traditionally used to classify patients into luminal A-like and B-like subtypes for chemotherapeutic reasons, but this may lead to the loss of prognostically relevant information. Here, we compared the prognostic value of quantitative measures of these markers, combined in the IHC4-score, to categorical combinations in subtypes. Using image analysis-based scores for all four markers, we computed the IHC4-score for 2498 patients with luminal breast cancer from two European study populations. We defined subtypes (A-like (ER + and PR + : and HER2- and low KI67) and B-like (ER + and/or PR + : and HER2 + or high KI67)) by combining binary categories of these markers. Hazard ratios and 95% confidence intervals for associations with 10-year breast cancer-specific survival were estimated in Cox proportional-hazard models. We accounted for clinical prognostic factors, including grade, tumor size, lymph-nodal involvement, and age, by using the PREDICT-score. Overall, Subtypes [hazard ratio (95% confidence interval) B-like vs. A-like = 1.64 (1.25-2.14); P-value < 0.001] and IHC4-score [hazard ratio (95% confidence interval)/1 standard deviation = 1.32 (1.20-1.44); P-value < 0.001] were prognostic in univariable models. However, IHC4-score [hazard ratio (95% confidence interval)/1 standard deviation = 1.24 (1.11-1.37); P-value < 0.001; likelihood ratio chi-square (LRχ2) = 12.5] provided more prognostic information than Subtype [hazard ratio (95% confidence interval) B-like vs. A-like = 1.38 (1.02-1.88); P-value = 0.04; LRχ2 = 4.3] in multivariable models. Further, higher values of the IHC4-score were associated with worse prognosis, regardless of subtype (P-heterogeneity = 0.97). These findings enhance the value of the IHC4-score as an adjunct to clinical prognostication tools for aiding chemotherapy decision-making in luminal breast cancer patients, irrespective of subtype. More... »

References to SciGraph publications

  • 2013-02. Astronomical algorithms for automated analysis of tissue protein expression in breast cancer in BRITISH JOURNAL OF CANCER
  • 2013-10. The molecular diversity of Luminal A breast tumors in BREAST CANCER RESEARCH AND TREATMENT
  • 2015-12. Development and verification of the PAM50-based Prosigna breast cancer gene signature assay in BMC MEDICAL GENOMICS
  • 2008-08. Automated quantitative analysis of estrogen receptor expression in breast carcinoma does not differ from expert pathologist scoring: a tissue microarray study of 3,484 cases in BREAST CANCER RESEARCH AND TREATMENT
  • 2016-12. Heterogeneity in global gene expression profiles between biopsy specimens taken peri-surgically from primary ER-positive breast carcinomas in BREAST CANCER RESEARCH
  • 2017-08. Magee Equation 3 predicts pathologic response to neoadjuvant systemic chemotherapy in estrogen receptor positive, HER2 negative/equivocal breast tumors in MODERN PATHOLOGY
  • 2015-07. Clinical utility of the IHC4+C score in oestrogen receptor-positive early breast cancer: a prospective decision impact study in BRITISH JOURNAL OF CANCER
  • 2013-09. Luminal breast cancer: from biology to treatment in NATURE REVIEWS CLINICAL ONCOLOGY
  • 2006-05. Polymorphisms in DNA double-strand break repair genes and risk of breast cancer: two population-based studies in USA and Poland, and meta-analyses in HUMAN GENETICS
  • 2011-12. Development and evaluation of a virtual microscopy application for automated assessment of Ki-67 expression in breast cancer in BMC CLINICAL PATHOLOGY
  • 2013-05. Prediction of the Oncotype DX recurrence score: use of pathology-generated equations derived by linear regression analysis in MODERN PATHOLOGY
  • 2012-05. Assessment of the contribution of the IHC4+C score to decision making in clinical practice in early breast cancer in BRITISH JOURNAL OF CANCER
  • 2017-12. An updated PREDICT breast cancer prognostication and treatment benefit prediction model with independent validation in BREAST CANCER RESEARCH
  • 2012-08. PREDICT Plus: development and validation of a prognostic model for early breast cancer that includes HER2 in BRITISH JOURNAL OF CANCER
  • 2009-03. Comprehensive immunohistochemical analysis of Her-2/neu oncoprotein overexpression in breast cancer: HercepTest™ (Dako) for manual testing and Her-2/neuTest 4B5 (Ventana) for Ventana BenchMark automatic staining system with correlation to results of fluorescence in situ hybridization (FISH) in VIRCHOWS ARCHIV
  • 2016-12. Prognostic value of automated KI67 scoring in breast cancer: a centralised evaluation of 8088 patients from 10 study groups in BREAST CANCER RESEARCH
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41379-019-0270-4

    DOI

    http://dx.doi.org/10.1038/s41379-019-0270-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1113378383

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30976105


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Oncology and Carcinogenesis", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute of Cancer Research", 
              "id": "https://www.grid.ac/institutes/grid.18886.3f", 
              "name": [
                "Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA. mustapha.abubakar2@nih.gov.", 
                "Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK. mustapha.abubakar2@nih.gov."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Abubakar", 
            "givenName": "Mustapha", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Edinburgh", 
              "id": "https://www.grid.ac/institutes/grid.4305.2", 
              "name": [
                "Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh, Scotland, UK."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Figueroa", 
            "givenName": "Jonine", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Cambridge", 
              "id": "https://www.grid.ac/institutes/grid.5335.0", 
              "name": [
                "Cancer Research UK (CRUK) Cambridge Institute, University of Cambridge, Cambridge, UK."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ali", 
            "givenName": "H Raza", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Cambridge", 
              "id": "https://www.grid.ac/institutes/grid.5335.0", 
              "name": [
                "Center for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Blows", 
            "givenName": "Fiona", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Centrum Onkologii Instytut", 
              "id": "https://www.grid.ac/institutes/grid.418165.f", 
              "name": [
                "Department of Cancer Epidemiology and Prevention, M. Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lissowska", 
            "givenName": "Jolanta", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Cambridge", 
              "id": "https://www.grid.ac/institutes/grid.5335.0", 
              "name": [
                "Cancer Research UK (CRUK) Cambridge Institute, University of Cambridge, Cambridge, UK.", 
                "Department of Oncology, University of Cambridge, Cambridge, UK.", 
                "Cambridge Experimental Cancer Medicine Centre and NIHR Cambridge Research Centre, Cambridge, UK."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Caldas", 
            "givenName": "Carlos", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Cambridge", 
              "id": "https://www.grid.ac/institutes/grid.5335.0", 
              "name": [
                "Center for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK.", 
                "Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Easton", 
            "givenName": "Douglas F", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Mayo Clinic", 
              "id": "https://www.grid.ac/institutes/grid.417467.7", 
              "name": [
                "Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sherman", 
            "givenName": "Mark E", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Cancer Institute", 
              "id": "https://www.grid.ac/institutes/grid.48336.3a", 
              "name": [
                "Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Garcia-Closas", 
            "givenName": "Montserrat", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Royal Marsden Hospital", 
              "id": "https://www.grid.ac/institutes/grid.424926.f", 
              "name": [
                "Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer Research, The Institute of Cancer Research, London, UK.", 
                "Academic Department of Biochemistry, Royal Marsden Hospital, Fulham Road, London, UK."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dowsett", 
            "givenName": "Mitch", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Cambridge", 
              "id": "https://www.grid.ac/institutes/grid.5335.0", 
              "name": [
                "Cancer Research UK (CRUK) Cambridge Institute, University of Cambridge, Cambridge, UK.", 
                "Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pharoah", 
            "givenName": "Paul D", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/bjc.2015.222", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000204704", 
              "https://doi.org/10.1038/bjc.2015.222"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/bjc.2012.166", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000550332", 
              "https://doi.org/10.1038/bjc.2012.166"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/jnci/dju055", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002397396"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1200/jco.2010.31.2835", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004372796"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00439-006-0135-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004577207", 
              "https://doi.org/10.1007/s00439-006-0135-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00439-006-0135-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004577207", 
              "https://doi.org/10.1007/s00439-006-0135-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00439-006-0135-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004577207", 
              "https://doi.org/10.1007/s00439-006-0135-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5858/arpa.2014-0599-oa", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004752111"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/jnci/djt306", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007448888"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0932692100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007535956"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/annonc/mdr304", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009166329"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1158/1055-9965.epi-09-1023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010297990"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1470-2045(09)70314-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011515750"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1470-2045(09)70314-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011515750"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13058-016-0696-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012134465", 
              "https://doi.org/10.1186/s13058-016-0696-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-2559.2009.03419.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013123757"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-2559.2009.03419.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013123757"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1472-6890-11-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013804625", 
              "https://doi.org/10.1186/1472-6890-11-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00428-009-0728-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014910858", 
              "https://doi.org/10.1007/s00428-009-0728-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00428-009-0728-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014910858", 
              "https://doi.org/10.1007/s00428-009-0728-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrclinonc.2013.124", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017046571", 
              "https://doi.org/10.1038/nrclinonc.2013.124"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/jclinpath-2015-203212", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017225169"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13058-016-0765-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017590589", 
              "https://doi.org/10.1186/s13058-016-0765-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13058-016-0765-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017590589", 
              "https://doi.org/10.1186/s13058-016-0765-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/ijc.29210", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018963471"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1158/1078-0432.ccr-10-1282", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021940935"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1056/nejmoa041588", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022156409"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/annonc/mdv298", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022951845"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/jnci/djr393", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024075504"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.breast.2016.06.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024359190"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/cas.12245", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028723583"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/bjc.2012.558", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031964926", 
              "https://doi.org/10.1038/bjc.2012.558"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cjp2.3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032620600"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.191367098", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034333528"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/annonc/mdv221", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036102989"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10549-007-9736-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040780728", 
              "https://doi.org/10.1007/s10549-007-9736-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/modpathol.2013.36", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041911179", 
              "https://doi.org/10.1038/modpathol.2013.36"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/jnci/djv159", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042872833"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10549-013-2699-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043176506", 
              "https://doi.org/10.1007/s10549-013-2699-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10549-013-2699-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043176506", 
              "https://doi.org/10.1007/s10549-013-2699-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/annonc/mdt303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045949725"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/hmg/ddi237", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047903618"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cjp2.42", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048709742"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/gco.0b013e32835c0410", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048910404"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/gco.0b013e32835c0410", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048910404"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12920-015-0129-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049182276", 
              "https://doi.org/10.1186/s12920-015-0129-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-2559.2012.04329.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050462555"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/bjc.2012.338", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052244319", 
              "https://doi.org/10.1038/bjc.2012.338"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1158/1078-0432.ccr-16-1278", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063225534"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1200/jco.2003.03.088", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064203459"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1043/1543-2165(2007)131[18:asocco]2.0.co;2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1077917948"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1043/1543-2165-134.7.e48", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1078181880"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13058-017-0852-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085558661", 
              "https://doi.org/10.1186/s13058-017-0852-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13058-017-0852-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085558661", 
              "https://doi.org/10.1186/s13058-017-0852-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13058-017-0852-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085558661", 
              "https://doi.org/10.1186/s13058-017-0852-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/modpathol.2017.41", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085595386", 
              "https://doi.org/10.1038/modpathol.2017.41"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-04-11", 
        "datePublishedReg": "2019-04-11", 
        "description": "Although most women with luminal breast cancer do well on endocrine therapy alone, some will develop fatal recurrence thereby necessitating the need to prospectively determine those for whom additional cytotoxic therapy will be beneficial. Categorical combinations of immunohistochemical measures of ER, PR, HER2, and KI67 are traditionally used to classify patients into luminal A-like and B-like subtypes for chemotherapeutic reasons, but this may lead to the loss of prognostically relevant information. Here, we compared the prognostic value of quantitative measures of these markers, combined in the IHC4-score, to categorical combinations in subtypes. Using image analysis-based scores for all four markers, we computed the IHC4-score for 2498 patients with luminal breast cancer from two European study populations. We defined subtypes (A-like (ER\u2009+\u2009and PR\u2009+\u2009: and HER2- and low KI67) and B-like (ER\u2009+\u2009and/or PR\u2009+\u2009: and HER2\u2009+\u2009or high KI67)) by combining binary categories of these markers. Hazard ratios and 95% confidence intervals for associations with 10-year breast cancer-specific survival were estimated in Cox proportional-hazard models. We accounted for clinical prognostic factors, including grade, tumor size, lymph-nodal involvement, and age, by using the PREDICT-score. Overall, Subtypes [hazard ratio (95% confidence interval) B-like vs. A-like\u2009=\u20091.64 (1.25-2.14); P-value\u2009<\u20090.001] and IHC4-score [hazard ratio (95% confidence interval)/1 standard deviation\u2009=\u20091.32 (1.20-1.44); P-value\u2009<\u20090.001] were prognostic in univariable models. However, IHC4-score [hazard ratio (95% confidence interval)/1 standard deviation\u2009=\u20091.24 (1.11-1.37); P-value\u2009<\u20090.001; likelihood ratio chi-square (LR\u03c72)\u2009=\u200912.5] provided more prognostic information than Subtype [hazard ratio (95% confidence interval) B-like vs. A-like\u2009=\u20091.38 (1.02-1.88); P-value\u2009=\u20090.04; LR\u03c72\u2009= 4.3] in multivariable models. Further, higher values of the IHC4-score were associated with worse prognosis, regardless of subtype (P-heterogeneity\u2009=\u20090.97). These findings enhance the value of the IHC4-score as an adjunct to clinical prognostication tools for aiding chemotherapy decision-making in luminal breast cancer patients, irrespective of subtype.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/s41379-019-0270-4", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1098208", 
            "issn": [
              "0893-3952", 
              "1530-0285"
            ], 
            "name": "Modern Pathology", 
            "type": "Periodical"
          }
        ], 
        "name": "Combined quantitative measures of ER, PR, HER2, and KI67 provide more prognostic information than categorical combinations in luminal breast cancer.", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41379-019-0270-4"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1113378383"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "8806605"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30976105"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41379-019-0270-4", 
          "https://app.dimensions.ai/details/publication/pub.1113378383"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-16T06:21", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000377_0000000377/records_106807_00000003.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/articles/s41379-019-0270-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41379-019-0270-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41379-019-0270-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41379-019-0270-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41379-019-0270-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    295 TRIPLES      20 PREDICATES      70 URIs      16 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41379-019-0270-4 schema:about anzsrc-for:11
    2 anzsrc-for:1112
    3 schema:author Nf127096b1ba74430b1eff0e6d3dea5bd
    4 schema:citation sg:pub.10.1007/s00428-009-0728-8
    5 sg:pub.10.1007/s00439-006-0135-z
    6 sg:pub.10.1007/s10549-007-9736-z
    7 sg:pub.10.1007/s10549-013-2699-3
    8 sg:pub.10.1038/bjc.2012.166
    9 sg:pub.10.1038/bjc.2012.338
    10 sg:pub.10.1038/bjc.2012.558
    11 sg:pub.10.1038/bjc.2015.222
    12 sg:pub.10.1038/modpathol.2013.36
    13 sg:pub.10.1038/modpathol.2017.41
    14 sg:pub.10.1038/nrclinonc.2013.124
    15 sg:pub.10.1186/1472-6890-11-3
    16 sg:pub.10.1186/s12920-015-0129-6
    17 sg:pub.10.1186/s13058-016-0696-2
    18 sg:pub.10.1186/s13058-016-0765-6
    19 sg:pub.10.1186/s13058-017-0852-3
    20 https://doi.org/10.1002/cjp2.3
    21 https://doi.org/10.1002/cjp2.42
    22 https://doi.org/10.1002/ijc.29210
    23 https://doi.org/10.1016/j.breast.2016.06.019
    24 https://doi.org/10.1016/s1470-2045(09)70314-6
    25 https://doi.org/10.1043/1543-2165(2007)131[18:asocco]2.0.co;2
    26 https://doi.org/10.1043/1543-2165-134.7.e48
    27 https://doi.org/10.1056/nejmoa041588
    28 https://doi.org/10.1073/pnas.0932692100
    29 https://doi.org/10.1073/pnas.191367098
    30 https://doi.org/10.1093/annonc/mdr304
    31 https://doi.org/10.1093/annonc/mdt303
    32 https://doi.org/10.1093/annonc/mdv221
    33 https://doi.org/10.1093/annonc/mdv298
    34 https://doi.org/10.1093/hmg/ddi237
    35 https://doi.org/10.1093/jnci/djr393
    36 https://doi.org/10.1093/jnci/djt306
    37 https://doi.org/10.1093/jnci/dju055
    38 https://doi.org/10.1093/jnci/djv159
    39 https://doi.org/10.1097/gco.0b013e32835c0410
    40 https://doi.org/10.1111/cas.12245
    41 https://doi.org/10.1111/j.1365-2559.2009.03419.x
    42 https://doi.org/10.1111/j.1365-2559.2012.04329.x
    43 https://doi.org/10.1136/jclinpath-2015-203212
    44 https://doi.org/10.1158/1055-9965.epi-09-1023
    45 https://doi.org/10.1158/1078-0432.ccr-10-1282
    46 https://doi.org/10.1158/1078-0432.ccr-16-1278
    47 https://doi.org/10.1200/jco.2003.03.088
    48 https://doi.org/10.1200/jco.2010.31.2835
    49 https://doi.org/10.5858/arpa.2014-0599-oa
    50 schema:datePublished 2019-04-11
    51 schema:datePublishedReg 2019-04-11
    52 schema:description Although most women with luminal breast cancer do well on endocrine therapy alone, some will develop fatal recurrence thereby necessitating the need to prospectively determine those for whom additional cytotoxic therapy will be beneficial. Categorical combinations of immunohistochemical measures of ER, PR, HER2, and KI67 are traditionally used to classify patients into luminal A-like and B-like subtypes for chemotherapeutic reasons, but this may lead to the loss of prognostically relevant information. Here, we compared the prognostic value of quantitative measures of these markers, combined in the IHC4-score, to categorical combinations in subtypes. Using image analysis-based scores for all four markers, we computed the IHC4-score for 2498 patients with luminal breast cancer from two European study populations. We defined subtypes (A-like (ER + and PR + : and HER2- and low KI67) and B-like (ER + and/or PR + : and HER2 + or high KI67)) by combining binary categories of these markers. Hazard ratios and 95% confidence intervals for associations with 10-year breast cancer-specific survival were estimated in Cox proportional-hazard models. We accounted for clinical prognostic factors, including grade, tumor size, lymph-nodal involvement, and age, by using the PREDICT-score. Overall, Subtypes [hazard ratio (95% confidence interval) B-like vs. A-like = 1.64 (1.25-2.14); P-value &lt; 0.001] and IHC4-score [hazard ratio (95% confidence interval)/1 standard deviation = 1.32 (1.20-1.44); P-value &lt; 0.001] were prognostic in univariable models. However, IHC4-score [hazard ratio (95% confidence interval)/1 standard deviation = 1.24 (1.11-1.37); P-value &lt; 0.001; likelihood ratio chi-square (LRχ<sup>2</sup>) = 12.5] provided more prognostic information than Subtype [hazard ratio (95% confidence interval) B-like vs. A-like = 1.38 (1.02-1.88); P-value = 0.04; LRχ<sup>2 </sup>= 4.3] in multivariable models. Further, higher values of the IHC4-score were associated with worse prognosis, regardless of subtype (P-heterogeneity = 0.97). These findings enhance the value of the IHC4-score as an adjunct to clinical prognostication tools for aiding chemotherapy decision-making in luminal breast cancer patients, irrespective of subtype.
    53 schema:genre research_article
    54 schema:inLanguage en
    55 schema:isAccessibleForFree false
    56 schema:isPartOf sg:journal.1098208
    57 schema:name Combined quantitative measures of ER, PR, HER2, and KI67 provide more prognostic information than categorical combinations in luminal breast cancer.
    58 schema:productId N29d28fa9e37148a5bb963c06b588f015
    59 Naa20ac98ff1b415d9a132acd02195185
    60 Nca2d05b1838b4100b162a21fb62fca3d
    61 Ndac636de08f54f3da168d5f19176c63d
    62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113378383
    63 https://doi.org/10.1038/s41379-019-0270-4
    64 schema:sdDatePublished 2019-04-16T06:21
    65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    66 schema:sdPublisher Nfe50163598dc46dcb9dd3d435c428d4e
    67 schema:url http://www.nature.com/articles/s41379-019-0270-4
    68 sgo:license sg:explorer/license/
    69 sgo:sdDataset articles
    70 rdf:type schema:ScholarlyArticle
    71 N1d2606bab75a49f4979012b5a1daf30f schema:affiliation https://www.grid.ac/institutes/grid.5335.0
    72 schema:familyName Blows
    73 schema:givenName Fiona
    74 rdf:type schema:Person
    75 N228f34a0d6a54ddfb271a92fb0b524da schema:affiliation https://www.grid.ac/institutes/grid.418165.f
    76 schema:familyName Lissowska
    77 schema:givenName Jolanta
    78 rdf:type schema:Person
    79 N285ab916920b429ab479897e460d7e86 rdf:first Ne7cfca981e9440d29460c506d30c35cb
    80 rdf:rest N8e268f6ddd31445bb51c63fee730121a
    81 N29d28fa9e37148a5bb963c06b588f015 schema:name pubmed_id
    82 schema:value 30976105
    83 rdf:type schema:PropertyValue
    84 N46e7c1a563604fc392f8b0bd05be8d2c rdf:first N228f34a0d6a54ddfb271a92fb0b524da
    85 rdf:rest Nb5c5bcd8cb9d4a45b8a8d18905a5a1a6
    86 N55c55668f4bd475995a2c9d9346b9f9f schema:affiliation https://www.grid.ac/institutes/grid.18886.3f
    87 schema:familyName Abubakar
    88 schema:givenName Mustapha
    89 rdf:type schema:Person
    90 N5f56642f4d5341c1ab293770acaaaf1b rdf:first Na9478a5477d04d68b4bf7b9cd5256148
    91 rdf:rest N7414356d22b34a13a49d7233a47d60a5
    92 N617240c84e6e41faad9f144cf489240d schema:affiliation https://www.grid.ac/institutes/grid.424926.f
    93 schema:familyName Dowsett
    94 schema:givenName Mitch
    95 rdf:type schema:Person
    96 N7334f910437349c395f783f60564d493 rdf:first Nf61583cfa6294b87909ea81d9808acf9
    97 rdf:rest rdf:nil
    98 N7414356d22b34a13a49d7233a47d60a5 rdf:first N617240c84e6e41faad9f144cf489240d
    99 rdf:rest N7334f910437349c395f783f60564d493
    100 N8040ca94725b49648820a119a5f70150 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
    101 schema:familyName Easton
    102 schema:givenName Douglas F
    103 rdf:type schema:Person
    104 N8e268f6ddd31445bb51c63fee730121a rdf:first N1d2606bab75a49f4979012b5a1daf30f
    105 rdf:rest N46e7c1a563604fc392f8b0bd05be8d2c
    106 N9257e3c51634474ead847e57c0901230 rdf:first Naf3ab94b939e48b881854d86b299148a
    107 rdf:rest N285ab916920b429ab479897e460d7e86
    108 N9b78a55350d7449183928787224897a9 schema:affiliation https://www.grid.ac/institutes/grid.417467.7
    109 schema:familyName Sherman
    110 schema:givenName Mark E
    111 rdf:type schema:Person
    112 Na0feb9b5d7634534896b4f7e1413e8aa rdf:first N9b78a55350d7449183928787224897a9
    113 rdf:rest N5f56642f4d5341c1ab293770acaaaf1b
    114 Na9478a5477d04d68b4bf7b9cd5256148 schema:affiliation https://www.grid.ac/institutes/grid.48336.3a
    115 schema:familyName Garcia-Closas
    116 schema:givenName Montserrat
    117 rdf:type schema:Person
    118 Naa20ac98ff1b415d9a132acd02195185 schema:name nlm_unique_id
    119 schema:value 8806605
    120 rdf:type schema:PropertyValue
    121 Naf3ab94b939e48b881854d86b299148a schema:affiliation https://www.grid.ac/institutes/grid.4305.2
    122 schema:familyName Figueroa
    123 schema:givenName Jonine
    124 rdf:type schema:Person
    125 Nb5c5bcd8cb9d4a45b8a8d18905a5a1a6 rdf:first Nc76e2d47afa1474f9f074e365a29f5aa
    126 rdf:rest Ndca807a378944692adf4353971036511
    127 Nc76e2d47afa1474f9f074e365a29f5aa schema:affiliation https://www.grid.ac/institutes/grid.5335.0
    128 schema:familyName Caldas
    129 schema:givenName Carlos
    130 rdf:type schema:Person
    131 Nca2d05b1838b4100b162a21fb62fca3d schema:name doi
    132 schema:value 10.1038/s41379-019-0270-4
    133 rdf:type schema:PropertyValue
    134 Ndac636de08f54f3da168d5f19176c63d schema:name dimensions_id
    135 schema:value pub.1113378383
    136 rdf:type schema:PropertyValue
    137 Ndca807a378944692adf4353971036511 rdf:first N8040ca94725b49648820a119a5f70150
    138 rdf:rest Na0feb9b5d7634534896b4f7e1413e8aa
    139 Ne7cfca981e9440d29460c506d30c35cb schema:affiliation https://www.grid.ac/institutes/grid.5335.0
    140 schema:familyName Ali
    141 schema:givenName H Raza
    142 rdf:type schema:Person
    143 Nf127096b1ba74430b1eff0e6d3dea5bd rdf:first N55c55668f4bd475995a2c9d9346b9f9f
    144 rdf:rest N9257e3c51634474ead847e57c0901230
    145 Nf61583cfa6294b87909ea81d9808acf9 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
    146 schema:familyName Pharoah
    147 schema:givenName Paul D
    148 rdf:type schema:Person
    149 Nfe50163598dc46dcb9dd3d435c428d4e schema:name Springer Nature - SN SciGraph project
    150 rdf:type schema:Organization
    151 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    152 schema:name Medical and Health Sciences
    153 rdf:type schema:DefinedTerm
    154 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
    155 schema:name Oncology and Carcinogenesis
    156 rdf:type schema:DefinedTerm
    157 sg:journal.1098208 schema:issn 0893-3952
    158 1530-0285
    159 schema:name Modern Pathology
    160 rdf:type schema:Periodical
    161 sg:pub.10.1007/s00428-009-0728-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014910858
    162 https://doi.org/10.1007/s00428-009-0728-8
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1007/s00439-006-0135-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1004577207
    165 https://doi.org/10.1007/s00439-006-0135-z
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1007/s10549-007-9736-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1040780728
    168 https://doi.org/10.1007/s10549-007-9736-z
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1007/s10549-013-2699-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043176506
    171 https://doi.org/10.1007/s10549-013-2699-3
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1038/bjc.2012.166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000550332
    174 https://doi.org/10.1038/bjc.2012.166
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1038/bjc.2012.338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052244319
    177 https://doi.org/10.1038/bjc.2012.338
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1038/bjc.2012.558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031964926
    180 https://doi.org/10.1038/bjc.2012.558
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1038/bjc.2015.222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000204704
    183 https://doi.org/10.1038/bjc.2015.222
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1038/modpathol.2013.36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041911179
    186 https://doi.org/10.1038/modpathol.2013.36
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1038/modpathol.2017.41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085595386
    189 https://doi.org/10.1038/modpathol.2017.41
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1038/nrclinonc.2013.124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017046571
    192 https://doi.org/10.1038/nrclinonc.2013.124
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1186/1472-6890-11-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013804625
    195 https://doi.org/10.1186/1472-6890-11-3
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1186/s12920-015-0129-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049182276
    198 https://doi.org/10.1186/s12920-015-0129-6
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1186/s13058-016-0696-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012134465
    201 https://doi.org/10.1186/s13058-016-0696-2
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1186/s13058-016-0765-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017590589
    204 https://doi.org/10.1186/s13058-016-0765-6
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1186/s13058-017-0852-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085558661
    207 https://doi.org/10.1186/s13058-017-0852-3
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1002/cjp2.3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032620600
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1002/cjp2.42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048709742
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1002/ijc.29210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018963471
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1016/j.breast.2016.06.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024359190
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1016/s1470-2045(09)70314-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011515750
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1043/1543-2165(2007)131[18:asocco]2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077917948
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1043/1543-2165-134.7.e48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078181880
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.1056/nejmoa041588 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022156409
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.1073/pnas.0932692100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007535956
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1073/pnas.191367098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034333528
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1093/annonc/mdr304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009166329
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1093/annonc/mdt303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045949725
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1093/annonc/mdv221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036102989
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1093/annonc/mdv298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022951845
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1093/hmg/ddi237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047903618
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1093/jnci/djr393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024075504
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1093/jnci/djt306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007448888
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1093/jnci/dju055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002397396
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1093/jnci/djv159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042872833
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1097/gco.0b013e32835c0410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048910404
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.1111/cas.12245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028723583
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.1111/j.1365-2559.2009.03419.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1013123757
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.1111/j.1365-2559.2012.04329.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050462555
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.1136/jclinpath-2015-203212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017225169
    256 rdf:type schema:CreativeWork
    257 https://doi.org/10.1158/1055-9965.epi-09-1023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010297990
    258 rdf:type schema:CreativeWork
    259 https://doi.org/10.1158/1078-0432.ccr-10-1282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021940935
    260 rdf:type schema:CreativeWork
    261 https://doi.org/10.1158/1078-0432.ccr-16-1278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063225534
    262 rdf:type schema:CreativeWork
    263 https://doi.org/10.1200/jco.2003.03.088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064203459
    264 rdf:type schema:CreativeWork
    265 https://doi.org/10.1200/jco.2010.31.2835 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004372796
    266 rdf:type schema:CreativeWork
    267 https://doi.org/10.5858/arpa.2014-0599-oa schema:sameAs https://app.dimensions.ai/details/publication/pub.1004752111
    268 rdf:type schema:CreativeWork
    269 https://www.grid.ac/institutes/grid.18886.3f schema:alternateName Institute of Cancer Research
    270 schema:name Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA. mustapha.abubakar2@nih.gov.
    271 Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK. mustapha.abubakar2@nih.gov.
    272 rdf:type schema:Organization
    273 https://www.grid.ac/institutes/grid.417467.7 schema:alternateName Mayo Clinic
    274 schema:name Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA.
    275 rdf:type schema:Organization
    276 https://www.grid.ac/institutes/grid.418165.f schema:alternateName Centrum Onkologii Instytut
    277 schema:name Department of Cancer Epidemiology and Prevention, M. Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland.
    278 rdf:type schema:Organization
    279 https://www.grid.ac/institutes/grid.424926.f schema:alternateName Royal Marsden Hospital
    280 schema:name Academic Department of Biochemistry, Royal Marsden Hospital, Fulham Road, London, UK.
    281 Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer Research, The Institute of Cancer Research, London, UK.
    282 rdf:type schema:Organization
    283 https://www.grid.ac/institutes/grid.4305.2 schema:alternateName University of Edinburgh
    284 schema:name Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh, Scotland, UK.
    285 rdf:type schema:Organization
    286 https://www.grid.ac/institutes/grid.48336.3a schema:alternateName National Cancer Institute
    287 schema:name Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA.
    288 rdf:type schema:Organization
    289 https://www.grid.ac/institutes/grid.5335.0 schema:alternateName University of Cambridge
    290 schema:name Cambridge Experimental Cancer Medicine Centre and NIHR Cambridge Research Centre, Cambridge, UK.
    291 Cancer Research UK (CRUK) Cambridge Institute, University of Cambridge, Cambridge, UK.
    292 Center for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK.
    293 Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
    294 Department of Oncology, University of Cambridge, Cambridge, UK.
    295 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...