Machine learning metrology of cell confinement in melt electrowritten three-dimensional biomaterial substrates View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-03-25

AUTHORS

Filippos Tourlomousis, Chao Jia, Thrasyvoulos Karydis, Andreas Mershin, Hongjun Wang, Dilhan M. Kalyon, Robert C. Chang

ABSTRACT

Tuning cell shape by altering the biophysical properties of biomaterial substrates on which cells operate would provide a potential shape-driven pathway to control cell phenotype. However, there is an unexplored dimensional scale window of three-dimensional (3D) substrates with precisely tunable porous microarchitectures and geometrical feature sizes at the cell’s operating length scales (10–100 μm). This paper demonstrates the fabrication of such high-fidelity fibrous substrates using a melt electrowriting (MEW) technique. This advanced manufacturing approach is biologically qualified with a metrology framework that models and classifies cell confinement states under various substrate dimensionalities and architectures. Using fibroblasts as a model cell system, the mechanosensing response of adherent cells is investigated as a function of variable substrate dimensionality (2D vs. 3D) and porous microarchitecture (randomly oriented, “non-woven” vs. precision-stacked, “woven”). Single-cell confinement states are modeled using confocal fluorescence microscopy in conjunction with an automated single-cell bioimage data analysis workflow that extracts quantitative metrics of the whole cell and sub-cellular focal adhesion protein features measured. The extracted multidimensional dataset is employed to train a machine learning algorithm to classify cell shape phenotypes. The results show that cells assume distinct confinement states that are enforced by the prescribed substrate dimensionalities and porous microarchitectures with the woven MEW substrates promoting the highest cell shape homogeneity compared to non-woven fibrous substrates. The technology platform established here constitutes a significant step towards the development of integrated additive manufacturing—metrology platforms for a wide range of applications including fundamental mechanobiology studies and 3D bioprinting of tissue constructs to yield specific biological designs qualified at the single-cell level. More... »

PAGES

15

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41378-019-0055-4

DOI

http://dx.doi.org/10.1038/s41378-019-0055-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112971406

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/31057942


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "The Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "The Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tourlomousis", 
        "givenName": "Filippos", 
        "id": "sg:person.012633110612.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012633110612.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biomedical Engineering Department, Stevens Institute of Technology, Hoboken, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.217309.e", 
          "name": [
            "Biomedical Engineering Department, Stevens Institute of Technology, Hoboken, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jia", 
        "givenName": "Chao", 
        "id": "sg:person.010007715533.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010007715533.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "The Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karydis", 
        "givenName": "Thrasyvoulos", 
        "id": "sg:person.07732203761.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07732203761.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "The Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mershin", 
        "givenName": "Andreas", 
        "id": "sg:person.0741544747.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741544747.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biomedical Engineering Department, Stevens Institute of Technology, Hoboken, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.217309.e", 
          "name": [
            "Biomedical Engineering Department, Stevens Institute of Technology, Hoboken, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Hongjun", 
        "id": "sg:person.01146245463.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146245463.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chemical Engineering and Materials Science Department, Stevens Institute of Technology, Hoboken, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.217309.e", 
          "name": [
            "Biomedical Engineering Department, Stevens Institute of Technology, Hoboken, NJ, USA", 
            "Chemical Engineering and Materials Science Department, Stevens Institute of Technology, Hoboken, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kalyon", 
        "givenName": "Dilhan M.", 
        "id": "sg:person.01270275063.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270275063.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mechanical Engineering Department, Stevens Institute of Technology, Hoboken, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.217309.e", 
          "name": [
            "Mechanical Engineering Department, Stevens Institute of Technology, Hoboken, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chang", 
        "givenName": "Robert C.", 
        "id": "sg:person.014136626677.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014136626677.30"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s001380050101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018063682", 
          "https://doi.org/10.1007/s001380050101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.2019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026706357", 
          "https://doi.org/10.1038/nmeth.2019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat4444", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041191213", 
          "https://doi.org/10.1038/nmat4444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncb2062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018511875", 
          "https://doi.org/10.1038/ncb2062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00138-002-0118-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002642067", 
          "https://doi.org/10.1007/s00138-002-0118-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/2193-9772-3-10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007435532", 
          "https://doi.org/10.1186/2193-9772-3-10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/273345a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024073968", 
          "https://doi.org/10.1038/273345a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/micronano.2017.25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090328795", 
          "https://doi.org/10.1038/micronano.2017.25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms9720", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027323354", 
          "https://doi.org/10.1038/ncomms9720"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-25", 
    "datePublishedReg": "2019-03-25", 
    "description": "Tuning cell shape by altering the biophysical properties of biomaterial substrates on which cells operate would provide a potential shape-driven pathway to control cell phenotype. However, there is an unexplored dimensional scale window of three-dimensional (3D) substrates with precisely tunable porous microarchitectures and geometrical feature sizes at the cell\u2019s operating length scales (10\u2013100\u2009\u03bcm). This paper demonstrates the fabrication of such high-fidelity fibrous substrates using a melt electrowriting (MEW) technique. This advanced manufacturing approach is biologically qualified with a metrology framework that models and classifies cell confinement states under various substrate dimensionalities and architectures. Using fibroblasts as a model cell system, the mechanosensing response of adherent cells is investigated as a function of variable substrate dimensionality (2D vs. 3D) and porous microarchitecture (randomly oriented, \u201cnon-woven\u201d vs. precision-stacked, \u201cwoven\u201d). Single-cell confinement states are modeled using confocal fluorescence microscopy in conjunction with an automated single-cell bioimage data analysis workflow that extracts quantitative metrics of the whole cell and sub-cellular focal adhesion protein features measured. The extracted multidimensional dataset is employed to train a machine learning algorithm to classify cell shape phenotypes. The results show that cells assume distinct confinement states that are enforced by the prescribed substrate dimensionalities and porous microarchitectures with the woven MEW substrates promoting the highest cell shape homogeneity compared to non-woven fibrous substrates. The technology platform established here constitutes a significant step towards the development of integrated additive manufacturing\u2014metrology platforms for a wide range of applications including fundamental mechanobiology studies and 3D bioprinting of tissue constructs to yield specific biological designs qualified at the single-cell level.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41378-019-0055-4", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4727674", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1284420", 
        "issn": [
          "2096-1030", 
          "2055-7434"
        ], 
        "name": "Microsystems & Nanoengineering", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "keywords": [
      "focal adhesion proteins", 
      "single-cell level", 
      "model cell system", 
      "biomaterial substrates", 
      "shape phenotypes", 
      "confocal fluorescence microscopy", 
      "adhesion proteins", 
      "cell shape", 
      "mechanobiology studies", 
      "substrate dimensionality", 
      "cell confinement", 
      "fluorescence microscopy", 
      "whole cells", 
      "cell phenotype", 
      "advanced manufacturing approaches", 
      "biophysical properties", 
      "fibrous substrates", 
      "biological design", 
      "adherent cells", 
      "phenotype", 
      "cell system", 
      "cells", 
      "shape homogeneity", 
      "substrate", 
      "tissue constructs", 
      "protein", 
      "pathway", 
      "three-dimensional substrates", 
      "fibroblasts", 
      "scale window", 
      "technology platform", 
      "wide range", 
      "homogeneity", 
      "significant step", 
      "constructs", 
      "function", 
      "response", 
      "development", 
      "bioprinting", 
      "microscopy", 
      "levels", 
      "step", 
      "porous microarchitecture", 
      "analysis", 
      "platform", 
      "size", 
      "multidimensional datasets", 
      "state", 
      "study", 
      "datasets", 
      "architecture", 
      "range", 
      "confinement states", 
      "results", 
      "system", 
      "conjunction", 
      "shape", 
      "microarchitecture", 
      "scale", 
      "data analysis", 
      "approach", 
      "quantitative metrics", 
      "model", 
      "properties", 
      "applications", 
      "technique", 
      "window", 
      "length scales", 
      "metrics", 
      "framework", 
      "design", 
      "confinement", 
      "dimensionality", 
      "machine", 
      "manufacturing approach", 
      "feature size", 
      "paper", 
      "fabrication", 
      "metrology", 
      "melt", 
      "potential shape-driven pathway", 
      "shape-driven pathway", 
      "unexplored dimensional scale window", 
      "dimensional scale window", 
      "tunable porous microarchitectures", 
      "geometrical feature sizes", 
      "cell\u2019s operating length scales", 
      "\u2019s operating length scales", 
      "such high-fidelity fibrous substrates", 
      "high-fidelity fibrous substrates", 
      "melt electrowriting (MEW) technique", 
      "electrowriting (MEW) technique", 
      "metrology framework", 
      "classifies cell confinement states", 
      "cell confinement states", 
      "variable substrate dimensionality", 
      "Single-cell confinement states", 
      "single-cell bioimage data analysis", 
      "bioimage data analysis", 
      "sub-cellular focal adhesion protein", 
      "extracted multidimensional dataset", 
      "cell shape phenotypes", 
      "distinct confinement states", 
      "prescribed substrate dimensionalities", 
      "MEW substrates", 
      "highest cell shape homogeneity", 
      "cell shape homogeneity", 
      "non-woven fibrous substrates", 
      "additive manufacturing\u2014metrology platforms", 
      "manufacturing\u2014metrology platforms", 
      "fundamental mechanobiology studies", 
      "specific biological designs", 
      "Machine learning metrology", 
      "learning metrology", 
      "three-dimensional biomaterial substrates"
    ], 
    "name": "Machine learning metrology of cell confinement in melt electrowritten three-dimensional biomaterial substrates", 
    "pagination": "15", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112971406"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41378-019-0055-4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "31057942"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41378-019-0055-4", 
      "https://app.dimensions.ai/details/publication/pub.1112971406"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_799.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41378-019-0055-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41378-019-0055-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41378-019-0055-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41378-019-0055-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41378-019-0055-4'


 

This table displays all metadata directly associated to this object as RDF triples.

264 TRIPLES      22 PREDICATES      150 URIs      133 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41378-019-0055-4 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author N6848cb0600094123bdf7f9ab0aaaa813
4 schema:citation sg:pub.10.1007/s00138-002-0118-6
5 sg:pub.10.1007/s001380050101
6 sg:pub.10.1038/273345a0
7 sg:pub.10.1038/micronano.2017.25
8 sg:pub.10.1038/ncb2062
9 sg:pub.10.1038/ncomms9720
10 sg:pub.10.1038/nmat4444
11 sg:pub.10.1038/nmeth.2019
12 sg:pub.10.1186/2193-9772-3-10
13 schema:datePublished 2019-03-25
14 schema:datePublishedReg 2019-03-25
15 schema:description Tuning cell shape by altering the biophysical properties of biomaterial substrates on which cells operate would provide a potential shape-driven pathway to control cell phenotype. However, there is an unexplored dimensional scale window of three-dimensional (3D) substrates with precisely tunable porous microarchitectures and geometrical feature sizes at the cell’s operating length scales (10–100 μm). This paper demonstrates the fabrication of such high-fidelity fibrous substrates using a melt electrowriting (MEW) technique. This advanced manufacturing approach is biologically qualified with a metrology framework that models and classifies cell confinement states under various substrate dimensionalities and architectures. Using fibroblasts as a model cell system, the mechanosensing response of adherent cells is investigated as a function of variable substrate dimensionality (2D vs. 3D) and porous microarchitecture (randomly oriented, “non-woven” vs. precision-stacked, “woven”). Single-cell confinement states are modeled using confocal fluorescence microscopy in conjunction with an automated single-cell bioimage data analysis workflow that extracts quantitative metrics of the whole cell and sub-cellular focal adhesion protein features measured. The extracted multidimensional dataset is employed to train a machine learning algorithm to classify cell shape phenotypes. The results show that cells assume distinct confinement states that are enforced by the prescribed substrate dimensionalities and porous microarchitectures with the woven MEW substrates promoting the highest cell shape homogeneity compared to non-woven fibrous substrates. The technology platform established here constitutes a significant step towards the development of integrated additive manufacturing—metrology platforms for a wide range of applications including fundamental mechanobiology studies and 3D bioprinting of tissue constructs to yield specific biological designs qualified at the single-cell level.
16 schema:genre article
17 schema:inLanguage en
18 schema:isAccessibleForFree true
19 schema:isPartOf N3c476d6fb74f401491ef29f531a1f0e7
20 N78da16321b2b4f948cbf1e68d3e4d46c
21 sg:journal.1284420
22 schema:keywords MEW substrates
23 Machine learning metrology
24 Single-cell confinement states
25 additive manufacturing—metrology platforms
26 adherent cells
27 adhesion proteins
28 advanced manufacturing approaches
29 analysis
30 applications
31 approach
32 architecture
33 bioimage data analysis
34 biological design
35 biomaterial substrates
36 biophysical properties
37 bioprinting
38 cell confinement
39 cell confinement states
40 cell phenotype
41 cell shape
42 cell shape homogeneity
43 cell shape phenotypes
44 cell system
45 cells
46 cell’s operating length scales
47 classifies cell confinement states
48 confinement
49 confinement states
50 confocal fluorescence microscopy
51 conjunction
52 constructs
53 data analysis
54 datasets
55 design
56 development
57 dimensional scale window
58 dimensionality
59 distinct confinement states
60 electrowriting (MEW) technique
61 extracted multidimensional dataset
62 fabrication
63 feature size
64 fibroblasts
65 fibrous substrates
66 fluorescence microscopy
67 focal adhesion proteins
68 framework
69 function
70 fundamental mechanobiology studies
71 geometrical feature sizes
72 high-fidelity fibrous substrates
73 highest cell shape homogeneity
74 homogeneity
75 learning metrology
76 length scales
77 levels
78 machine
79 manufacturing approach
80 manufacturing—metrology platforms
81 mechanobiology studies
82 melt
83 melt electrowriting (MEW) technique
84 metrics
85 metrology
86 metrology framework
87 microarchitecture
88 microscopy
89 model
90 model cell system
91 multidimensional datasets
92 non-woven fibrous substrates
93 paper
94 pathway
95 phenotype
96 platform
97 porous microarchitecture
98 potential shape-driven pathway
99 prescribed substrate dimensionalities
100 properties
101 protein
102 quantitative metrics
103 range
104 response
105 results
106 scale
107 scale window
108 shape
109 shape homogeneity
110 shape phenotypes
111 shape-driven pathway
112 significant step
113 single-cell bioimage data analysis
114 single-cell level
115 size
116 specific biological designs
117 state
118 step
119 study
120 sub-cellular focal adhesion protein
121 substrate
122 substrate dimensionality
123 such high-fidelity fibrous substrates
124 system
125 technique
126 technology platform
127 three-dimensional biomaterial substrates
128 three-dimensional substrates
129 tissue constructs
130 tunable porous microarchitectures
131 unexplored dimensional scale window
132 variable substrate dimensionality
133 whole cells
134 wide range
135 window
136 ’s operating length scales
137 schema:name Machine learning metrology of cell confinement in melt electrowritten three-dimensional biomaterial substrates
138 schema:pagination 15
139 schema:productId N13c150ad5b9c4fc29b00dd2d67ca8847
140 N2e755ce1dd0849518f478b4abf1c50bd
141 N7f6847796e674296aa5a02491eaa4d38
142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112971406
143 https://doi.org/10.1038/s41378-019-0055-4
144 schema:sdDatePublished 2021-11-01T18:35
145 schema:sdLicense https://scigraph.springernature.com/explorer/license/
146 schema:sdPublisher Nbe803c6622fa4afca65b31a28d94409f
147 schema:url https://doi.org/10.1038/s41378-019-0055-4
148 sgo:license sg:explorer/license/
149 sgo:sdDataset articles
150 rdf:type schema:ScholarlyArticle
151 N13c150ad5b9c4fc29b00dd2d67ca8847 schema:name dimensions_id
152 schema:value pub.1112971406
153 rdf:type schema:PropertyValue
154 N2c3fd1bd18094af79953fdd6839428e9 rdf:first sg:person.010007715533.06
155 rdf:rest N936f78dfc00b4eab95a9c827ac61e6b2
156 N2e755ce1dd0849518f478b4abf1c50bd schema:name pubmed_id
157 schema:value 31057942
158 rdf:type schema:PropertyValue
159 N3c476d6fb74f401491ef29f531a1f0e7 schema:issueNumber 1
160 rdf:type schema:PublicationIssue
161 N3ea3bcca3fd74519b7d1406ee914e360 rdf:first sg:person.014136626677.30
162 rdf:rest rdf:nil
163 N6848cb0600094123bdf7f9ab0aaaa813 rdf:first sg:person.012633110612.30
164 rdf:rest N2c3fd1bd18094af79953fdd6839428e9
165 N78da16321b2b4f948cbf1e68d3e4d46c schema:volumeNumber 5
166 rdf:type schema:PublicationVolume
167 N7f6847796e674296aa5a02491eaa4d38 schema:name doi
168 schema:value 10.1038/s41378-019-0055-4
169 rdf:type schema:PropertyValue
170 N936f78dfc00b4eab95a9c827ac61e6b2 rdf:first sg:person.07732203761.27
171 rdf:rest Ndd233350f31144dd9a425b7465277d8b
172 N9d2b68aea622440cb3ac2ec59c6841c9 rdf:first sg:person.01146245463.96
173 rdf:rest Nf447af38d38e498882cf20c61a2a1a81
174 Nbe803c6622fa4afca65b31a28d94409f schema:name Springer Nature - SN SciGraph project
175 rdf:type schema:Organization
176 Ndd233350f31144dd9a425b7465277d8b rdf:first sg:person.0741544747.58
177 rdf:rest N9d2b68aea622440cb3ac2ec59c6841c9
178 Nf447af38d38e498882cf20c61a2a1a81 rdf:first sg:person.01270275063.10
179 rdf:rest N3ea3bcca3fd74519b7d1406ee914e360
180 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
181 schema:name Biological Sciences
182 rdf:type schema:DefinedTerm
183 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
184 schema:name Biochemistry and Cell Biology
185 rdf:type schema:DefinedTerm
186 sg:grant.4727674 http://pending.schema.org/fundedItem sg:pub.10.1038/s41378-019-0055-4
187 rdf:type schema:MonetaryGrant
188 sg:journal.1284420 schema:issn 2055-7434
189 2096-1030
190 schema:name Microsystems & Nanoengineering
191 schema:publisher Springer Nature
192 rdf:type schema:Periodical
193 sg:person.010007715533.06 schema:affiliation grid-institutes:grid.217309.e
194 schema:familyName Jia
195 schema:givenName Chao
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010007715533.06
197 rdf:type schema:Person
198 sg:person.01146245463.96 schema:affiliation grid-institutes:grid.217309.e
199 schema:familyName Wang
200 schema:givenName Hongjun
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146245463.96
202 rdf:type schema:Person
203 sg:person.012633110612.30 schema:affiliation grid-institutes:grid.116068.8
204 schema:familyName Tourlomousis
205 schema:givenName Filippos
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012633110612.30
207 rdf:type schema:Person
208 sg:person.01270275063.10 schema:affiliation grid-institutes:grid.217309.e
209 schema:familyName Kalyon
210 schema:givenName Dilhan M.
211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270275063.10
212 rdf:type schema:Person
213 sg:person.014136626677.30 schema:affiliation grid-institutes:grid.217309.e
214 schema:familyName Chang
215 schema:givenName Robert C.
216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014136626677.30
217 rdf:type schema:Person
218 sg:person.0741544747.58 schema:affiliation grid-institutes:grid.116068.8
219 schema:familyName Mershin
220 schema:givenName Andreas
221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741544747.58
222 rdf:type schema:Person
223 sg:person.07732203761.27 schema:affiliation grid-institutes:grid.116068.8
224 schema:familyName Karydis
225 schema:givenName Thrasyvoulos
226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07732203761.27
227 rdf:type schema:Person
228 sg:pub.10.1007/s00138-002-0118-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002642067
229 https://doi.org/10.1007/s00138-002-0118-6
230 rdf:type schema:CreativeWork
231 sg:pub.10.1007/s001380050101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018063682
232 https://doi.org/10.1007/s001380050101
233 rdf:type schema:CreativeWork
234 sg:pub.10.1038/273345a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024073968
235 https://doi.org/10.1038/273345a0
236 rdf:type schema:CreativeWork
237 sg:pub.10.1038/micronano.2017.25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090328795
238 https://doi.org/10.1038/micronano.2017.25
239 rdf:type schema:CreativeWork
240 sg:pub.10.1038/ncb2062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018511875
241 https://doi.org/10.1038/ncb2062
242 rdf:type schema:CreativeWork
243 sg:pub.10.1038/ncomms9720 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027323354
244 https://doi.org/10.1038/ncomms9720
245 rdf:type schema:CreativeWork
246 sg:pub.10.1038/nmat4444 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041191213
247 https://doi.org/10.1038/nmat4444
248 rdf:type schema:CreativeWork
249 sg:pub.10.1038/nmeth.2019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026706357
250 https://doi.org/10.1038/nmeth.2019
251 rdf:type schema:CreativeWork
252 sg:pub.10.1186/2193-9772-3-10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007435532
253 https://doi.org/10.1186/2193-9772-3-10
254 rdf:type schema:CreativeWork
255 grid-institutes:grid.116068.8 schema:alternateName The Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA, USA
256 schema:name The Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA, USA
257 rdf:type schema:Organization
258 grid-institutes:grid.217309.e schema:alternateName Biomedical Engineering Department, Stevens Institute of Technology, Hoboken, NJ, USA
259 Chemical Engineering and Materials Science Department, Stevens Institute of Technology, Hoboken, NJ, USA
260 Mechanical Engineering Department, Stevens Institute of Technology, Hoboken, NJ, USA
261 schema:name Biomedical Engineering Department, Stevens Institute of Technology, Hoboken, NJ, USA
262 Chemical Engineering and Materials Science Department, Stevens Institute of Technology, Hoboken, NJ, USA
263 Mechanical Engineering Department, Stevens Institute of Technology, Hoboken, NJ, USA
264 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...