Predicting energy intake in adults who are dieting and exercising View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-08-20

AUTHORS

Corey Gerving, Robert Lasater, James Starling, Danielle M. Ostendorf, Leanne M. Redman, Chad Estabrooks, Kevin Cummiskey, Vincent Antonetti, Diana M. Thomas

ABSTRACT

BackgroundWhen a lifestyle intervention combines caloric restriction and increased physical activity energy expenditure (PAEE), there are two components of energy balance, energy intake (EI) and physical activity energy expenditure (PAEE), that are routinely misreported and expensive to measure. Energy balance models have successfully predicted EI if PAEE is known. Estimating EI from an energy balance model when PAEE is not known remains an open question.ObjectiveThe objective was to evaluate the performance of an energy balance differential equation model to predict EI in an intervention that includes both calorie restriction and increases in PAEE.DesignThe Antonetti energy balance model that predicts body weight trajectories during weight loss was solved and inverted to estimate EI during weight loss. Using data from a calorie restriction study that included interventions with and without prescribed PAEE, we tested the validity of the Antonetti weight predictions against measured weight and the Antonetti EI model against measured EI using the intake-balance method at 168 days. We then evaluated the predicted EI from the model against measured EI in a study that prescribed both calorie restriction and increased PAEE.ResultsCompared with measured body weight at 168 days, the mean (±SD) model error was 1.30 ± 3.58 kg. Compared with measured EI at 168 days, the mean EI (±SD) model error in the intervention that prescribed calorie restriction and did not prescribe increased PAEE, was −84.9 ± 227.4 kcal/d. In the intervention that prescribed calorie restriction combined with increased PAEE, the mean (±SD) EI model error was −155.70 ± 205.70 kcal/d.ConclusionThe validity of the newly developed EI model was supported by experimental observations and can be used to determine EI during weight loss. More... »

PAGES

2095-2101

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41366-022-01205-0

DOI

http://dx.doi.org/10.1038/s41366-022-01205-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1150378479

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/35987955


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1111", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Nutrition and Dietetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Energy Intake", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Exercise", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Energy Metabolism", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Weight Loss", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Caloric Restriction", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Physics and Nuclear Engineering, United States Military Academy, 10996, West Point, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.419884.8", 
          "name": [
            "Department of Physics and Nuclear Engineering, United States Military Academy, 10996, West Point, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gerving", 
        "givenName": "Corey", 
        "id": "sg:person.010321466205.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010321466205.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematical Sciences, United States Military Academy, West Point, NY, US", 
          "id": "http://www.grid.ac/institutes/grid.419884.8", 
          "name": [
            "Department of Mathematical Sciences, United States Military Academy, West Point, NY, US"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lasater", 
        "givenName": "Robert", 
        "id": "sg:person.012146775236.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012146775236.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematical Sciences, United States Military Academy, West Point, NY, US", 
          "id": "http://www.grid.ac/institutes/grid.419884.8", 
          "name": [
            "Department of Mathematical Sciences, United States Military Academy, West Point, NY, US"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Starling", 
        "givenName": "James", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA", 
          "id": "http://www.grid.ac/institutes/grid.430503.1", 
          "name": [
            "Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ostendorf", 
        "givenName": "Danielle M.", 
        "id": "sg:person.013174153705.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013174153705.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pennington Biomedical Research Center, Baton Rouge, LA, USA", 
          "id": "http://www.grid.ac/institutes/grid.250514.7", 
          "name": [
            "Pennington Biomedical Research Center, Baton Rouge, LA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Redman", 
        "givenName": "Leanne M.", 
        "id": "sg:person.014166474277.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014166474277.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Belmont Abbey College, Belmont, NC, USA", 
          "id": "http://www.grid.ac/institutes/grid.427939.2", 
          "name": [
            "Belmont Abbey College, Belmont, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Estabrooks", 
        "givenName": "Chad", 
        "id": "sg:person.014475244564.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014475244564.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematical Sciences, United States Military Academy, West Point, NY, US", 
          "id": "http://www.grid.ac/institutes/grid.419884.8", 
          "name": [
            "Department of Mathematical Sciences, United States Military Academy, West Point, NY, US"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cummiskey", 
        "givenName": "Kevin", 
        "id": "sg:person.01111031244.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111031244.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering, Manhattan College, New York City, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.259586.5", 
          "name": [
            "Department of Mechanical Engineering, Manhattan College, New York City, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Antonetti", 
        "givenName": "Vincent", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematical Sciences, United States Military Academy, West Point, NY, US", 
          "id": "http://www.grid.ac/institutes/grid.419884.8", 
          "name": [
            "Department of Mathematical Sciences, United States Military Academy, West Point, NY, US"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thomas", 
        "givenName": "Diana M.", 
        "id": "sg:person.01361550050.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361550050.29"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/s41366-018-0168-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105702893", 
          "https://doi.org/10.1038/s41366-018-0168-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40795-018-0227-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104049110", 
          "https://doi.org/10.1186/s40795-018-0227-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncpendmet0554", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000265115", 
          "https://doi.org/10.1038/ncpendmet0554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ijo.2014.199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033651216", 
          "https://doi.org/10.1038/ijo.2014.199"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-08-20", 
    "datePublishedReg": "2022-08-20", 
    "description": "BackgroundWhen a lifestyle intervention combines caloric restriction and increased physical activity energy expenditure (PAEE), there are two components of energy balance, energy intake (EI) and physical activity energy expenditure (PAEE), that are routinely misreported and expensive to measure. Energy balance models have successfully predicted EI if PAEE is known. Estimating EI from an energy balance model when PAEE is not known remains an open question.ObjectiveThe objective was to evaluate the performance of an energy balance differential equation model to predict EI in an intervention that includes both calorie restriction and increases in PAEE.DesignThe Antonetti energy balance model that predicts body weight trajectories during weight loss was solved and inverted to estimate EI during weight loss. Using data from a calorie restriction study that included interventions with and without prescribed PAEE, we tested the validity of the Antonetti weight predictions against measured weight and the Antonetti EI model against measured EI using the intake-balance method at 168 days. We then evaluated the predicted EI from the model against measured EI in a study that prescribed both calorie restriction and increased PAEE.ResultsCompared with measured body weight at 168 days, the mean (\u00b1SD) model error was 1.30\u2009\u00b1\u20093.58\u2009kg. Compared with measured EI at 168 days, the mean EI (\u00b1SD) model error in the intervention that prescribed calorie restriction and did not prescribe increased PAEE, was \u221284.9\u2009\u00b1\u2009227.4\u2009kcal/d. In the intervention that prescribed calorie restriction combined with increased PAEE, the mean (\u00b1SD) EI model error was \u2212155.70\u2009\u00b1\u2009205.70\u2009kcal/d.ConclusionThe validity of the newly developed EI model was supported by experimental observations and can be used to determine EI during weight loss.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41366-022-01205-0", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7909083", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.9212480", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.10003854", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.9018962", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1035838", 
        "issn": [
          "0307-0565", 
          "1476-5497"
        ], 
        "name": "International Journal of Obesity", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "46"
      }
    ], 
    "keywords": [
      "physical activity energy expenditure", 
      "kcal/d", 
      "activity energy expenditure", 
      "energy intake", 
      "calorie restriction", 
      "weight loss", 
      "energy expenditure", 
      "calorie restriction studies", 
      "body weight trajectories", 
      "intake-balance method", 
      "lifestyle intervention", 
      "ObjectiveThe objective", 
      "weight trajectories", 
      "body weight", 
      "caloric restriction", 
      "intervention", 
      "restriction studies", 
      "intake", 
      "days", 
      "ResultsCompared", 
      "adults", 
      "BackgroundWhen", 
      "weight", 
      "loss", 
      "study", 
      "restriction", 
      "weight prediction", 
      "energy balance", 
      "expenditure", 
      "increase", 
      "validity", 
      "objective", 
      "data", 
      "balance", 
      "model", 
      "equation model", 
      "open question", 
      "questions", 
      "observations", 
      "components", 
      "method", 
      "mean model error", 
      "differential equation model", 
      "error", 
      "trajectories", 
      "prediction", 
      "EI model", 
      "performance", 
      "experimental observations", 
      "balance model", 
      "energy balance model", 
      "model error"
    ], 
    "name": "Predicting energy intake in adults who are dieting and exercising", 
    "pagination": "2095-2101", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1150378479"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41366-022-01205-0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "35987955"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41366-022-01205-0", 
      "https://app.dimensions.ai/details/publication/pub.1150378479"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_948.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41366-022-01205-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41366-022-01205-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41366-022-01205-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41366-022-01205-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41366-022-01205-0'


 

This table displays all metadata directly associated to this object as RDF triples.

233 TRIPLES      21 PREDICATES      88 URIs      76 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41366-022-01205-0 schema:about N0c3e56e5dbb04fb7b65b736c6dd6f1f5
2 N32154808d7394b01b811f0e0ed15f738
3 Na8ecc23c499146108864b51cb0760952
4 Nc25c1d2357734640ae3160fc1e34d4e7
5 Ne219ed1f972243ee859b5746ee29017d
6 Nf803dcc41c2347258bfc4a32b5800a3b
7 Nfb99c339754c4a4195308e02b552a2fa
8 anzsrc-for:11
9 anzsrc-for:1111
10 schema:author N8213e040c9df48ff83464a0c9a748577
11 schema:citation sg:pub.10.1038/ijo.2014.199
12 sg:pub.10.1038/ncpendmet0554
13 sg:pub.10.1038/s41366-018-0168-0
14 sg:pub.10.1186/s40795-018-0227-x
15 schema:datePublished 2022-08-20
16 schema:datePublishedReg 2022-08-20
17 schema:description BackgroundWhen a lifestyle intervention combines caloric restriction and increased physical activity energy expenditure (PAEE), there are two components of energy balance, energy intake (EI) and physical activity energy expenditure (PAEE), that are routinely misreported and expensive to measure. Energy balance models have successfully predicted EI if PAEE is known. Estimating EI from an energy balance model when PAEE is not known remains an open question.ObjectiveThe objective was to evaluate the performance of an energy balance differential equation model to predict EI in an intervention that includes both calorie restriction and increases in PAEE.DesignThe Antonetti energy balance model that predicts body weight trajectories during weight loss was solved and inverted to estimate EI during weight loss. Using data from a calorie restriction study that included interventions with and without prescribed PAEE, we tested the validity of the Antonetti weight predictions against measured weight and the Antonetti EI model against measured EI using the intake-balance method at 168 days. We then evaluated the predicted EI from the model against measured EI in a study that prescribed both calorie restriction and increased PAEE.ResultsCompared with measured body weight at 168 days, the mean (±SD) model error was 1.30 ± 3.58 kg. Compared with measured EI at 168 days, the mean EI (±SD) model error in the intervention that prescribed calorie restriction and did not prescribe increased PAEE, was −84.9 ± 227.4 kcal/d. In the intervention that prescribed calorie restriction combined with increased PAEE, the mean (±SD) EI model error was −155.70 ± 205.70 kcal/d.ConclusionThe validity of the newly developed EI model was supported by experimental observations and can be used to determine EI during weight loss.
18 schema:genre article
19 schema:isAccessibleForFree false
20 schema:isPartOf N09a5186e0000409eaad881ad8f2cf273
21 N911dff04deec4c3c84b313e6f7d14414
22 sg:journal.1035838
23 schema:keywords BackgroundWhen
24 EI model
25 ObjectiveThe objective
26 ResultsCompared
27 activity energy expenditure
28 adults
29 balance
30 balance model
31 body weight
32 body weight trajectories
33 caloric restriction
34 calorie restriction
35 calorie restriction studies
36 components
37 data
38 days
39 differential equation model
40 energy balance
41 energy balance model
42 energy expenditure
43 energy intake
44 equation model
45 error
46 expenditure
47 experimental observations
48 increase
49 intake
50 intake-balance method
51 intervention
52 kcal/d
53 lifestyle intervention
54 loss
55 mean model error
56 method
57 model
58 model error
59 objective
60 observations
61 open question
62 performance
63 physical activity energy expenditure
64 prediction
65 questions
66 restriction
67 restriction studies
68 study
69 trajectories
70 validity
71 weight
72 weight loss
73 weight prediction
74 weight trajectories
75 schema:name Predicting energy intake in adults who are dieting and exercising
76 schema:pagination 2095-2101
77 schema:productId N0c7fe0dc1db544af81f165f84837ff10
78 N3f74c320429a484e8641b06553441443
79 Nfd42f0053e6d4d2d8bc1f8199fce6a71
80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1150378479
81 https://doi.org/10.1038/s41366-022-01205-0
82 schema:sdDatePublished 2022-12-01T06:44
83 schema:sdLicense https://scigraph.springernature.com/explorer/license/
84 schema:sdPublisher N897aac6d67af492484d399bbc334521e
85 schema:url https://doi.org/10.1038/s41366-022-01205-0
86 sgo:license sg:explorer/license/
87 sgo:sdDataset articles
88 rdf:type schema:ScholarlyArticle
89 N09a5186e0000409eaad881ad8f2cf273 schema:issueNumber 12
90 rdf:type schema:PublicationIssue
91 N0b685e288469419395e383b2f6ac4785 rdf:first sg:person.01111031244.52
92 rdf:rest Ne39211c5c27c461a86d0c5ea73daad3d
93 N0c3e56e5dbb04fb7b65b736c6dd6f1f5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Adult
95 rdf:type schema:DefinedTerm
96 N0c7fe0dc1db544af81f165f84837ff10 schema:name pubmed_id
97 schema:value 35987955
98 rdf:type schema:PropertyValue
99 N0ce9ae1663524c588150b69a430c33ea rdf:first sg:person.013174153705.07
100 rdf:rest N851c130ce50941e2aafbd4be48f32ff9
101 N32154808d7394b01b811f0e0ed15f738 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Weight Loss
103 rdf:type schema:DefinedTerm
104 N3f74c320429a484e8641b06553441443 schema:name doi
105 schema:value 10.1038/s41366-022-01205-0
106 rdf:type schema:PropertyValue
107 N4ec926b64cf640fa9345683eeea6a805 rdf:first sg:person.01361550050.29
108 rdf:rest rdf:nil
109 N67b2b9de0fe74d0fb389c318bdbb9cf6 schema:affiliation grid-institutes:grid.259586.5
110 schema:familyName Antonetti
111 schema:givenName Vincent
112 rdf:type schema:Person
113 N78f1082f819e4372ac7b1f8c8d2c2bb7 rdf:first sg:person.012146775236.25
114 rdf:rest N850eff63fecf4294b73c5c2f25759f92
115 N8213e040c9df48ff83464a0c9a748577 rdf:first sg:person.010321466205.13
116 rdf:rest N78f1082f819e4372ac7b1f8c8d2c2bb7
117 N850eff63fecf4294b73c5c2f25759f92 rdf:first Nbeb22b1da2e846d19b27953192741d36
118 rdf:rest N0ce9ae1663524c588150b69a430c33ea
119 N851c130ce50941e2aafbd4be48f32ff9 rdf:first sg:person.014166474277.33
120 rdf:rest N96ba9f83dfa9401cbcb1ac9b2782f10c
121 N897aac6d67af492484d399bbc334521e schema:name Springer Nature - SN SciGraph project
122 rdf:type schema:Organization
123 N911dff04deec4c3c84b313e6f7d14414 schema:volumeNumber 46
124 rdf:type schema:PublicationVolume
125 N96ba9f83dfa9401cbcb1ac9b2782f10c rdf:first sg:person.014475244564.63
126 rdf:rest N0b685e288469419395e383b2f6ac4785
127 Na8ecc23c499146108864b51cb0760952 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Caloric Restriction
129 rdf:type schema:DefinedTerm
130 Nbeb22b1da2e846d19b27953192741d36 schema:affiliation grid-institutes:grid.419884.8
131 schema:familyName Starling
132 schema:givenName James
133 rdf:type schema:Person
134 Nc25c1d2357734640ae3160fc1e34d4e7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Energy Intake
136 rdf:type schema:DefinedTerm
137 Ne219ed1f972243ee859b5746ee29017d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Exercise
139 rdf:type schema:DefinedTerm
140 Ne39211c5c27c461a86d0c5ea73daad3d rdf:first N67b2b9de0fe74d0fb389c318bdbb9cf6
141 rdf:rest N4ec926b64cf640fa9345683eeea6a805
142 Nf803dcc41c2347258bfc4a32b5800a3b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Humans
144 rdf:type schema:DefinedTerm
145 Nfb99c339754c4a4195308e02b552a2fa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Energy Metabolism
147 rdf:type schema:DefinedTerm
148 Nfd42f0053e6d4d2d8bc1f8199fce6a71 schema:name dimensions_id
149 schema:value pub.1150378479
150 rdf:type schema:PropertyValue
151 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
152 schema:name Medical and Health Sciences
153 rdf:type schema:DefinedTerm
154 anzsrc-for:1111 schema:inDefinedTermSet anzsrc-for:
155 schema:name Nutrition and Dietetics
156 rdf:type schema:DefinedTerm
157 sg:grant.10003854 http://pending.schema.org/fundedItem sg:pub.10.1038/s41366-022-01205-0
158 rdf:type schema:MonetaryGrant
159 sg:grant.7909083 http://pending.schema.org/fundedItem sg:pub.10.1038/s41366-022-01205-0
160 rdf:type schema:MonetaryGrant
161 sg:grant.9018962 http://pending.schema.org/fundedItem sg:pub.10.1038/s41366-022-01205-0
162 rdf:type schema:MonetaryGrant
163 sg:grant.9212480 http://pending.schema.org/fundedItem sg:pub.10.1038/s41366-022-01205-0
164 rdf:type schema:MonetaryGrant
165 sg:journal.1035838 schema:issn 0307-0565
166 1476-5497
167 schema:name International Journal of Obesity
168 schema:publisher Springer Nature
169 rdf:type schema:Periodical
170 sg:person.010321466205.13 schema:affiliation grid-institutes:grid.419884.8
171 schema:familyName Gerving
172 schema:givenName Corey
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010321466205.13
174 rdf:type schema:Person
175 sg:person.01111031244.52 schema:affiliation grid-institutes:grid.419884.8
176 schema:familyName Cummiskey
177 schema:givenName Kevin
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111031244.52
179 rdf:type schema:Person
180 sg:person.012146775236.25 schema:affiliation grid-institutes:grid.419884.8
181 schema:familyName Lasater
182 schema:givenName Robert
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012146775236.25
184 rdf:type schema:Person
185 sg:person.013174153705.07 schema:affiliation grid-institutes:grid.430503.1
186 schema:familyName Ostendorf
187 schema:givenName Danielle M.
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013174153705.07
189 rdf:type schema:Person
190 sg:person.01361550050.29 schema:affiliation grid-institutes:grid.419884.8
191 schema:familyName Thomas
192 schema:givenName Diana M.
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361550050.29
194 rdf:type schema:Person
195 sg:person.014166474277.33 schema:affiliation grid-institutes:grid.250514.7
196 schema:familyName Redman
197 schema:givenName Leanne M.
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014166474277.33
199 rdf:type schema:Person
200 sg:person.014475244564.63 schema:affiliation grid-institutes:grid.427939.2
201 schema:familyName Estabrooks
202 schema:givenName Chad
203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014475244564.63
204 rdf:type schema:Person
205 sg:pub.10.1038/ijo.2014.199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033651216
206 https://doi.org/10.1038/ijo.2014.199
207 rdf:type schema:CreativeWork
208 sg:pub.10.1038/ncpendmet0554 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000265115
209 https://doi.org/10.1038/ncpendmet0554
210 rdf:type schema:CreativeWork
211 sg:pub.10.1038/s41366-018-0168-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105702893
212 https://doi.org/10.1038/s41366-018-0168-0
213 rdf:type schema:CreativeWork
214 sg:pub.10.1186/s40795-018-0227-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1104049110
215 https://doi.org/10.1186/s40795-018-0227-x
216 rdf:type schema:CreativeWork
217 grid-institutes:grid.250514.7 schema:alternateName Pennington Biomedical Research Center, Baton Rouge, LA, USA
218 schema:name Pennington Biomedical Research Center, Baton Rouge, LA, USA
219 rdf:type schema:Organization
220 grid-institutes:grid.259586.5 schema:alternateName Department of Mechanical Engineering, Manhattan College, New York City, NY, USA
221 schema:name Department of Mechanical Engineering, Manhattan College, New York City, NY, USA
222 rdf:type schema:Organization
223 grid-institutes:grid.419884.8 schema:alternateName Department of Mathematical Sciences, United States Military Academy, West Point, NY, US
224 Department of Physics and Nuclear Engineering, United States Military Academy, 10996, West Point, NY, USA
225 schema:name Department of Mathematical Sciences, United States Military Academy, West Point, NY, US
226 Department of Physics and Nuclear Engineering, United States Military Academy, 10996, West Point, NY, USA
227 rdf:type schema:Organization
228 grid-institutes:grid.427939.2 schema:alternateName Belmont Abbey College, Belmont, NC, USA
229 schema:name Belmont Abbey College, Belmont, NC, USA
230 rdf:type schema:Organization
231 grid-institutes:grid.430503.1 schema:alternateName Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
232 schema:name Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
233 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...