Towards a versatile point-of-care system combining femtosecond laser generated microfluidic channels and direct laser written microneedle arrays View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12

AUTHORS

Anika Trautmann, Gian-Luca Roth, Benedikt Nujiqi, Thomas Walther, Ralf Hellmann

ABSTRACT

Microneedle-based microfluidic systems have a great potential to become well-accepted medical devices for simple, accurate, and painless drug delivery and lab-on-a-chip diagnostics. In this work, we report on a novel hybrid approach combining femtosecond direct laser written microneedles with femtosecond laser generated microfluidic channels providing an important step towards versatile medical point-of-care systems. Hollow microneedle arrays are fabricated by a laser system designed for two-photon polymerization applications. Compression tests of two different types of truncated cone-shaped microneedle arrays prepared from OrmoComp® give information about the microneedle mechanical strength, and the results are compared to skin insertion forces. Three-dimensional microchannels are directly created inside PMMA bulk material by an ultrashort pulse laser system with vertical channels having adjustable cross-sectional areas, which allow attaching of microneedles to the microfluidic system. A comprehensive parameter study varying pulse duration and repetition rate is performed on two-photon polymerization to identify an optimal laser power range for fabricating microneedles using the same pulse duration and repetition rate as for microchannels. This addresses the advantage of a single laser system process that overcomes complex fabrication methods. A proof of concept flow test with a rhodamine B dye solution in distilled water demonstrates that the combination of microneedles and microchannels qualifies for microfluidic injection and extraction applications. Using laser light to manufacture microchannels and microneedles offers a way to greatly simplify and reduce the costs of creating these structures for drug delivery and diagnostic sampling of body fluids. Microneedle arrays and microfluidic channels are increasingly used in patches and ‘lab-on-chip’ devices that can be attached to a patient’s skin. Connecting the needles and channels allows control over the preparation, delivery, collection and analysis of fluid mixtures. Researchers in Germany, led by Ralf Hellmann at the University of Applied Sciences in Aschaffenburg, use very short pulses of laser light to fabricate suitable microchannels and microneedles from polymers. Their procedure overcomes significant complexities and limitations of current methods. The researchers demonstrate the potential of their technique using test solutions. It is now ready to be developed for real treatment and diagnosis options. More... »

PAGES

6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41378-019-0046-5

DOI

http://dx.doi.org/10.1038/s41378-019-0046-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112363675


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0903", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biomedical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Applied Laser and Photonics Group, University of Applied Sciences Aschaffenburg, Wuerzburger Strasse 45, 63743, Aschaffenburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Trautmann", 
        "givenName": "Anika", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Applied Laser and Photonics Group, University of Applied Sciences Aschaffenburg, Wuerzburger Strasse 45, 63743, Aschaffenburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roth", 
        "givenName": "Gian-Luca", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Applied Laser and Photonics Group, University of Applied Sciences Aschaffenburg, Wuerzburger Strasse 45, 63743, Aschaffenburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nujiqi", 
        "givenName": "Benedikt", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University of Darmstadt", 
          "id": "https://www.grid.ac/institutes/grid.6546.1", 
          "name": [
            "Institute of Applied Physics, Technische Universit\u00e4t Darmstadt, Schlossgartenstrasse 7, 64289, Darmstadt, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Walther", 
        "givenName": "Thomas", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Applied Laser and Photonics Group, University of Applied Sciences Aschaffenburg, Wuerzburger Strasse 45, 63743, Aschaffenburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hellmann", 
        "givenName": "Ralf", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ijpharm.2011.07.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000902391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actbio.2016.06.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001048152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/mi7120225", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001071660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/advs.201500441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005882262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/elan.201600063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006067984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0278-6915(98)00114-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007481068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jconrel.2006.10.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013155071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sna.2003.11.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013871314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.addr.2012.04.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018468308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jddst.2015.04.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019100272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jddst.2015.05.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021624660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/s1672-6529(08)60111-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022779900", 
          "https://doi.org/10.1016/s1672-6529(08)60111-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/s1672-6529(08)60111-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022779900", 
          "https://doi.org/10.1016/s1672-6529(08)60111-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sna.2010.02.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026827748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbiomech.2003.12.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039507975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01694243.2012.705101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041472976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/elan.201500199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041700615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mser.2016.03.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042477884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biomaterials.2011.05.061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045323104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actbio.2014.05.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047970432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1166/jnn.2010.2636", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048889910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/lpor.201600079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049196974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00542-006-0204-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049231650", 
          "https://doi.org/10.1007/s00542-006-0204-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00542-006-0204-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049231650", 
          "https://doi.org/10.1007/s00542-006-0204-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actbio.2013.06.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049476877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actbio.2006.01.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049516303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sna.2003.12.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049660792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijpharm.2015.04.076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050532538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejps.2008.06.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050591281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jmems.2007.907461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061290457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josab.27.000107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065173010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.19.005602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065196148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.21.017028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065204395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.21.026244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065205456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jconrel.2017.02.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083848942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jconrel.2017.02.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083848942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jconrel.2017.02.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083848942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.25.018442", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090862265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/1.oe.56.9.094108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091771106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/micronano.2017.34", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092181245", 
          "https://doi.org/10.1038/micronano.2017.34"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.snb.2017.10.059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092197367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.25.026280", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092219942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.drudis.2017.10.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092325455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jconrel.2017.11.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092958047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijbiomac.2017.12.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099616783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.optlastec.2018.05.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104013495"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Microneedle-based microfluidic systems have a great potential to become well-accepted medical devices for simple, accurate, and painless drug delivery and lab-on-a-chip diagnostics. In this work, we report on a novel hybrid approach combining femtosecond direct laser written microneedles with femtosecond laser generated microfluidic channels providing an important step towards versatile medical point-of-care systems. Hollow microneedle arrays are fabricated by a laser system designed for two-photon polymerization applications. Compression tests of two different types of truncated cone-shaped microneedle arrays prepared from OrmoComp\u00ae give information about the microneedle mechanical strength, and the results are compared to skin insertion forces. Three-dimensional microchannels are directly created inside PMMA bulk material by an ultrashort pulse laser system with vertical channels having adjustable cross-sectional areas, which allow attaching of microneedles to the microfluidic system. A comprehensive parameter study varying pulse duration and repetition rate is performed on two-photon polymerization to identify an optimal laser power range for fabricating microneedles using the same pulse duration and repetition rate as for microchannels. This addresses the advantage of a single laser system process that overcomes complex fabrication methods. A proof of concept flow test with a rhodamine B dye solution in distilled water demonstrates that the combination of microneedles and microchannels qualifies for microfluidic injection and extraction applications. Using laser light to manufacture microchannels and microneedles offers a way to greatly simplify and reduce the costs of creating these structures for drug delivery and diagnostic sampling of body fluids. Microneedle arrays and microfluidic channels are increasingly used in patches and \u2018lab-on-chip\u2019 devices that can be attached to a patient\u2019s skin. Connecting the needles and channels allows control over the preparation, delivery, collection and analysis of fluid mixtures. Researchers in Germany, led by Ralf Hellmann at the University of Applied Sciences in Aschaffenburg, use very short pulses of laser light to fabricate suitable microchannels and microneedles from polymers. Their procedure overcomes significant complexities and limitations of current methods. The researchers demonstrate the potential of their technique using test solutions. It is now ready to be developed for real treatment and diagnosis options.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41378-019-0046-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1284420", 
        "issn": [
          "2096-1030", 
          "2055-7434"
        ], 
        "name": "Microsystems & Nanoengineering", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "Towards a versatile point-of-care system combining femtosecond laser generated microfluidic channels and direct laser written microneedle arrays", 
    "pagination": "6", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "45f1cb01d43175517e3b68212b44f36d4e0fcd2de54b6357d36bf348d4a83539"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41378-019-0046-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112363675"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41378-019-0046-5", 
      "https://app.dimensions.ai/details/publication/pub.1112363675"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99829_00000005.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41378-019-0046-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41378-019-0046-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41378-019-0046-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41378-019-0046-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41378-019-0046-5'


 

This table displays all metadata directly associated to this object as RDF triples.

221 TRIPLES      21 PREDICATES      69 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41378-019-0046-5 schema:about anzsrc-for:09
2 anzsrc-for:0903
3 schema:author Nebf094b73c444dad87acc1746ec53936
4 schema:citation sg:pub.10.1007/s00542-006-0204-1
5 sg:pub.10.1016/s1672-6529(08)60111-0
6 sg:pub.10.1038/micronano.2017.34
7 https://doi.org/10.1002/advs.201500441
8 https://doi.org/10.1002/elan.201500199
9 https://doi.org/10.1002/elan.201600063
10 https://doi.org/10.1002/lpor.201600079
11 https://doi.org/10.1016/j.actbio.2006.01.004
12 https://doi.org/10.1016/j.actbio.2013.06.029
13 https://doi.org/10.1016/j.actbio.2014.05.032
14 https://doi.org/10.1016/j.actbio.2016.06.005
15 https://doi.org/10.1016/j.addr.2012.04.005
16 https://doi.org/10.1016/j.biomaterials.2011.05.061
17 https://doi.org/10.1016/j.drudis.2017.10.013
18 https://doi.org/10.1016/j.ejps.2008.06.016
19 https://doi.org/10.1016/j.ijbiomac.2017.12.027
20 https://doi.org/10.1016/j.ijpharm.2011.07.002
21 https://doi.org/10.1016/j.ijpharm.2015.04.076
22 https://doi.org/10.1016/j.jbiomech.2003.12.010
23 https://doi.org/10.1016/j.jconrel.2006.10.017
24 https://doi.org/10.1016/j.jconrel.2017.02.011
25 https://doi.org/10.1016/j.jconrel.2017.11.035
26 https://doi.org/10.1016/j.jddst.2015.04.008
27 https://doi.org/10.1016/j.jddst.2015.05.001
28 https://doi.org/10.1016/j.mser.2016.03.001
29 https://doi.org/10.1016/j.optlastec.2018.05.008
30 https://doi.org/10.1016/j.sna.2003.11.008
31 https://doi.org/10.1016/j.sna.2003.12.029
32 https://doi.org/10.1016/j.sna.2010.02.010
33 https://doi.org/10.1016/j.snb.2017.10.059
34 https://doi.org/10.1016/s0278-6915(98)00114-8
35 https://doi.org/10.1080/01694243.2012.705101
36 https://doi.org/10.1109/jmems.2007.907461
37 https://doi.org/10.1117/1.oe.56.9.094108
38 https://doi.org/10.1166/jnn.2010.2636
39 https://doi.org/10.1364/josab.27.000107
40 https://doi.org/10.1364/oe.19.005602
41 https://doi.org/10.1364/oe.21.017028
42 https://doi.org/10.1364/oe.21.026244
43 https://doi.org/10.1364/oe.25.018442
44 https://doi.org/10.1364/oe.25.026280
45 https://doi.org/10.3390/mi7120225
46 schema:datePublished 2019-12
47 schema:datePublishedReg 2019-12-01
48 schema:description Microneedle-based microfluidic systems have a great potential to become well-accepted medical devices for simple, accurate, and painless drug delivery and lab-on-a-chip diagnostics. In this work, we report on a novel hybrid approach combining femtosecond direct laser written microneedles with femtosecond laser generated microfluidic channels providing an important step towards versatile medical point-of-care systems. Hollow microneedle arrays are fabricated by a laser system designed for two-photon polymerization applications. Compression tests of two different types of truncated cone-shaped microneedle arrays prepared from OrmoComp® give information about the microneedle mechanical strength, and the results are compared to skin insertion forces. Three-dimensional microchannels are directly created inside PMMA bulk material by an ultrashort pulse laser system with vertical channels having adjustable cross-sectional areas, which allow attaching of microneedles to the microfluidic system. A comprehensive parameter study varying pulse duration and repetition rate is performed on two-photon polymerization to identify an optimal laser power range for fabricating microneedles using the same pulse duration and repetition rate as for microchannels. This addresses the advantage of a single laser system process that overcomes complex fabrication methods. A proof of concept flow test with a rhodamine B dye solution in distilled water demonstrates that the combination of microneedles and microchannels qualifies for microfluidic injection and extraction applications. Using laser light to manufacture microchannels and microneedles offers a way to greatly simplify and reduce the costs of creating these structures for drug delivery and diagnostic sampling of body fluids. Microneedle arrays and microfluidic channels are increasingly used in patches and ‘lab-on-chip’ devices that can be attached to a patient’s skin. Connecting the needles and channels allows control over the preparation, delivery, collection and analysis of fluid mixtures. Researchers in Germany, led by Ralf Hellmann at the University of Applied Sciences in Aschaffenburg, use very short pulses of laser light to fabricate suitable microchannels and microneedles from polymers. Their procedure overcomes significant complexities and limitations of current methods. The researchers demonstrate the potential of their technique using test solutions. It is now ready to be developed for real treatment and diagnosis options.
49 schema:genre research_article
50 schema:inLanguage en
51 schema:isAccessibleForFree false
52 schema:isPartOf N2f1c90adfe4e4776aa6d32ad26549023
53 N752213076de9410ea983464cbcd59eb8
54 sg:journal.1284420
55 schema:name Towards a versatile point-of-care system combining femtosecond laser generated microfluidic channels and direct laser written microneedle arrays
56 schema:pagination 6
57 schema:productId N15b97dbdaabe47c79dcafeab06f6d7a6
58 N9ef9269953ca4906a062026728fc91d6
59 N9f0c9ebb956f410ea0a4407ba8dd90b1
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112363675
61 https://doi.org/10.1038/s41378-019-0046-5
62 schema:sdDatePublished 2019-04-11T09:37
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher N661d089ea815412fa3a2250b4b8d4c60
65 schema:url https://www.nature.com/articles/s41378-019-0046-5
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N00fd1d7b27ee4f11a9490becc6db9b80 schema:affiliation N975776d524d7413d87840d504aa3c347
70 schema:familyName Trautmann
71 schema:givenName Anika
72 rdf:type schema:Person
73 N157de57188fa44f4b0194ebfc71362d1 rdf:first N5e4c12ffda7049c2b87634ec8d66bef3
74 rdf:rest rdf:nil
75 N15b97dbdaabe47c79dcafeab06f6d7a6 schema:name doi
76 schema:value 10.1038/s41378-019-0046-5
77 rdf:type schema:PropertyValue
78 N2f1c90adfe4e4776aa6d32ad26549023 schema:volumeNumber 5
79 rdf:type schema:PublicationVolume
80 N377ee3f7d1974ccba73ccdb8d34341a9 schema:affiliation https://www.grid.ac/institutes/grid.6546.1
81 schema:familyName Walther
82 schema:givenName Thomas
83 rdf:type schema:Person
84 N4071212f72bf4d16ba4de2c85ddea019 schema:affiliation N8856b7de349a472bb144e35cb984078c
85 schema:familyName Nujiqi
86 schema:givenName Benedikt
87 rdf:type schema:Person
88 N52f349e16cd54482816ca061c35867ee schema:name Applied Laser and Photonics Group, University of Applied Sciences Aschaffenburg, Wuerzburger Strasse 45, 63743, Aschaffenburg, Germany
89 rdf:type schema:Organization
90 N5e4c12ffda7049c2b87634ec8d66bef3 schema:affiliation Nb57dfbbdcbcd4874b948efac39cd165d
91 schema:familyName Hellmann
92 schema:givenName Ralf
93 rdf:type schema:Person
94 N661d089ea815412fa3a2250b4b8d4c60 schema:name Springer Nature - SN SciGraph project
95 rdf:type schema:Organization
96 N752213076de9410ea983464cbcd59eb8 schema:issueNumber 1
97 rdf:type schema:PublicationIssue
98 N8856b7de349a472bb144e35cb984078c schema:name Applied Laser and Photonics Group, University of Applied Sciences Aschaffenburg, Wuerzburger Strasse 45, 63743, Aschaffenburg, Germany
99 rdf:type schema:Organization
100 N975776d524d7413d87840d504aa3c347 schema:name Applied Laser and Photonics Group, University of Applied Sciences Aschaffenburg, Wuerzburger Strasse 45, 63743, Aschaffenburg, Germany
101 rdf:type schema:Organization
102 N9ef9269953ca4906a062026728fc91d6 schema:name readcube_id
103 schema:value 45f1cb01d43175517e3b68212b44f36d4e0fcd2de54b6357d36bf348d4a83539
104 rdf:type schema:PropertyValue
105 N9f0c9ebb956f410ea0a4407ba8dd90b1 schema:name dimensions_id
106 schema:value pub.1112363675
107 rdf:type schema:PropertyValue
108 Nb57dfbbdcbcd4874b948efac39cd165d schema:name Applied Laser and Photonics Group, University of Applied Sciences Aschaffenburg, Wuerzburger Strasse 45, 63743, Aschaffenburg, Germany
109 rdf:type schema:Organization
110 Nceafdba07a194321bf18e41b5c5bb373 rdf:first Ne0f79139a3e54598a3fc70ef64a1d3ca
111 rdf:rest Ndf3b824d6ad641dc82a0a28ced2814af
112 Nd42c4f7659f449d2a7fd2156602eec74 rdf:first N377ee3f7d1974ccba73ccdb8d34341a9
113 rdf:rest N157de57188fa44f4b0194ebfc71362d1
114 Ndf3b824d6ad641dc82a0a28ced2814af rdf:first N4071212f72bf4d16ba4de2c85ddea019
115 rdf:rest Nd42c4f7659f449d2a7fd2156602eec74
116 Ne0f79139a3e54598a3fc70ef64a1d3ca schema:affiliation N52f349e16cd54482816ca061c35867ee
117 schema:familyName Roth
118 schema:givenName Gian-Luca
119 rdf:type schema:Person
120 Nebf094b73c444dad87acc1746ec53936 rdf:first N00fd1d7b27ee4f11a9490becc6db9b80
121 rdf:rest Nceafdba07a194321bf18e41b5c5bb373
122 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
123 schema:name Engineering
124 rdf:type schema:DefinedTerm
125 anzsrc-for:0903 schema:inDefinedTermSet anzsrc-for:
126 schema:name Biomedical Engineering
127 rdf:type schema:DefinedTerm
128 sg:journal.1284420 schema:issn 2055-7434
129 2096-1030
130 schema:name Microsystems & Nanoengineering
131 rdf:type schema:Periodical
132 sg:pub.10.1007/s00542-006-0204-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049231650
133 https://doi.org/10.1007/s00542-006-0204-1
134 rdf:type schema:CreativeWork
135 sg:pub.10.1016/s1672-6529(08)60111-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022779900
136 https://doi.org/10.1016/s1672-6529(08)60111-0
137 rdf:type schema:CreativeWork
138 sg:pub.10.1038/micronano.2017.34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092181245
139 https://doi.org/10.1038/micronano.2017.34
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1002/advs.201500441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005882262
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1002/elan.201500199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041700615
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1002/elan.201600063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006067984
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1002/lpor.201600079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049196974
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.actbio.2006.01.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049516303
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.actbio.2013.06.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049476877
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.actbio.2014.05.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047970432
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.actbio.2016.06.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001048152
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.addr.2012.04.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018468308
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.biomaterials.2011.05.061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045323104
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.drudis.2017.10.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092325455
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.ejps.2008.06.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050591281
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.ijbiomac.2017.12.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099616783
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.ijpharm.2011.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000902391
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.ijpharm.2015.04.076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050532538
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.jbiomech.2003.12.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039507975
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.jconrel.2006.10.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013155071
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.jconrel.2017.02.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083848942
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.jconrel.2017.11.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092958047
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.jddst.2015.04.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019100272
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.jddst.2015.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021624660
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.mser.2016.03.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042477884
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.optlastec.2018.05.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104013495
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.sna.2003.11.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013871314
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.sna.2003.12.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049660792
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/j.sna.2010.02.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026827748
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/j.snb.2017.10.059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092197367
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/s0278-6915(98)00114-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007481068
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1080/01694243.2012.705101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041472976
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1109/jmems.2007.907461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061290457
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1117/1.oe.56.9.094108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091771106
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1166/jnn.2010.2636 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048889910
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1364/josab.27.000107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065173010
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1364/oe.19.005602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065196148
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1364/oe.21.017028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065204395
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1364/oe.21.026244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065205456
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1364/oe.25.018442 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090862265
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1364/oe.25.026280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092219942
216 rdf:type schema:CreativeWork
217 https://doi.org/10.3390/mi7120225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001071660
218 rdf:type schema:CreativeWork
219 https://www.grid.ac/institutes/grid.6546.1 schema:alternateName Technical University of Darmstadt
220 schema:name Institute of Applied Physics, Technische Universität Darmstadt, Schlossgartenstrasse 7, 64289, Darmstadt, Germany
221 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...