A full vectorial mapping of nanophotonic light fields View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12

AUTHORS

B. le Feber, J. E. Sipe, M. Wulf, L. Kuipers, N. Rotenberg

ABSTRACT

Light is a union of electric and magnetic fields, and nowhere is the complex relationship between these fields more evident than in the near fields of nanophotonic structures. There, complicated electric and magnetic fields varying over subwavelength scales are generally present, which results in photonic phenomena such as extraordinary optical momentum, superchiral fields, and a complex spatial evolution of optical singularities. An understanding of such phenomena requires nanoscale measurements of the complete optical field vector. Although the sensitivity of near-field scanning optical microscopy to the complete electromagnetic field was recently demonstrated, a separation of different components required a priori knowledge of the sample. Here, we introduce a robust algorithm that can disentangle all six electric and magnetic field components from a single near-field measurement without any numerical modeling of the structure. As examples, we unravel the fields of two prototypical nanophotonic structures: a photonic crystal waveguide and a plasmonic nanowire. These results pave the way for new studies of complex photonic phenomena at the nanoscale and for the design of structures that optimize their optical behavior. More... »

PAGES

28

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41377-019-0124-3

DOI

http://dx.doi.org/10.1038/s41377-019-0124-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112573983

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30854200


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Optical Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "AMOLF", 
          "id": "https://www.grid.ac/institutes/grid.417889.b", 
          "name": [
            "Optical Materials Engineering Laboratory, ETH Z\u00fcrich, 8092, Zurich, Switzerland", 
            "Center for Nanophotonics, AMOLF, Science Park 104, 1098 XG, Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "le Feber", 
        "givenName": "B.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Toronto", 
          "id": "https://www.grid.ac/institutes/grid.17063.33", 
          "name": [
            "Institute for Optical Sciences, University of Toronto, 60 St. George Street, M5S 1A7, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sipe", 
        "givenName": "J. E.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Science and Technology Austria", 
          "id": "https://www.grid.ac/institutes/grid.33565.36", 
          "name": [
            "Center for Nanophotonics, AMOLF, Science Park 104, 1098 XG, Amsterdam, The Netherlands", 
            "Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wulf", 
        "givenName": "M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Delft University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.5292.c", 
          "name": [
            "Center for Nanophotonics, AMOLF, Science Park 104, 1098 XG, Amsterdam, The Netherlands", 
            "Kavli Institute of Nanoscience, Department of Quantum Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ, Delft, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kuipers", 
        "givenName": "L.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Copenhagen", 
          "id": "https://www.grid.ac/institutes/grid.5254.6", 
          "name": [
            "Center for Nanophotonics, AMOLF, Science Park 104, 1098 XG, Amsterdam, The Netherlands", 
            "Niels Bohr Institute and Center for Hybrid Quantum Networks, University of Copenhagen, Blegdamsvej 17, DK-2100, Copenhagen, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rotenberg", 
        "givenName": "N.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.105.167403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000819101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.167403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000819101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1232009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001299260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep09606", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003222583", 
          "https://doi.org/10.1038/srep09606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms2167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005266489", 
          "https://doi.org/10.1038/ncomms2167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.076101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012006159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.076101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012006159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2013.323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014561446", 
          "https://doi.org/10.1038/nphoton.2013.323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2013.289", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015470259", 
          "https://doi.org/10.1038/nphoton.2013.289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aaa9519", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018493732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.127402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020087670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.127402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020087670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2015.201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027063897", 
          "https://doi.org/10.1038/nphoton.2015.201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0079-6816(98)00004-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027221393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.213902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027595986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.213902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027595986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms4300", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028277523", 
          "https://doi.org/10.1038/ncomms4300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2818.1999.00520.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033470935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aaf8589", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036481496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.79.1267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039009392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.79.1267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039009392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl801396r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041248762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl801396r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041248762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.83.021803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042534609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.83.021803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042534609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1261243", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044065545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2630", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045886981", 
          "https://doi.org/10.1038/nmat2630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2630", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045886981", 
          "https://doi.org/10.1038/nmat2630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms4402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046409067", 
          "https://doi.org/10.1038/ncomms4402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep22665", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047856508", 
          "https://doi.org/10.1038/srep22665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.24.004128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052199575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.163901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052250269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.163901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052250269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn305589t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056224981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn402736f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056225382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.023902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060754637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.023902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060754637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.123901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060757445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.123901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060757445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.123902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060757446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.123902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060757446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1094025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062449327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1177096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062460403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.262.5138.1422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062547321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josaa.13.000035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065157812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.18.005809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065192953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/optica.2.000540", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065247964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature21037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074206893", 
          "https://doi.org/10.1038/nature21037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41377-018-0018-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104915581", 
          "https://doi.org/10.1038/s41377-018-0018-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41377-018-0018-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104915581", 
          "https://doi.org/10.1038/s41377-018-0018-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41377-018-0018-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104915581", 
          "https://doi.org/10.1038/s41377-018-0018-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41377-018-0018-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104915581", 
          "https://doi.org/10.1038/s41377-018-0018-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Light is a union of electric and magnetic fields, and nowhere is the complex relationship between these fields more evident than in the near fields of nanophotonic structures. There, complicated electric and magnetic fields varying over subwavelength scales are generally present, which results in photonic phenomena such as extraordinary optical momentum, superchiral fields, and a complex spatial evolution of optical singularities. An understanding of such phenomena requires nanoscale measurements of the complete optical field vector. Although the sensitivity of near-field scanning optical microscopy to the complete electromagnetic field was recently demonstrated, a separation of different components required a priori knowledge of the sample. Here, we introduce a robust algorithm that can disentangle all six electric and magnetic field components from a single near-field measurement without any numerical modeling of the structure. As examples, we unravel the fields of two prototypical nanophotonic structures: a photonic crystal waveguide and a plasmonic nanowire. These results pave the way for new studies of complex photonic phenomena at the nanoscale and for the design of structures that optimize their optical behavior.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41377-019-0124-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3795773", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1048610", 
        "issn": [
          "2095-5545", 
          "2047-7538"
        ], 
        "name": "Light: Science & Applications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "A full vectorial mapping of nanophotonic light fields", 
    "pagination": "28", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "684f5a2433be31211cb6d6ebb9a5395dd1d2c73299cca89f3ce1a0765d110b87"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30854200"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101610753"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41377-019-0124-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112573983"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41377-019-0124-3", 
      "https://app.dimensions.ai/details/publication/pub.1112573983"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78947_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41377-019-0124-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41377-019-0124-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41377-019-0124-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41377-019-0124-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41377-019-0124-3'


 

This table displays all metadata directly associated to this object as RDF triples.

232 TRIPLES      21 PREDICATES      66 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41377-019-0124-3 schema:about anzsrc-for:02
2 anzsrc-for:0205
3 schema:author Nc994a3a15a3b4a4aa6ee8a2ee4eb3ce2
4 schema:citation sg:pub.10.1038/nature21037
5 sg:pub.10.1038/ncomms2167
6 sg:pub.10.1038/ncomms4300
7 sg:pub.10.1038/ncomms4402
8 sg:pub.10.1038/nmat2630
9 sg:pub.10.1038/nphoton.2013.289
10 sg:pub.10.1038/nphoton.2013.323
11 sg:pub.10.1038/nphoton.2015.201
12 sg:pub.10.1038/s41377-018-0018-9
13 sg:pub.10.1038/srep09606
14 sg:pub.10.1038/srep22665
15 https://doi.org/10.1016/s0079-6816(98)00004-5
16 https://doi.org/10.1021/nl801396r
17 https://doi.org/10.1021/nn305589t
18 https://doi.org/10.1021/nn402736f
19 https://doi.org/10.1046/j.1365-2818.1999.00520.x
20 https://doi.org/10.1103/physreva.83.021803
21 https://doi.org/10.1103/physrevlett.102.023902
22 https://doi.org/10.1103/physrevlett.103.213902
23 https://doi.org/10.1103/physrevlett.104.163901
24 https://doi.org/10.1103/physrevlett.105.123901
25 https://doi.org/10.1103/physrevlett.105.123902
26 https://doi.org/10.1103/physrevlett.105.167403
27 https://doi.org/10.1103/physrevlett.108.127402
28 https://doi.org/10.1103/physrevlett.113.076101
29 https://doi.org/10.1103/revmodphys.79.1267
30 https://doi.org/10.1126/science.1094025
31 https://doi.org/10.1126/science.1177096
32 https://doi.org/10.1126/science.1232009
33 https://doi.org/10.1126/science.1261243
34 https://doi.org/10.1126/science.262.5138.1422
35 https://doi.org/10.1126/science.aaa9519
36 https://doi.org/10.1126/science.aaf8589
37 https://doi.org/10.1364/josaa.13.000035
38 https://doi.org/10.1364/oe.18.005809
39 https://doi.org/10.1364/oe.24.004128
40 https://doi.org/10.1364/optica.2.000540
41 schema:datePublished 2019-12
42 schema:datePublishedReg 2019-12-01
43 schema:description Light is a union of electric and magnetic fields, and nowhere is the complex relationship between these fields more evident than in the near fields of nanophotonic structures. There, complicated electric and magnetic fields varying over subwavelength scales are generally present, which results in photonic phenomena such as extraordinary optical momentum, superchiral fields, and a complex spatial evolution of optical singularities. An understanding of such phenomena requires nanoscale measurements of the complete optical field vector. Although the sensitivity of near-field scanning optical microscopy to the complete electromagnetic field was recently demonstrated, a separation of different components required a priori knowledge of the sample. Here, we introduce a robust algorithm that can disentangle all six electric and magnetic field components from a single near-field measurement without any numerical modeling of the structure. As examples, we unravel the fields of two prototypical nanophotonic structures: a photonic crystal waveguide and a plasmonic nanowire. These results pave the way for new studies of complex photonic phenomena at the nanoscale and for the design of structures that optimize their optical behavior.
44 schema:genre research_article
45 schema:inLanguage en
46 schema:isAccessibleForFree false
47 schema:isPartOf N4506a847000843e89e763eb3de9a64a6
48 N805a272d4e904fbab1536607c73778fc
49 sg:journal.1048610
50 schema:name A full vectorial mapping of nanophotonic light fields
51 schema:pagination 28
52 schema:productId N86a998a6eaf847e1bc89d5ec956b7694
53 Na876b3290bb24cb4a47bb3aed1584070
54 Nd87488b4061342649db56fae780c0a7b
55 Nd9e15cd68af44a9da97afbf8165b0622
56 Ne73dd284f9774f21b13449e42cc08eb4
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112573983
58 https://doi.org/10.1038/s41377-019-0124-3
59 schema:sdDatePublished 2019-04-11T13:18
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher N0c67eab010534cab97f0808c83980134
62 schema:url https://www.nature.com/articles/s41377-019-0124-3
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N0c67eab010534cab97f0808c83980134 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 N10b510b935e54b64a51d0975e834ab4a schema:affiliation https://www.grid.ac/institutes/grid.5254.6
69 schema:familyName Rotenberg
70 schema:givenName N.
71 rdf:type schema:Person
72 N18402415539a4de4ae91065930df29c7 schema:affiliation https://www.grid.ac/institutes/grid.17063.33
73 schema:familyName Sipe
74 schema:givenName J. E.
75 rdf:type schema:Person
76 N259b44a509804351a50eddbc9e92aeb6 rdf:first N10b510b935e54b64a51d0975e834ab4a
77 rdf:rest rdf:nil
78 N4506a847000843e89e763eb3de9a64a6 schema:issueNumber 1
79 rdf:type schema:PublicationIssue
80 N670fc07c643a46639d3c94dc876938f9 rdf:first Ndbba703477ba49bfa0d81cd013602396
81 rdf:rest N259b44a509804351a50eddbc9e92aeb6
82 N7e8ead92c2ca4786b5746de3d78af691 schema:affiliation https://www.grid.ac/institutes/grid.33565.36
83 schema:familyName Wulf
84 schema:givenName M.
85 rdf:type schema:Person
86 N805a272d4e904fbab1536607c73778fc schema:volumeNumber 8
87 rdf:type schema:PublicationVolume
88 N86a998a6eaf847e1bc89d5ec956b7694 schema:name doi
89 schema:value 10.1038/s41377-019-0124-3
90 rdf:type schema:PropertyValue
91 N9cff6c1d5275484e8e9e0a3a9774f779 schema:affiliation https://www.grid.ac/institutes/grid.417889.b
92 schema:familyName le Feber
93 schema:givenName B.
94 rdf:type schema:Person
95 Na6ae269417ea44a396ce8a3e64ca19c6 rdf:first N18402415539a4de4ae91065930df29c7
96 rdf:rest Nbd27c8a84e4e4371a94b105c282ea6a6
97 Na876b3290bb24cb4a47bb3aed1584070 schema:name nlm_unique_id
98 schema:value 101610753
99 rdf:type schema:PropertyValue
100 Nbd27c8a84e4e4371a94b105c282ea6a6 rdf:first N7e8ead92c2ca4786b5746de3d78af691
101 rdf:rest N670fc07c643a46639d3c94dc876938f9
102 Nc994a3a15a3b4a4aa6ee8a2ee4eb3ce2 rdf:first N9cff6c1d5275484e8e9e0a3a9774f779
103 rdf:rest Na6ae269417ea44a396ce8a3e64ca19c6
104 Nd87488b4061342649db56fae780c0a7b schema:name readcube_id
105 schema:value 684f5a2433be31211cb6d6ebb9a5395dd1d2c73299cca89f3ce1a0765d110b87
106 rdf:type schema:PropertyValue
107 Nd9e15cd68af44a9da97afbf8165b0622 schema:name dimensions_id
108 schema:value pub.1112573983
109 rdf:type schema:PropertyValue
110 Ndbba703477ba49bfa0d81cd013602396 schema:affiliation https://www.grid.ac/institutes/grid.5292.c
111 schema:familyName Kuipers
112 schema:givenName L.
113 rdf:type schema:Person
114 Ne73dd284f9774f21b13449e42cc08eb4 schema:name pubmed_id
115 schema:value 30854200
116 rdf:type schema:PropertyValue
117 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
118 schema:name Physical Sciences
119 rdf:type schema:DefinedTerm
120 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
121 schema:name Optical Physics
122 rdf:type schema:DefinedTerm
123 sg:grant.3795773 http://pending.schema.org/fundedItem sg:pub.10.1038/s41377-019-0124-3
124 rdf:type schema:MonetaryGrant
125 sg:journal.1048610 schema:issn 2047-7538
126 2095-5545
127 schema:name Light: Science & Applications
128 rdf:type schema:Periodical
129 sg:pub.10.1038/nature21037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074206893
130 https://doi.org/10.1038/nature21037
131 rdf:type schema:CreativeWork
132 sg:pub.10.1038/ncomms2167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005266489
133 https://doi.org/10.1038/ncomms2167
134 rdf:type schema:CreativeWork
135 sg:pub.10.1038/ncomms4300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028277523
136 https://doi.org/10.1038/ncomms4300
137 rdf:type schema:CreativeWork
138 sg:pub.10.1038/ncomms4402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046409067
139 https://doi.org/10.1038/ncomms4402
140 rdf:type schema:CreativeWork
141 sg:pub.10.1038/nmat2630 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045886981
142 https://doi.org/10.1038/nmat2630
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/nphoton.2013.289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015470259
145 https://doi.org/10.1038/nphoton.2013.289
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/nphoton.2013.323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014561446
148 https://doi.org/10.1038/nphoton.2013.323
149 rdf:type schema:CreativeWork
150 sg:pub.10.1038/nphoton.2015.201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027063897
151 https://doi.org/10.1038/nphoton.2015.201
152 rdf:type schema:CreativeWork
153 sg:pub.10.1038/s41377-018-0018-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104915581
154 https://doi.org/10.1038/s41377-018-0018-9
155 rdf:type schema:CreativeWork
156 sg:pub.10.1038/srep09606 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003222583
157 https://doi.org/10.1038/srep09606
158 rdf:type schema:CreativeWork
159 sg:pub.10.1038/srep22665 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047856508
160 https://doi.org/10.1038/srep22665
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/s0079-6816(98)00004-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027221393
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1021/nl801396r schema:sameAs https://app.dimensions.ai/details/publication/pub.1041248762
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1021/nn305589t schema:sameAs https://app.dimensions.ai/details/publication/pub.1056224981
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1021/nn402736f schema:sameAs https://app.dimensions.ai/details/publication/pub.1056225382
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1046/j.1365-2818.1999.00520.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1033470935
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1103/physreva.83.021803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042534609
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1103/physrevlett.102.023902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060754637
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1103/physrevlett.103.213902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027595986
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1103/physrevlett.104.163901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052250269
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1103/physrevlett.105.123901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060757445
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1103/physrevlett.105.123902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060757446
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1103/physrevlett.105.167403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000819101
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1103/physrevlett.108.127402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020087670
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1103/physrevlett.113.076101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012006159
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1103/revmodphys.79.1267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039009392
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1126/science.1094025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062449327
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1126/science.1177096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062460403
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1126/science.1232009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001299260
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1126/science.1261243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044065545
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1126/science.262.5138.1422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062547321
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1126/science.aaa9519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018493732
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1126/science.aaf8589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036481496
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1364/josaa.13.000035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065157812
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1364/oe.18.005809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065192953
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1364/oe.24.004128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052199575
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1364/optica.2.000540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065247964
213 rdf:type schema:CreativeWork
214 https://www.grid.ac/institutes/grid.17063.33 schema:alternateName University of Toronto
215 schema:name Institute for Optical Sciences, University of Toronto, 60 St. George Street, M5S 1A7, Ontario, Canada
216 rdf:type schema:Organization
217 https://www.grid.ac/institutes/grid.33565.36 schema:alternateName Institute of Science and Technology Austria
218 schema:name Center for Nanophotonics, AMOLF, Science Park 104, 1098 XG, Amsterdam, The Netherlands
219 Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria
220 rdf:type schema:Organization
221 https://www.grid.ac/institutes/grid.417889.b schema:alternateName AMOLF
222 schema:name Center for Nanophotonics, AMOLF, Science Park 104, 1098 XG, Amsterdam, The Netherlands
223 Optical Materials Engineering Laboratory, ETH Zürich, 8092, Zurich, Switzerland
224 rdf:type schema:Organization
225 https://www.grid.ac/institutes/grid.5254.6 schema:alternateName University of Copenhagen
226 schema:name Center for Nanophotonics, AMOLF, Science Park 104, 1098 XG, Amsterdam, The Netherlands
227 Niels Bohr Institute and Center for Hybrid Quantum Networks, University of Copenhagen, Blegdamsvej 17, DK-2100, Copenhagen, Denmark
228 rdf:type schema:Organization
229 https://www.grid.ac/institutes/grid.5292.c schema:alternateName Delft University of Technology
230 schema:name Center for Nanophotonics, AMOLF, Science Park 104, 1098 XG, Amsterdam, The Netherlands
231 Kavli Institute of Nanoscience, Department of Quantum Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ, Delft, The Netherlands
232 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...