Identification of a 1p21 independent functional variant for abdominal obesity View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04-03

AUTHORS

Lu Liu, Yu-Fang Pei, Tao-Le Liu, Wen-Zhu Hu, Xiao-Lin Yang, Shan-Cheng Li, Rong Hai, Shu Ran, Lan Juan Zhao, Hui Shen, Qing Tian, Hong-Mei Xiao, Kun Zhang, Hong-Wen Deng, Lei Zhang

ABSTRACT

OBJECTIVES: Aiming to uncover the genetic basis of abdominal obesity, we performed a genome-wide association study (GWAS) meta-analysis of trunk fat mass adjusted by trunk lean mass (TFMadj) and followed by a series of functional investigations. SUBJECTS: A total of 11,569 subjects from six samples were included into the GWAS meta-analysis. METHODS: Meta-analysis was performed by a weighted fixed-effects model. In silico replication analysis was performed in the UK-Biobank (UKB) sample (N = 331,093) and in the GIANT study (N up to 110,204). Cis-expression QTL (cis-eQTL) analysis, dual-luciferase reporter assay and electrophoresis mobility shift assay (EMSA) were conducted to examine the functional relevance of the identified SNPs. At last, differential gene expression analysis (DGEA) was performed. RESULTS: We identified an independent SNP rs12409479 at 1p21 (MAF = 0.07, p = 7.26 × 10-10), whose association was replicated by the analysis of TFM in the UKB sample (one-sided p = 3.39 × 10-3), and was cross-validated by the analyses of BMI (one-sided p = 0.03) and WHRadj (one-sided p = 0.04) in the GIANT study. Cis-eQTL analysis demonstrated that allele A at rs12409479 was positively associated with PTBP2 expression level in subcutaneous adipose tissue (N = 385, p = 4.15 × 10-3). Dual-luciferase reporter assay showed that the region repressed PTBP2 gene expression by downregulating PTBP2 promoter activity (p < 0.001), and allele A at rs12409479 induced higher luciferase activity than allele G did (p = 4.15 × 10-3). EMSA experiment implied that allele A was more capable of binding to unknown transcription factors than allele G. Lastly, DGEA showed that the level of PTBP2 expression was higher in individuals with obesity than in individuals without obesity (N = 20 and 11, p = 0.04 and 9.22 × 10-3), suggesting a regulatory role in obesity development. CONCLUSIONS: Taken together, we hypothesize a regulating path from rs12409479 to trunk fat mass development through its allelic specific regulation of PTBP2 gene expression, thus providing some novel insight into the genetic basis of abdominal obesity. More... »

PAGES

1-11

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41366-019-0350-z

DOI

http://dx.doi.org/10.1038/s41366-019-0350-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113182226

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30944420


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Soochow University", 
          "id": "https://www.grid.ac/institutes/grid.263761.7", 
          "name": [
            "Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, China", 
            "Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Lu", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Soochow University", 
          "id": "https://www.grid.ac/institutes/grid.263761.7", 
          "name": [
            "Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China", 
            "Department of Epidemiology and Health Statistics, School of Public Health, Medical College of Soochow University, Suzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pei", 
        "givenName": "Yu-Fang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Soochow University", 
          "id": "https://www.grid.ac/institutes/grid.263761.7", 
          "name": [
            "Center for Circadian Clock, School of Biology & Basic Medical Sciences, Medical College of Soochow University, Suzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Tao-Le", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Soochow University", 
          "id": "https://www.grid.ac/institutes/grid.263761.7", 
          "name": [
            "Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, China", 
            "Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Wen-Zhu", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Soochow University", 
          "id": "https://www.grid.ac/institutes/grid.263761.7", 
          "name": [
            "Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, China", 
            "Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Xiao-Lin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Soochow University", 
          "id": "https://www.grid.ac/institutes/grid.263761.7", 
          "name": [
            "Department of Orthopedics, the Second Affiliated Hospital, Soochow University, Suzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Shan-Cheng", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Inner Mongolia Autonomous Region People\u2019s Hospital, Hohhot, Inner Mongolia, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hai", 
        "givenName": "Rong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Shanghai for Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.267139.8", 
          "name": [
            "School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ran", 
        "givenName": "Shu", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tulane University", 
          "id": "https://www.grid.ac/institutes/grid.265219.b", 
          "name": [
            "Tulane Center for Genomics and Bioinformatics, Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Lan Juan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tulane University", 
          "id": "https://www.grid.ac/institutes/grid.265219.b", 
          "name": [
            "Tulane Center for Genomics and Bioinformatics, Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shen", 
        "givenName": "Hui", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tulane University", 
          "id": "https://www.grid.ac/institutes/grid.265219.b", 
          "name": [
            "Tulane Center for Genomics and Bioinformatics, Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tian", 
        "givenName": "Qing", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Central South University", 
          "id": "https://www.grid.ac/institutes/grid.216417.7", 
          "name": [
            "School of Basic Medical Sciences, Central South University, 410000, Changsha, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xiao", 
        "givenName": "Hong-Mei", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xavier University of Louisiana", 
          "id": "https://www.grid.ac/institutes/grid.268355.f", 
          "name": [
            "Department of Computer Science, Bioinformatics Facility of Xavier NIH RCMI Cancer Research Center, Xavier University of Louisiana, 70125, New Orleans, LA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Kun", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Central South University", 
          "id": "https://www.grid.ac/institutes/grid.216417.7", 
          "name": [
            "Tulane Center for Genomics and Bioinformatics, Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA", 
            "School of Basic Medical Sciences, Central South University, 410000, Changsha, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Deng", 
        "givenName": "Hong-Wen", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Soochow University", 
          "id": "https://www.grid.ac/institutes/grid.263761.7", 
          "name": [
            "Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, China", 
            "Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Lei", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/j.1469-1809.2009.00539.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001295123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-1809.2009.00539.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001295123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.274", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001671795", 
          "https://doi.org/10.1038/ng.274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/bmj.327.7414.557", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005003882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tem.2005.02.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006419272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(14)60460-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007350540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(14)60460-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007350540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008081196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amjcard.2016.01.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008368455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amjcard.2016.01.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008368455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gepi.20303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008645052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2013/865965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009427396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mce.2012.08.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009594938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mce.2012.08.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009594938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09534", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010608717", 
          "https://doi.org/10.1038/nature09534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09534", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010608717", 
          "https://doi.org/10.1038/nature09534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa0801891", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011179835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(05)67483-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013292841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(05)67483-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013292841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.686", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013643799", 
          "https://doi.org/10.1038/ng.686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.686", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013643799", 
          "https://doi.org/10.1038/ng.686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1005378", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014032763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1005378", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014032763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ijo.0801941", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016610916", 
          "https://doi.org/10.1038/sj.ijo.0801941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ijo.0801941", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016610916", 
          "https://doi.org/10.1038/sj.ijo.0801941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.446", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017756679", 
          "https://doi.org/10.1038/ng.446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.446", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017756679", 
          "https://doi.org/10.1038/ng.446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ejp.807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018816227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/519795", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019061180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature14132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019263071", 
          "https://doi.org/10.1038/nature14132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.publhealth.29.020907.090954", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019655662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.280.21.1843", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019955567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.0006-341x.1999.00997.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021081768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2147/dmso.s7384", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026011191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btu143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027129928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1210/jc.2004-0894", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028078895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/hmg/ddt464", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029120751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13073-014-0085-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031069583", 
          "https://doi.org/10.1186/s13073-014-0085-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13073-014-0085-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031069583", 
          "https://doi.org/10.1186/s13073-014-0085-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/hmg/ddt575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031751289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.2653", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032444369", 
          "https://doi.org/10.1038/ng.2653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ijo.2008.11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033634851", 
          "https://doi.org/10.1038/ijo.2008.11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btq419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036490983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature14878", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039034540", 
          "https://doi.org/10.1038/nature14878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gepi.20533", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039500245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gepi.20533", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039500245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1172/jci118083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039787122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1025635913927", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040055293", 
          "https://doi.org/10.1023/a:1025635913927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep20665", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046100563", 
          "https://doi.org/10.1038/srep20665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btq340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047276303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/hmg/ddl215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049696141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/ijms141122906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050762164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0197-2456(97)00078-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052220718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature14177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053003561", 
          "https://doi.org/10.1038/nature14177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature14177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053003561", 
          "https://doi.org/10.1038/nature14177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajhg.2014.10.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053287809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.280.5368.1374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062561250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1210/jc.2004-0372", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064287751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1210/jc.2009-1475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064291576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/diab.45.12.1684", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070737747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4239/wjd.v4.i2.31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072397421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ajcn/72.2.490", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074677164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms14418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083820350", 
          "https://doi.org/10.1038/ncomms14418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/oby.21775", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083855617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms14977", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085060523", 
          "https://doi.org/10.1038/ncomms14977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1006528", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085075998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1006528", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085075998"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04-03", 
    "datePublishedReg": "2019-04-03", 
    "description": "OBJECTIVES: Aiming to uncover the genetic basis of abdominal obesity, we performed a genome-wide association study (GWAS) meta-analysis of trunk fat mass adjusted by trunk lean mass (TFMadj) and followed by a series of functional investigations.\nSUBJECTS: A total of 11,569 subjects from six samples were included into the GWAS meta-analysis.\nMETHODS: Meta-analysis was performed by a weighted fixed-effects model. In silico replication analysis was performed in the UK-Biobank (UKB) sample (N\u2009=\u2009331,093) and in the GIANT study (N up to 110,204). Cis-expression QTL (cis-eQTL) analysis, dual-luciferase reporter assay and electrophoresis mobility shift assay (EMSA) were conducted to examine the functional relevance of the identified SNPs. At last, differential gene expression analysis (DGEA) was performed.\nRESULTS: We identified an independent SNP rs12409479 at 1p21 (MAF\u2009=\u20090.07, p\u2009=\u20097.26\u2009\u00d7\u200910-10), whose association was replicated by the analysis of TFM in the UKB sample (one-sided p\u2009=\u20093.39\u2009\u00d7\u200910-3), and was cross-validated by the analyses of BMI (one-sided p\u2009=\u20090.03) and WHRadj (one-sided p\u2009=\u20090.04) in the GIANT study. Cis-eQTL analysis demonstrated that allele A at rs12409479 was positively associated with PTBP2 expression level in subcutaneous adipose tissue (N\u2009=\u2009385, p\u2009=\u20094.15\u2009\u00d7\u200910-3). Dual-luciferase reporter assay showed that the region repressed PTBP2 gene expression by downregulating PTBP2 promoter activity (p\u2009<\u20090.001), and allele A at rs12409479 induced higher luciferase activity than allele G did (p\u2009=\u20094.15\u2009\u00d7\u200910-3). EMSA experiment implied that allele A was more capable of binding to unknown transcription factors than allele G. Lastly, DGEA showed that the level of PTBP2 expression was higher in individuals with obesity than in individuals without obesity (N\u2009=\u200920 and 11, p\u2009=\u20090.04 and 9.22\u2009\u00d7\u200910-3), suggesting a regulatory role in obesity development.\nCONCLUSIONS: Taken together, we hypothesize a regulating path from rs12409479 to trunk fat mass development through its allelic specific regulation of PTBP2 gene expression, thus providing some novel insight into the genetic basis of abdominal obesity.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41366-019-0350-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4898951", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7027394", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6809990", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2465233", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2537302", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2430005", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3806102", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1035838", 
        "issn": [
          "0307-0565", 
          "1476-5497"
        ], 
        "name": "International Journal of Obesity", 
        "type": "Periodical"
      }
    ], 
    "name": "Identification of a 1p21 independent functional variant for abdominal obesity", 
    "pagination": "1-11", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41366-019-0350-z"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cd5497872222183624af67f1ee2650711556e8fee5136422aeffc9123484d7f7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113182226"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101256108"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30944420"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41366-019-0350-z", 
      "https://app.dimensions.ai/details/publication/pub.1113182226"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T09:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000376_0000000376/records_56179_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41366-019-0350-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41366-019-0350-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41366-019-0350-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41366-019-0350-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41366-019-0350-z'


 

This table displays all metadata directly associated to this object as RDF triples.

353 TRIPLES      21 PREDICATES      79 URIs      18 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41366-019-0350-z schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N43d9ccd1185f4f10b949d8e6a855ce66
4 schema:citation sg:pub.10.1023/a:1025635913927
5 sg:pub.10.1038/ijo.2008.11
6 sg:pub.10.1038/nature09534
7 sg:pub.10.1038/nature14132
8 sg:pub.10.1038/nature14177
9 sg:pub.10.1038/nature14878
10 sg:pub.10.1038/ncomms14418
11 sg:pub.10.1038/ncomms14977
12 sg:pub.10.1038/ng.2653
13 sg:pub.10.1038/ng.274
14 sg:pub.10.1038/ng.446
15 sg:pub.10.1038/ng.686
16 sg:pub.10.1038/sj.ijo.0801941
17 sg:pub.10.1038/srep20665
18 sg:pub.10.1186/s13073-014-0085-3
19 https://doi.org/10.1001/jama.280.21.1843
20 https://doi.org/10.1002/ejp.807
21 https://doi.org/10.1002/gepi.20303
22 https://doi.org/10.1002/gepi.20533
23 https://doi.org/10.1002/oby.21775
24 https://doi.org/10.1016/j.ajhg.2014.10.004
25 https://doi.org/10.1016/j.amjcard.2016.01.033
26 https://doi.org/10.1016/j.mce.2012.08.018
27 https://doi.org/10.1016/j.tem.2005.02.009
28 https://doi.org/10.1016/s0140-6736(05)67483-1
29 https://doi.org/10.1016/s0140-6736(14)60460-8
30 https://doi.org/10.1016/s0197-2456(97)00078-0
31 https://doi.org/10.1056/nejmoa0801891
32 https://doi.org/10.1086/519795
33 https://doi.org/10.1093/ajcn/72.2.490
34 https://doi.org/10.1093/bioinformatics/bth457
35 https://doi.org/10.1093/bioinformatics/btq340
36 https://doi.org/10.1093/bioinformatics/btq419
37 https://doi.org/10.1093/bioinformatics/btu143
38 https://doi.org/10.1093/hmg/ddl215
39 https://doi.org/10.1093/hmg/ddt464
40 https://doi.org/10.1093/hmg/ddt575
41 https://doi.org/10.1111/j.0006-341x.1999.00997.x
42 https://doi.org/10.1111/j.1469-1809.2009.00539.x
43 https://doi.org/10.1126/science.280.5368.1374
44 https://doi.org/10.1136/bmj.327.7414.557
45 https://doi.org/10.1146/annurev.publhealth.29.020907.090954
46 https://doi.org/10.1155/2013/865965
47 https://doi.org/10.1172/jci118083
48 https://doi.org/10.1210/jc.2004-0372
49 https://doi.org/10.1210/jc.2004-0894
50 https://doi.org/10.1210/jc.2009-1475
51 https://doi.org/10.1371/journal.pgen.1005378
52 https://doi.org/10.1371/journal.pgen.1006528
53 https://doi.org/10.2147/dmso.s7384
54 https://doi.org/10.2337/diab.45.12.1684
55 https://doi.org/10.3390/ijms141122906
56 https://doi.org/10.4239/wjd.v4.i2.31
57 schema:datePublished 2019-04-03
58 schema:datePublishedReg 2019-04-03
59 schema:description OBJECTIVES: Aiming to uncover the genetic basis of abdominal obesity, we performed a genome-wide association study (GWAS) meta-analysis of trunk fat mass adjusted by trunk lean mass (TFMadj) and followed by a series of functional investigations. SUBJECTS: A total of 11,569 subjects from six samples were included into the GWAS meta-analysis. METHODS: Meta-analysis was performed by a weighted fixed-effects model. In silico replication analysis was performed in the UK-Biobank (UKB) sample (N = 331,093) and in the GIANT study (N up to 110,204). Cis-expression QTL (cis-eQTL) analysis, dual-luciferase reporter assay and electrophoresis mobility shift assay (EMSA) were conducted to examine the functional relevance of the identified SNPs. At last, differential gene expression analysis (DGEA) was performed. RESULTS: We identified an independent SNP rs12409479 at 1p21 (MAF = 0.07, p = 7.26 × 10-10), whose association was replicated by the analysis of TFM in the UKB sample (one-sided p = 3.39 × 10-3), and was cross-validated by the analyses of BMI (one-sided p = 0.03) and WHRadj (one-sided p = 0.04) in the GIANT study. Cis-eQTL analysis demonstrated that allele A at rs12409479 was positively associated with PTBP2 expression level in subcutaneous adipose tissue (N = 385, p = 4.15 × 10-3). Dual-luciferase reporter assay showed that the region repressed PTBP2 gene expression by downregulating PTBP2 promoter activity (p < 0.001), and allele A at rs12409479 induced higher luciferase activity than allele G did (p = 4.15 × 10-3). EMSA experiment implied that allele A was more capable of binding to unknown transcription factors than allele G. Lastly, DGEA showed that the level of PTBP2 expression was higher in individuals with obesity than in individuals without obesity (N = 20 and 11, p = 0.04 and 9.22 × 10-3), suggesting a regulatory role in obesity development. CONCLUSIONS: Taken together, we hypothesize a regulating path from rs12409479 to trunk fat mass development through its allelic specific regulation of PTBP2 gene expression, thus providing some novel insight into the genetic basis of abdominal obesity.
60 schema:genre research_article
61 schema:inLanguage en
62 schema:isAccessibleForFree false
63 schema:isPartOf sg:journal.1035838
64 schema:name Identification of a 1p21 independent functional variant for abdominal obesity
65 schema:pagination 1-11
66 schema:productId N44eb613fe63947d9b8dd84f67273ea54
67 N5487fb1ece7c44f5badba3900bd7de09
68 N90e64633ccea49458a5ebc585e41b9bb
69 Ne17f3a8f6402481db279bbb682e18eff
70 Nf55f4a350751430a8f75c5f1815b8e48
71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113182226
72 https://doi.org/10.1038/s41366-019-0350-z
73 schema:sdDatePublished 2019-04-15T09:20
74 schema:sdLicense https://scigraph.springernature.com/explorer/license/
75 schema:sdPublisher Naa9a82be884c477bbde751f3829e70e6
76 schema:url https://www.nature.com/articles/s41366-019-0350-z
77 sgo:license sg:explorer/license/
78 sgo:sdDataset articles
79 rdf:type schema:ScholarlyArticle
80 N0a3f83b5662a44ecb25e5ea4fc5804c3 rdf:first Nc78c78ee37f54ef7b826356e24b7f6b8
81 rdf:rest N9cb0705c17814869bdeb99277fa308ff
82 N16132a0219bb4eab9c861ad4530be921 schema:affiliation https://www.grid.ac/institutes/grid.263761.7
83 schema:familyName Liu
84 schema:givenName Tao-Le
85 rdf:type schema:Person
86 N2a6c4b507dee457c9c9772ead92b12df rdf:first N30529fe7aea44bbcb4d746f56e194898
87 rdf:rest N908a7fc098d749eb84775280e8806c23
88 N2bb8ce630c0947bb80751dd20ca51d3f schema:affiliation https://www.grid.ac/institutes/grid.265219.b
89 schema:familyName Zhao
90 schema:givenName Lan Juan
91 rdf:type schema:Person
92 N2cc92b0fab234732b0cfe5d114bef052 rdf:first N6ad9e2cc1aaa473d8a78801b993a5999
93 rdf:rest N94b3a529b16c4700965e8d93f016a26f
94 N30529fe7aea44bbcb4d746f56e194898 schema:affiliation https://www.grid.ac/institutes/grid.265219.b
95 schema:familyName Tian
96 schema:givenName Qing
97 rdf:type schema:Person
98 N30e5ccaabc864dfb9933dc972322a0f9 schema:affiliation https://www.grid.ac/institutes/grid.263761.7
99 schema:familyName Liu
100 schema:givenName Lu
101 rdf:type schema:Person
102 N3426b05ba6f24739bb1528a783a205dc rdf:first Ne2df5d09445a45988ac98a823f528e28
103 rdf:rest N84a8aea7dd58462ab260357f29beb512
104 N3a85435043f440b5bade0403cabeea3d schema:affiliation https://www.grid.ac/institutes/grid.263761.7
105 schema:familyName Zhang
106 schema:givenName Lei
107 rdf:type schema:Person
108 N43d9ccd1185f4f10b949d8e6a855ce66 rdf:first N30e5ccaabc864dfb9933dc972322a0f9
109 rdf:rest N2cc92b0fab234732b0cfe5d114bef052
110 N44eb613fe63947d9b8dd84f67273ea54 schema:name doi
111 schema:value 10.1038/s41366-019-0350-z
112 rdf:type schema:PropertyValue
113 N4a4428fb38934a33a9f4efb7d9ed33f9 schema:affiliation Nf8af27d417694e2dabfa0dc202a6587b
114 schema:familyName Hai
115 schema:givenName Rong
116 rdf:type schema:Person
117 N5487fb1ece7c44f5badba3900bd7de09 schema:name readcube_id
118 schema:value cd5497872222183624af67f1ee2650711556e8fee5136422aeffc9123484d7f7
119 rdf:type schema:PropertyValue
120 N6ad9e2cc1aaa473d8a78801b993a5999 schema:affiliation https://www.grid.ac/institutes/grid.263761.7
121 schema:familyName Pei
122 schema:givenName Yu-Fang
123 rdf:type schema:Person
124 N750561c31e0f4f3dbe8bdd347919ad13 rdf:first N4a4428fb38934a33a9f4efb7d9ed33f9
125 rdf:rest N0a3f83b5662a44ecb25e5ea4fc5804c3
126 N775eaa9e219747d5a597010d75805392 schema:affiliation https://www.grid.ac/institutes/grid.216417.7
127 schema:familyName Xiao
128 schema:givenName Hong-Mei
129 rdf:type schema:Person
130 N7e0f5b3ff9e24094a268278d7468ee19 rdf:first Nab2beb693d46495ab73f005e10463703
131 rdf:rest N2a6c4b507dee457c9c9772ead92b12df
132 N84a8aea7dd58462ab260357f29beb512 rdf:first N3a85435043f440b5bade0403cabeea3d
133 rdf:rest rdf:nil
134 N87762000a5774a06a79b3ed32b8efc39 schema:affiliation https://www.grid.ac/institutes/grid.263761.7
135 schema:familyName Yang
136 schema:givenName Xiao-Lin
137 rdf:type schema:Person
138 N8e1f077e47ed470ba8933de3ff7e40f8 rdf:first Na7370a84d4424246ac7bba60b12d6480
139 rdf:rest Nd66188cadefa4dafac5a65e65b4ac688
140 N908a7fc098d749eb84775280e8806c23 rdf:first N775eaa9e219747d5a597010d75805392
141 rdf:rest Nf4bbd16f9b46421e97876fda2b7c1969
142 N90e64633ccea49458a5ebc585e41b9bb schema:name nlm_unique_id
143 schema:value 101256108
144 rdf:type schema:PropertyValue
145 N94b3a529b16c4700965e8d93f016a26f rdf:first N16132a0219bb4eab9c861ad4530be921
146 rdf:rest N8e1f077e47ed470ba8933de3ff7e40f8
147 N9964ded254a14b57ae3be8c8075cdb0f rdf:first Nde13daa7545b44028dd70020db2a292c
148 rdf:rest N750561c31e0f4f3dbe8bdd347919ad13
149 N9cb0705c17814869bdeb99277fa308ff rdf:first N2bb8ce630c0947bb80751dd20ca51d3f
150 rdf:rest N7e0f5b3ff9e24094a268278d7468ee19
151 Na7370a84d4424246ac7bba60b12d6480 schema:affiliation https://www.grid.ac/institutes/grid.263761.7
152 schema:familyName Hu
153 schema:givenName Wen-Zhu
154 rdf:type schema:Person
155 Naa9a82be884c477bbde751f3829e70e6 schema:name Springer Nature - SN SciGraph project
156 rdf:type schema:Organization
157 Nab2beb693d46495ab73f005e10463703 schema:affiliation https://www.grid.ac/institutes/grid.265219.b
158 schema:familyName Shen
159 schema:givenName Hui
160 rdf:type schema:Person
161 Nc78c78ee37f54ef7b826356e24b7f6b8 schema:affiliation https://www.grid.ac/institutes/grid.267139.8
162 schema:familyName Ran
163 schema:givenName Shu
164 rdf:type schema:Person
165 Nd66188cadefa4dafac5a65e65b4ac688 rdf:first N87762000a5774a06a79b3ed32b8efc39
166 rdf:rest N9964ded254a14b57ae3be8c8075cdb0f
167 Nde13daa7545b44028dd70020db2a292c schema:affiliation https://www.grid.ac/institutes/grid.263761.7
168 schema:familyName Li
169 schema:givenName Shan-Cheng
170 rdf:type schema:Person
171 Ne17f3a8f6402481db279bbb682e18eff schema:name pubmed_id
172 schema:value 30944420
173 rdf:type schema:PropertyValue
174 Ne2df5d09445a45988ac98a823f528e28 schema:affiliation https://www.grid.ac/institutes/grid.216417.7
175 schema:familyName Deng
176 schema:givenName Hong-Wen
177 rdf:type schema:Person
178 Ne9c150dbfc6941e8bb1745d451dbd3c0 schema:affiliation https://www.grid.ac/institutes/grid.268355.f
179 schema:familyName Zhang
180 schema:givenName Kun
181 rdf:type schema:Person
182 Nf4bbd16f9b46421e97876fda2b7c1969 rdf:first Ne9c150dbfc6941e8bb1745d451dbd3c0
183 rdf:rest N3426b05ba6f24739bb1528a783a205dc
184 Nf55f4a350751430a8f75c5f1815b8e48 schema:name dimensions_id
185 schema:value pub.1113182226
186 rdf:type schema:PropertyValue
187 Nf8af27d417694e2dabfa0dc202a6587b schema:name Inner Mongolia Autonomous Region People’s Hospital, Hohhot, Inner Mongolia, China
188 rdf:type schema:Organization
189 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
190 schema:name Biological Sciences
191 rdf:type schema:DefinedTerm
192 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
193 schema:name Genetics
194 rdf:type schema:DefinedTerm
195 sg:grant.2430005 http://pending.schema.org/fundedItem sg:pub.10.1038/s41366-019-0350-z
196 rdf:type schema:MonetaryGrant
197 sg:grant.2465233 http://pending.schema.org/fundedItem sg:pub.10.1038/s41366-019-0350-z
198 rdf:type schema:MonetaryGrant
199 sg:grant.2537302 http://pending.schema.org/fundedItem sg:pub.10.1038/s41366-019-0350-z
200 rdf:type schema:MonetaryGrant
201 sg:grant.3806102 http://pending.schema.org/fundedItem sg:pub.10.1038/s41366-019-0350-z
202 rdf:type schema:MonetaryGrant
203 sg:grant.4898951 http://pending.schema.org/fundedItem sg:pub.10.1038/s41366-019-0350-z
204 rdf:type schema:MonetaryGrant
205 sg:grant.6809990 http://pending.schema.org/fundedItem sg:pub.10.1038/s41366-019-0350-z
206 rdf:type schema:MonetaryGrant
207 sg:grant.7027394 http://pending.schema.org/fundedItem sg:pub.10.1038/s41366-019-0350-z
208 rdf:type schema:MonetaryGrant
209 sg:journal.1035838 schema:issn 0307-0565
210 1476-5497
211 schema:name International Journal of Obesity
212 rdf:type schema:Periodical
213 sg:pub.10.1023/a:1025635913927 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040055293
214 https://doi.org/10.1023/a:1025635913927
215 rdf:type schema:CreativeWork
216 sg:pub.10.1038/ijo.2008.11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033634851
217 https://doi.org/10.1038/ijo.2008.11
218 rdf:type schema:CreativeWork
219 sg:pub.10.1038/nature09534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010608717
220 https://doi.org/10.1038/nature09534
221 rdf:type schema:CreativeWork
222 sg:pub.10.1038/nature14132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019263071
223 https://doi.org/10.1038/nature14132
224 rdf:type schema:CreativeWork
225 sg:pub.10.1038/nature14177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053003561
226 https://doi.org/10.1038/nature14177
227 rdf:type schema:CreativeWork
228 sg:pub.10.1038/nature14878 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039034540
229 https://doi.org/10.1038/nature14878
230 rdf:type schema:CreativeWork
231 sg:pub.10.1038/ncomms14418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083820350
232 https://doi.org/10.1038/ncomms14418
233 rdf:type schema:CreativeWork
234 sg:pub.10.1038/ncomms14977 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085060523
235 https://doi.org/10.1038/ncomms14977
236 rdf:type schema:CreativeWork
237 sg:pub.10.1038/ng.2653 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032444369
238 https://doi.org/10.1038/ng.2653
239 rdf:type schema:CreativeWork
240 sg:pub.10.1038/ng.274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001671795
241 https://doi.org/10.1038/ng.274
242 rdf:type schema:CreativeWork
243 sg:pub.10.1038/ng.446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017756679
244 https://doi.org/10.1038/ng.446
245 rdf:type schema:CreativeWork
246 sg:pub.10.1038/ng.686 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013643799
247 https://doi.org/10.1038/ng.686
248 rdf:type schema:CreativeWork
249 sg:pub.10.1038/sj.ijo.0801941 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016610916
250 https://doi.org/10.1038/sj.ijo.0801941
251 rdf:type schema:CreativeWork
252 sg:pub.10.1038/srep20665 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046100563
253 https://doi.org/10.1038/srep20665
254 rdf:type schema:CreativeWork
255 sg:pub.10.1186/s13073-014-0085-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031069583
256 https://doi.org/10.1186/s13073-014-0085-3
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1001/jama.280.21.1843 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019955567
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1002/ejp.807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018816227
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1002/gepi.20303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008645052
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1002/gepi.20533 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039500245
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1002/oby.21775 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083855617
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1016/j.ajhg.2014.10.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053287809
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1016/j.amjcard.2016.01.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008368455
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1016/j.mce.2012.08.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009594938
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1016/j.tem.2005.02.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006419272
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1016/s0140-6736(05)67483-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013292841
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1016/s0140-6736(14)60460-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007350540
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1016/s0197-2456(97)00078-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052220718
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1056/nejmoa0801891 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011179835
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1086/519795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019061180
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1093/ajcn/72.2.490 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074677164
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1093/bioinformatics/bth457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008081196
289 rdf:type schema:CreativeWork
290 https://doi.org/10.1093/bioinformatics/btq340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047276303
291 rdf:type schema:CreativeWork
292 https://doi.org/10.1093/bioinformatics/btq419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036490983
293 rdf:type schema:CreativeWork
294 https://doi.org/10.1093/bioinformatics/btu143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027129928
295 rdf:type schema:CreativeWork
296 https://doi.org/10.1093/hmg/ddl215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049696141
297 rdf:type schema:CreativeWork
298 https://doi.org/10.1093/hmg/ddt464 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029120751
299 rdf:type schema:CreativeWork
300 https://doi.org/10.1093/hmg/ddt575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031751289
301 rdf:type schema:CreativeWork
302 https://doi.org/10.1111/j.0006-341x.1999.00997.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021081768
303 rdf:type schema:CreativeWork
304 https://doi.org/10.1111/j.1469-1809.2009.00539.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1001295123
305 rdf:type schema:CreativeWork
306 https://doi.org/10.1126/science.280.5368.1374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062561250
307 rdf:type schema:CreativeWork
308 https://doi.org/10.1136/bmj.327.7414.557 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005003882
309 rdf:type schema:CreativeWork
310 https://doi.org/10.1146/annurev.publhealth.29.020907.090954 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019655662
311 rdf:type schema:CreativeWork
312 https://doi.org/10.1155/2013/865965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009427396
313 rdf:type schema:CreativeWork
314 https://doi.org/10.1172/jci118083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039787122
315 rdf:type schema:CreativeWork
316 https://doi.org/10.1210/jc.2004-0372 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064287751
317 rdf:type schema:CreativeWork
318 https://doi.org/10.1210/jc.2004-0894 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028078895
319 rdf:type schema:CreativeWork
320 https://doi.org/10.1210/jc.2009-1475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064291576
321 rdf:type schema:CreativeWork
322 https://doi.org/10.1371/journal.pgen.1005378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014032763
323 rdf:type schema:CreativeWork
324 https://doi.org/10.1371/journal.pgen.1006528 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085075998
325 rdf:type schema:CreativeWork
326 https://doi.org/10.2147/dmso.s7384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026011191
327 rdf:type schema:CreativeWork
328 https://doi.org/10.2337/diab.45.12.1684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070737747
329 rdf:type schema:CreativeWork
330 https://doi.org/10.3390/ijms141122906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050762164
331 rdf:type schema:CreativeWork
332 https://doi.org/10.4239/wjd.v4.i2.31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072397421
333 rdf:type schema:CreativeWork
334 https://www.grid.ac/institutes/grid.216417.7 schema:alternateName Central South University
335 schema:name School of Basic Medical Sciences, Central South University, 410000, Changsha, China
336 Tulane Center for Genomics and Bioinformatics, Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
337 rdf:type schema:Organization
338 https://www.grid.ac/institutes/grid.263761.7 schema:alternateName Soochow University
339 schema:name Center for Circadian Clock, School of Biology & Basic Medical Sciences, Medical College of Soochow University, Suzhou, China
340 Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, China
341 Department of Epidemiology and Health Statistics, School of Public Health, Medical College of Soochow University, Suzhou, China
342 Department of Orthopedics, the Second Affiliated Hospital, Soochow University, Suzhou, China
343 Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
344 rdf:type schema:Organization
345 https://www.grid.ac/institutes/grid.265219.b schema:alternateName Tulane University
346 schema:name Tulane Center for Genomics and Bioinformatics, Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
347 rdf:type schema:Organization
348 https://www.grid.ac/institutes/grid.267139.8 schema:alternateName University of Shanghai for Science and Technology
349 schema:name School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
350 rdf:type schema:Organization
351 https://www.grid.ac/institutes/grid.268355.f schema:alternateName Xavier University of Louisiana
352 schema:name Department of Computer Science, Bioinformatics Facility of Xavier NIH RCMI Cancer Research Center, Xavier University of Louisiana, 70125, New Orleans, LA, USA
353 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...