Diagnostic algorithm for lower-risk myelodysplastic syndromes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-06-26

AUTHORS

Ghulam J. Mufti, Donal P. McLornan, Arjan A. van de Loosdrecht, Ulrich Germing, Robert P. Hasserjian

ABSTRACT

Rapid advances over the past decade have uncovered the heterogeneous genomic and immunologic landscape of myelodysplastic syndromes (MDS). This has led to notable improvements in the accuracy and timing of diagnosis and prognostication of MDS, as well as the identification of possible novel targets for therapeutic intervention. For the practicing clinician, however, this increase in genomic, epigenomic, and immunologic knowledge needs consideration in a “real-world” context to aid diagnostic specificity. Although the 2016 revision to the World Health Organization classification for MDS is comprehensive and timely, certain limitations still exist for day-to-day clinical practice. In this review, we describe an up-to-date diagnostic approach to patients with suspected lower-risk MDS, including hypoplastic MDS, and demonstrate the requirement for an “integrated” diagnostic approach. Moreover, in the era of rapid access to massive parallel sequencing platforms for mutational screening, we suggest which patients should undergo such analyses, when such screening should be performed, and how those data should be interpreted. This is particularly relevant given the recent findings describing age-related clonal hematopoiesis. More... »

PAGES

1679-1696

References to SciGraph publications

  • 2017-05-20. Cytomorphology review of 100 newly diagnosed lower-risk MDS patients in the European LeukemiaNet MDS (EUMDS) registry reveals a high inter-observer concordance in ANNALS OF HEMATOLOGY
  • 2016-05-16. SAMD9 mutations cause a novel multisystem disorder, MIRAGE syndrome, and are associated with loss of chromosome 7 in NATURE GENETICS
  • 2016-11-11. The genetics of myelodysplastic syndrome: from clonal haematopoiesis to secondary leukaemia in NATURE REVIEWS CANCER
  • 2012-02-06. Standardization of flow cytometry in myelodysplastic syndromes: a report from an international consortium and the European LeukemiaNet Working Group in LEUKEMIA
  • 2014-01-17. Dynamics of ASXL1 mutation and other associated genetic alterations during disease progression in patients with primary myelodysplastic syndrome in BLOOD CANCER JOURNAL
  • 2011-03-18. Recurrent DNMT3A mutations in patients with myelodysplastic syndromes in LEUKEMIA
  • 2011-01-28. Comprehensive array CGH of normal karyotype myelodysplastic syndromes reveals hidden recurrent and individual genomic copy number alterations with prognostic relevance in LEUKEMIA
  • 2017-05-10. Germline SAMD9 mutation in siblings with monosomy 7 and myelodysplastic syndrome in LEUKEMIA
  • 2014-05-20. Minimal morphological criteria for defining bone marrow dysplasia: a basis for clinical implementation of WHO classification of myelodysplastic syndromes in LEUKEMIA
  • 2011-09-04. Heritable GATA2 mutations associated with familial myelodysplastic syndrome and acute myeloid leukemia in NATURE GENETICS
  • 2015-07-31. IDH1 and IDH2 mutations in myelodysplastic syndromes and role in disease progression in LEUKEMIA
  • 2011-09-11. Frequent pathway mutations of splicing machinery in myelodysplasia in NATURE
  • 2011-02-26. Paroxysmal nocturnal hemoglobinuria (PNH): higher sensitivity and validity in diagnosis and serial monitoring by flow cytometric analysis of reticulocytes in ANNALS OF HEMATOLOGY
  • 2014-06-12. Revisiting guidelines for integration of flow cytometry results in the WHO classification of myelodysplastic syndromes—proposal from the International/European LeukemiaNet Working Group for Flow Cytometry in MDS in LEUKEMIA
  • 2014-04-15. Impaired hematopoietic differentiation of RUNX1-mutated induced pluripotent stem cells derived from FPD/AML patients in LEUKEMIA
  • 2013-11-13. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes in LEUKEMIA
  • 2012-08-09. Simultaneous analysis of the expression of 14 genes with individual prognostic value in myelodysplastic syndrome patients at diagnosis: WT1 detection in peripheral blood adversely affects survival in ANNALS OF HEMATOLOGY
  • 2015-10-27. The myelodysplastic syndromes flow cytometric score: a three-parameter prognostic flow cytometric scoring system in LEUKEMIA
  • 2015-07-01. Myelodysplastic Syndromes Diagnosis: What Is the Role of Molecular Testing? in CURRENT HEMATOLOGIC MALIGNANCY REPORTS
  • 2011-12-11. Recurrent mutations in the U2AF1 splicing factor in myelodysplastic syndromes in NATURE GENETICS
  • 2016-07-15. Acute erythroid leukemia with <20% bone marrow blasts is clinically and biologically similar to myelodysplastic syndrome with excess blasts in MODERN PATHOLOGY
  • 2008-04-15. Cytogenetic features in myelodysplastic syndromes in ANNALS OF HEMATOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41375-018-0173-2

    DOI

    http://dx.doi.org/10.1038/s41375-018-0173-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1105128866

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/29946191


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Algorithms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Early Detection of Cancer", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genomics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Myelodysplastic Syndromes", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "King\u2019s College, London, UK", 
              "id": "http://www.grid.ac/institutes/grid.13097.3c", 
              "name": [
                "King\u2019s College, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mufti", 
            "givenName": "Ghulam J.", 
            "id": "sg:person.01222427147.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222427147.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "King\u2019s College, London, UK", 
              "id": "http://www.grid.ac/institutes/grid.13097.3c", 
              "name": [
                "King\u2019s College, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "McLornan", 
            "givenName": "Donal P.", 
            "id": "sg:person.0706214521.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0706214521.95"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.16872.3a", 
              "name": [
                "VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "van de Loosdrecht", 
            "givenName": "Arjan A.", 
            "id": "sg:person.01030770123.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030770123.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Dept. of Hematology, Oncology, and Clinical Immunology, University Clinic, Heinrich-Heine-University, D\u00fcsseldorf, Germany", 
              "id": "http://www.grid.ac/institutes/grid.411327.2", 
              "name": [
                "Dept. of Hematology, Oncology, and Clinical Immunology, University Clinic, Heinrich-Heine-University, D\u00fcsseldorf, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Germing", 
            "givenName": "Ulrich", 
            "id": "sg:person.01362464041.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362464041.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Massachusetts General Hospital, Boston, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.32224.35", 
              "name": [
                "Massachusetts General Hospital, Boston, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hasserjian", 
            "givenName": "Robert P.", 
            "id": "sg:person.0621176355.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621176355.15"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/leu.2012.30", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041348065", 
              "https://doi.org/10.1038/leu.2012.30"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00277-012-1538-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022534795", 
              "https://doi.org/10.1007/s00277-012-1538-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/leu.2011.44", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023546509", 
              "https://doi.org/10.1038/leu.2011.44"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11899-015-0270-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035032780", 
              "https://doi.org/10.1007/s11899-015-0270-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/leu.2014.191", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036067018", 
              "https://doi.org/10.1038/leu.2014.191"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.1031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007296013", 
              "https://doi.org/10.1038/ng.1031"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/leu.2017.142", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085377016", 
              "https://doi.org/10.1038/leu.2017.142"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/leu.2015.211", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004232544", 
              "https://doi.org/10.1038/leu.2015.211"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3569", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025543534", 
              "https://doi.org/10.1038/ng.3569"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/modpathol.2016.118", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001663578", 
              "https://doi.org/10.1038/modpathol.2016.118"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature10496", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008245757", 
              "https://doi.org/10.1038/nature10496"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/bcj.2013.74", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037436861", 
              "https://doi.org/10.1038/bcj.2013.74"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/leu.2010.293", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019324453", 
              "https://doi.org/10.1038/leu.2010.293"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrc.2016.112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049787455", 
              "https://doi.org/10.1038/nrc.2016.112"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/leu.2015.295", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041120424", 
              "https://doi.org/10.1038/leu.2015.295"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.913", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001065103", 
              "https://doi.org/10.1038/ng.913"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00277-017-3009-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085450095", 
              "https://doi.org/10.1007/s00277-017-3009-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00277-008-0483-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008405810", 
              "https://doi.org/10.1007/s00277-008-0483-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/leu.2014.136", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023297970", 
              "https://doi.org/10.1038/leu.2014.136"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/leu.2013.336", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013726992", 
              "https://doi.org/10.1038/leu.2013.336"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/leu.2014.161", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016368413", 
              "https://doi.org/10.1038/leu.2014.161"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00277-011-1177-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045715649", 
              "https://doi.org/10.1007/s00277-011-1177-4"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-06-26", 
        "datePublishedReg": "2018-06-26", 
        "description": "Rapid advances over the past decade have uncovered the heterogeneous genomic and immunologic landscape of myelodysplastic syndromes (MDS). This has led to notable improvements in the accuracy and timing of diagnosis and prognostication of MDS, as well as the identification of possible novel targets for therapeutic intervention. For the practicing clinician, however, this increase in genomic, epigenomic, and immunologic knowledge needs consideration in a \u201creal-world\u201d context to aid diagnostic specificity. Although the 2016 revision to the World Health Organization classification for MDS is comprehensive and timely, certain limitations still exist for day-to-day clinical practice. In this review, we describe an up-to-date diagnostic approach to patients with suspected lower-risk MDS, including hypoplastic MDS, and demonstrate the requirement for an \u201cintegrated\u201d diagnostic approach. Moreover, in the era of rapid access to massive parallel sequencing platforms for mutational screening, we suggest which patients should undergo such analyses, when such screening should be performed, and how those data should be interpreted. This is particularly relevant given the recent findings describing age-related clonal hematopoiesis.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41375-018-0173-2", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1097065", 
            "issn": [
              "0887-6924", 
              "1476-5551"
            ], 
            "name": "Leukemia", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "8", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "32"
          }
        ], 
        "keywords": [
          "lower-risk myelodysplastic syndromes", 
          "myelodysplastic syndrome", 
          "diagnostic approach", 
          "World Health Organization classification", 
          "hypoplastic myelodysplastic syndrome", 
          "timing of diagnosis", 
          "age-related clonal hematopoiesis", 
          "day clinical practice", 
          "date diagnostic approach", 
          "possible novel target", 
          "immunologic landscape", 
          "immunologic knowledge", 
          "Organization classification", 
          "clinical practice", 
          "therapeutic interventions", 
          "such screening", 
          "novel target", 
          "diagnostic algorithm", 
          "clonal hematopoiesis", 
          "diagnostic specificity", 
          "mutational screening", 
          "patients", 
          "syndrome", 
          "recent findings", 
          "massive parallel sequencing platforms", 
          "screening", 
          "prognostication", 
          "clinicians", 
          "diagnosis", 
          "intervention", 
          "days", 
          "hematopoiesis", 
          "past decade", 
          "review", 
          "specificity", 
          "findings", 
          "notable improvement", 
          "target", 
          "rapid access", 
          "revision", 
          "increase", 
          "timing", 
          "sequencing platforms", 
          "improvement", 
          "parallel sequencing platforms", 
          "certain limitations", 
          "practice", 
          "identification", 
          "access", 
          "data", 
          "classification", 
          "knowledge", 
          "decades", 
          "analysis", 
          "limitations", 
          "approach", 
          "era", 
          "consideration", 
          "such analyses", 
          "context", 
          "accuracy", 
          "requirements", 
          "platform", 
          "landscape", 
          "algorithm"
        ], 
        "name": "Diagnostic algorithm for lower-risk myelodysplastic syndromes", 
        "pagination": "1679-1696", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1105128866"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41375-018-0173-2"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "29946191"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41375-018-0173-2", 
          "https://app.dimensions.ai/details/publication/pub.1105128866"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:44", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_768.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41375-018-0173-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41375-018-0173-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41375-018-0173-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41375-018-0173-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41375-018-0173-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    271 TRIPLES      21 PREDICATES      117 URIs      87 LITERALS      12 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41375-018-0173-2 schema:about N1146b6385a0843659b4d8871b07b8a58
    2 N183f0d75cc7f4f59a83e69425b3955f0
    3 N265128e2e682446abf701a859f0ebc01
    4 N2e50b990a66549b28ffea1b55ea7a84e
    5 Nc427e4c3d051465993dc6eed1db7a07a
    6 anzsrc-for:11
    7 anzsrc-for:1103
    8 schema:author N0c7f6f53bfcd4d258033fc03dc7b0e82
    9 schema:citation sg:pub.10.1007/s00277-008-0483-y
    10 sg:pub.10.1007/s00277-011-1177-4
    11 sg:pub.10.1007/s00277-012-1538-7
    12 sg:pub.10.1007/s00277-017-3009-7
    13 sg:pub.10.1007/s11899-015-0270-5
    14 sg:pub.10.1038/bcj.2013.74
    15 sg:pub.10.1038/leu.2010.293
    16 sg:pub.10.1038/leu.2011.44
    17 sg:pub.10.1038/leu.2012.30
    18 sg:pub.10.1038/leu.2013.336
    19 sg:pub.10.1038/leu.2014.136
    20 sg:pub.10.1038/leu.2014.161
    21 sg:pub.10.1038/leu.2014.191
    22 sg:pub.10.1038/leu.2015.211
    23 sg:pub.10.1038/leu.2015.295
    24 sg:pub.10.1038/leu.2017.142
    25 sg:pub.10.1038/modpathol.2016.118
    26 sg:pub.10.1038/nature10496
    27 sg:pub.10.1038/ng.1031
    28 sg:pub.10.1038/ng.3569
    29 sg:pub.10.1038/ng.913
    30 sg:pub.10.1038/nrc.2016.112
    31 schema:datePublished 2018-06-26
    32 schema:datePublishedReg 2018-06-26
    33 schema:description Rapid advances over the past decade have uncovered the heterogeneous genomic and immunologic landscape of myelodysplastic syndromes (MDS). This has led to notable improvements in the accuracy and timing of diagnosis and prognostication of MDS, as well as the identification of possible novel targets for therapeutic intervention. For the practicing clinician, however, this increase in genomic, epigenomic, and immunologic knowledge needs consideration in a “real-world” context to aid diagnostic specificity. Although the 2016 revision to the World Health Organization classification for MDS is comprehensive and timely, certain limitations still exist for day-to-day clinical practice. In this review, we describe an up-to-date diagnostic approach to patients with suspected lower-risk MDS, including hypoplastic MDS, and demonstrate the requirement for an “integrated” diagnostic approach. Moreover, in the era of rapid access to massive parallel sequencing platforms for mutational screening, we suggest which patients should undergo such analyses, when such screening should be performed, and how those data should be interpreted. This is particularly relevant given the recent findings describing age-related clonal hematopoiesis.
    34 schema:genre article
    35 schema:isAccessibleForFree true
    36 schema:isPartOf N45d13b0b1c374bd29f4d4c8da8fc4e65
    37 Na9dd548b77b449bc99c90f29a446e04c
    38 sg:journal.1097065
    39 schema:keywords Organization classification
    40 World Health Organization classification
    41 access
    42 accuracy
    43 age-related clonal hematopoiesis
    44 algorithm
    45 analysis
    46 approach
    47 certain limitations
    48 classification
    49 clinical practice
    50 clinicians
    51 clonal hematopoiesis
    52 consideration
    53 context
    54 data
    55 date diagnostic approach
    56 day clinical practice
    57 days
    58 decades
    59 diagnosis
    60 diagnostic algorithm
    61 diagnostic approach
    62 diagnostic specificity
    63 era
    64 findings
    65 hematopoiesis
    66 hypoplastic myelodysplastic syndrome
    67 identification
    68 immunologic knowledge
    69 immunologic landscape
    70 improvement
    71 increase
    72 intervention
    73 knowledge
    74 landscape
    75 limitations
    76 lower-risk myelodysplastic syndromes
    77 massive parallel sequencing platforms
    78 mutational screening
    79 myelodysplastic syndrome
    80 notable improvement
    81 novel target
    82 parallel sequencing platforms
    83 past decade
    84 patients
    85 platform
    86 possible novel target
    87 practice
    88 prognostication
    89 rapid access
    90 recent findings
    91 requirements
    92 review
    93 revision
    94 screening
    95 sequencing platforms
    96 specificity
    97 such analyses
    98 such screening
    99 syndrome
    100 target
    101 therapeutic interventions
    102 timing
    103 timing of diagnosis
    104 schema:name Diagnostic algorithm for lower-risk myelodysplastic syndromes
    105 schema:pagination 1679-1696
    106 schema:productId N107b73c81ec5427aaf9efbfd39b9a47c
    107 Nae1991e9dbb245a6a19ef544774e5a26
    108 Nda72d42934f44e0ca5ee2889fa4b7e6c
    109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105128866
    110 https://doi.org/10.1038/s41375-018-0173-2
    111 schema:sdDatePublished 2022-10-01T06:44
    112 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    113 schema:sdPublisher Ncc67a7c4e9ff48d9a5672605c712cbc2
    114 schema:url https://doi.org/10.1038/s41375-018-0173-2
    115 sgo:license sg:explorer/license/
    116 sgo:sdDataset articles
    117 rdf:type schema:ScholarlyArticle
    118 N0c7f6f53bfcd4d258033fc03dc7b0e82 rdf:first sg:person.01222427147.32
    119 rdf:rest Nb6688b8227cf415893acf65412042410
    120 N107b73c81ec5427aaf9efbfd39b9a47c schema:name pubmed_id
    121 schema:value 29946191
    122 rdf:type schema:PropertyValue
    123 N1146b6385a0843659b4d8871b07b8a58 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    124 schema:name Myelodysplastic Syndromes
    125 rdf:type schema:DefinedTerm
    126 N183f0d75cc7f4f59a83e69425b3955f0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    127 schema:name Early Detection of Cancer
    128 rdf:type schema:DefinedTerm
    129 N265128e2e682446abf701a859f0ebc01 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    130 schema:name Genomics
    131 rdf:type schema:DefinedTerm
    132 N2e50b990a66549b28ffea1b55ea7a84e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    133 schema:name Humans
    134 rdf:type schema:DefinedTerm
    135 N45d13b0b1c374bd29f4d4c8da8fc4e65 schema:volumeNumber 32
    136 rdf:type schema:PublicationVolume
    137 Na9dd548b77b449bc99c90f29a446e04c schema:issueNumber 8
    138 rdf:type schema:PublicationIssue
    139 Nae1991e9dbb245a6a19ef544774e5a26 schema:name dimensions_id
    140 schema:value pub.1105128866
    141 rdf:type schema:PropertyValue
    142 Nb01027733d5740ea8854190b0552c22a rdf:first sg:person.01030770123.52
    143 rdf:rest Nb4007ad320134e8bb61118cf48cb31cc
    144 Nb4007ad320134e8bb61118cf48cb31cc rdf:first sg:person.01362464041.20
    145 rdf:rest Nca9fc31f240b4350b8281d63a12d9c82
    146 Nb6688b8227cf415893acf65412042410 rdf:first sg:person.0706214521.95
    147 rdf:rest Nb01027733d5740ea8854190b0552c22a
    148 Nc427e4c3d051465993dc6eed1db7a07a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    149 schema:name Algorithms
    150 rdf:type schema:DefinedTerm
    151 Nca9fc31f240b4350b8281d63a12d9c82 rdf:first sg:person.0621176355.15
    152 rdf:rest rdf:nil
    153 Ncc67a7c4e9ff48d9a5672605c712cbc2 schema:name Springer Nature - SN SciGraph project
    154 rdf:type schema:Organization
    155 Nda72d42934f44e0ca5ee2889fa4b7e6c schema:name doi
    156 schema:value 10.1038/s41375-018-0173-2
    157 rdf:type schema:PropertyValue
    158 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    159 schema:name Medical and Health Sciences
    160 rdf:type schema:DefinedTerm
    161 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    162 schema:name Clinical Sciences
    163 rdf:type schema:DefinedTerm
    164 sg:journal.1097065 schema:issn 0887-6924
    165 1476-5551
    166 schema:name Leukemia
    167 schema:publisher Springer Nature
    168 rdf:type schema:Periodical
    169 sg:person.01030770123.52 schema:affiliation grid-institutes:grid.16872.3a
    170 schema:familyName van de Loosdrecht
    171 schema:givenName Arjan A.
    172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030770123.52
    173 rdf:type schema:Person
    174 sg:person.01222427147.32 schema:affiliation grid-institutes:grid.13097.3c
    175 schema:familyName Mufti
    176 schema:givenName Ghulam J.
    177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222427147.32
    178 rdf:type schema:Person
    179 sg:person.01362464041.20 schema:affiliation grid-institutes:grid.411327.2
    180 schema:familyName Germing
    181 schema:givenName Ulrich
    182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362464041.20
    183 rdf:type schema:Person
    184 sg:person.0621176355.15 schema:affiliation grid-institutes:grid.32224.35
    185 schema:familyName Hasserjian
    186 schema:givenName Robert P.
    187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621176355.15
    188 rdf:type schema:Person
    189 sg:person.0706214521.95 schema:affiliation grid-institutes:grid.13097.3c
    190 schema:familyName McLornan
    191 schema:givenName Donal P.
    192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0706214521.95
    193 rdf:type schema:Person
    194 sg:pub.10.1007/s00277-008-0483-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1008405810
    195 https://doi.org/10.1007/s00277-008-0483-y
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1007/s00277-011-1177-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045715649
    198 https://doi.org/10.1007/s00277-011-1177-4
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1007/s00277-012-1538-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022534795
    201 https://doi.org/10.1007/s00277-012-1538-7
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1007/s00277-017-3009-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085450095
    204 https://doi.org/10.1007/s00277-017-3009-7
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1007/s11899-015-0270-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035032780
    207 https://doi.org/10.1007/s11899-015-0270-5
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1038/bcj.2013.74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037436861
    210 https://doi.org/10.1038/bcj.2013.74
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1038/leu.2010.293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019324453
    213 https://doi.org/10.1038/leu.2010.293
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1038/leu.2011.44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023546509
    216 https://doi.org/10.1038/leu.2011.44
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1038/leu.2012.30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041348065
    219 https://doi.org/10.1038/leu.2012.30
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1038/leu.2013.336 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013726992
    222 https://doi.org/10.1038/leu.2013.336
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1038/leu.2014.136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023297970
    225 https://doi.org/10.1038/leu.2014.136
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1038/leu.2014.161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016368413
    228 https://doi.org/10.1038/leu.2014.161
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1038/leu.2014.191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036067018
    231 https://doi.org/10.1038/leu.2014.191
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1038/leu.2015.211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004232544
    234 https://doi.org/10.1038/leu.2015.211
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1038/leu.2015.295 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041120424
    237 https://doi.org/10.1038/leu.2015.295
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1038/leu.2017.142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085377016
    240 https://doi.org/10.1038/leu.2017.142
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1038/modpathol.2016.118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001663578
    243 https://doi.org/10.1038/modpathol.2016.118
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1038/nature10496 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008245757
    246 https://doi.org/10.1038/nature10496
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1038/ng.1031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007296013
    249 https://doi.org/10.1038/ng.1031
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1038/ng.3569 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025543534
    252 https://doi.org/10.1038/ng.3569
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1038/ng.913 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001065103
    255 https://doi.org/10.1038/ng.913
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1038/nrc.2016.112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049787455
    258 https://doi.org/10.1038/nrc.2016.112
    259 rdf:type schema:CreativeWork
    260 grid-institutes:grid.13097.3c schema:alternateName King’s College, London, UK
    261 schema:name King’s College, London, UK
    262 rdf:type schema:Organization
    263 grid-institutes:grid.16872.3a schema:alternateName VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands
    264 schema:name VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands
    265 rdf:type schema:Organization
    266 grid-institutes:grid.32224.35 schema:alternateName Massachusetts General Hospital, Boston, MA, USA
    267 schema:name Massachusetts General Hospital, Boston, MA, USA
    268 rdf:type schema:Organization
    269 grid-institutes:grid.411327.2 schema:alternateName Dept. of Hematology, Oncology, and Clinical Immunology, University Clinic, Heinrich-Heine-University, Düsseldorf, Germany
    270 schema:name Dept. of Hematology, Oncology, and Clinical Immunology, University Clinic, Heinrich-Heine-University, Düsseldorf, Germany
    271 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...