Connexin-43 channels are a pathway for discharging lactate from glycolytic pancreatic ductal adenocarcinoma cells View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-04-03

AUTHORS

T H Dovmark, M Saccomano, A Hulikova, F Alves, P Swietach

ABSTRACT

Glycolytic cancer cells produce large quantities of lactate that must be removed to sustain metabolism in the absence of oxidative phosphorylation. The only venting mechanism described to do this at an adequate rate is H+-coupled lactate efflux on monocarboxylate transporters (MCTs). Outward MCT activity is, however, thermodynamically inhibited by extracellular acidity, a hallmark of solid tumours. This inhibition would feedback unfavourably on metabolism and growth, raising the possibility that other venting mechanisms become important in under-perfused tumours. We investigated connexin-assembled gap junctions as an alternative route for discharging lactate from pancreatic ductal adenocarcinoma (PDAC) cells. Diffusive coupling (calcein transmission) in vitro was strong between Colo357 cells, weaker yet hypoxia-inducible between BxPC3 cells, and very low between MiaPaCa2 cells. Coupling correlated with levels of connexin-43 (Cx43), a protein previously linked to late-stage disease. Evoked lactate dynamics, imaged in Colo357 spheroids using cytoplasmic pH as a read-out, indicated that lactate anions permeate gap junctions faster than highly-buffered H+ ions. At steady-state, junctional transmission of lactate (a chemical base) from the spheroid core had an alkalinizing effect on the rim, producing therein a milieu conducive for growth. Metabolite assays demonstrated that Cx43 knockdown increased cytoplasmic lactate retention in Colo357 spheroids (diameter ~150 μm). MiaPaCa2 cells, which are Cx43 negative in monolayer culture, showed markedly increased Cx43 immunoreactivity at areas of invasion in orthotopic xenograft mouse models. These tissue areas were associated with chronic extracellular acidosis (as indicated by the marker LAMP2 near/at the plasmalemma), which can explain the advantage of junctional transmission over MCT in vivo. We propose that Cx43 channels are important conduits for dissipating lactate anions from glycolytic PDAC cells. Furthermore, lactate entry into the better-perfused recipient cells has a favourable alkalinizing effect and supplies substrate for oxidative phosphorylation. Cx43 is thus a novel target for influencing metabolite handling in junctionally-coupled tumours. More... »

PAGES

4538-4550

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/onc.2017.71

DOI

http://dx.doi.org/10.1038/onc.2017.71

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084508985

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28368405


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Acidosis, Lactic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carcinoma, Pancreatic Ductal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Line, Tumor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Connexin 43", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gap Junctions", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glycolysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lactic Acid", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lysosomal-Associated Membrane Protein 2", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice, Nude", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Monocarboxylic Acid Transporters", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasm Transplantation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pancreatic Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phosphorylation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Small Interfering", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Spheroids, Cellular", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Physiology, Anatomy and Genetics, Oxford University, Oxford, UK.", 
          "id": "http://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Department of Physiology, Anatomy and Genetics, Oxford University, Oxford, UK."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dovmark", 
        "givenName": "T H", 
        "id": "sg:person.01332673715.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332673715.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max-Planck-Institute of Experimental Medicine, Goettingen, Germany.", 
          "id": "http://www.grid.ac/institutes/grid.419522.9", 
          "name": [
            "Max-Planck-Institute of Experimental Medicine, Goettingen, Germany."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Saccomano", 
        "givenName": "M", 
        "id": "sg:person.01132541112.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132541112.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physiology, Anatomy and Genetics, Oxford University, Oxford, UK.", 
          "id": "http://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Department of Physiology, Anatomy and Genetics, Oxford University, Oxford, UK."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hulikova", 
        "givenName": "A", 
        "id": "sg:person.0615722514.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615722514.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Haematology and Medical Oncology, University Medical Center Goettingen, Goettingen, Germany.", 
          "id": "http://www.grid.ac/institutes/grid.411984.1", 
          "name": [
            "Max-Planck-Institute of Experimental Medicine, Goettingen, Germany.", 
            "Institute for Diagnostic and Interventional Radiology, University Medical Center Goettingen, Goettingen, Germany.", 
            "Department of Haematology and Medical Oncology, University Medical Center Goettingen, Goettingen, Germany."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alves", 
        "givenName": "F", 
        "id": "sg:person.0707257110.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707257110.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physiology, Anatomy and Genetics, Oxford University, Oxford, UK.", 
          "id": "http://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Department of Physiology, Anatomy and Genetics, Oxford University, Oxford, UK."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Swietach", 
        "givenName": "P", 
        "id": "sg:person.01021256701.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021256701.32"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nrc1478", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032257073", 
          "https://doi.org/10.1038/nrc1478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc2841", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053731767", 
          "https://doi.org/10.1038/nrc2841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-5-46", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033137175", 
          "https://doi.org/10.1186/1471-2164-5-46"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms9752", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020508490", 
          "https://doi.org/10.1038/ncomms9752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/2091248a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024725585", 
          "https://doi.org/10.1038/2091248a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1741-7015-6-20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019663327", 
          "https://doi.org/10.1186/1741-7015-6-20"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4684-8181-5_103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028294689", 
          "https://doi.org/10.1007/978-1-4684-8181-5_103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc3579", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049443705", 
          "https://doi.org/10.1038/nrc3579"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-04-03", 
    "datePublishedReg": "2017-04-03", 
    "description": "Glycolytic cancer cells produce large quantities of lactate that must be removed to sustain metabolism in the absence of oxidative phosphorylation. The only venting mechanism described to do this at an adequate rate is H+-coupled lactate efflux on monocarboxylate transporters (MCTs). Outward MCT activity is, however, thermodynamically inhibited by extracellular acidity, a hallmark of solid tumours. This inhibition would feedback unfavourably on metabolism and growth, raising the possibility that other venting mechanisms become important in under-perfused tumours. We investigated connexin-assembled gap junctions as an alternative route for discharging lactate from pancreatic ductal adenocarcinoma (PDAC) cells. Diffusive coupling (calcein transmission) in vitro was strong between Colo357 cells, weaker yet hypoxia-inducible between BxPC3 cells, and very low between MiaPaCa2 cells. Coupling correlated with levels of connexin-43 (Cx43), a protein previously linked to late-stage disease. Evoked lactate dynamics, imaged in Colo357 spheroids using cytoplasmic pH as a read-out, indicated that lactate anions permeate gap junctions faster than highly-buffered H+ ions. At steady-state, junctional transmission of lactate (a chemical base) from the spheroid core had an alkalinizing effect on the rim, producing therein a milieu conducive for growth. Metabolite assays demonstrated that Cx43 knockdown increased cytoplasmic lactate retention in Colo357 spheroids (diameter ~150\u2009\u03bcm). MiaPaCa2 cells, which are Cx43 negative in monolayer culture, showed markedly increased Cx43 immunoreactivity at areas of invasion in orthotopic xenograft mouse models. These tissue areas were associated with chronic extracellular acidosis (as indicated by the marker LAMP2 near/at the plasmalemma), which can explain the advantage of junctional transmission over MCT in vivo. We propose that Cx43 channels are important conduits for dissipating lactate anions from glycolytic PDAC cells. Furthermore, lactate entry into the better-perfused recipient cells has a favourable alkalinizing effect and supplies substrate for oxidative phosphorylation. Cx43 is thus a novel target for influencing metabolite handling in junctionally-coupled tumours.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/onc.2017.71", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3781463", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5144307", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1097543", 
        "issn": [
          "0950-9232", 
          "1476-5594"
        ], 
        "name": "Oncogene", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "32", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "36"
      }
    ], 
    "keywords": [
      "pancreatic ductal adenocarcinoma cells", 
      "ductal adenocarcinoma cells", 
      "junctional transmission", 
      "monocarboxylate transporters", 
      "MiaPaCa2 cells", 
      "orthotopic xenograft mouse model", 
      "adenocarcinoma cells", 
      "late-stage disease", 
      "xenograft mouse model", 
      "gap junctions", 
      "areas of invasion", 
      "Colo357 cells", 
      "Cx43 immunoreactivity", 
      "glycolytic cancer cells", 
      "mouse model", 
      "PDAC cells", 
      "solid tumors", 
      "lactate efflux", 
      "connexin 43 channels", 
      "novel target", 
      "extracellular acidosis", 
      "connexin 43", 
      "tumors", 
      "cancer cells", 
      "lactate dynamics", 
      "tissue area", 
      "oxidative phosphorylation", 
      "BxPC3 cells", 
      "metabolite assays", 
      "extracellular acidity", 
      "lactate", 
      "lactate retention", 
      "cells", 
      "Cx43 knockdown", 
      "monolayer cultures", 
      "recipient cells", 
      "metabolism", 
      "Cx43 channels", 
      "MCT activity", 
      "lactate anion", 
      "acidosis", 
      "immunoreactivity", 
      "disease", 
      "phosphorylation", 
      "spheroid core", 
      "cytoplasmic pH", 
      "Cx43", 
      "vitro", 
      "vivo", 
      "inhibition", 
      "invasion", 
      "knockdown", 
      "hallmark", 
      "efflux", 
      "assays", 
      "effect", 
      "transmission", 
      "mechanism", 
      "transporters", 
      "junction", 
      "adequate rate", 
      "pathway", 
      "target", 
      "absence", 
      "levels", 
      "spheroids", 
      "activity", 
      "protein", 
      "conduit", 
      "rate", 
      "entry", 
      "alternative route", 
      "area", 
      "culture", 
      "growth", 
      "important conduit", 
      "retention", 
      "rim", 
      "handling", 
      "large quantities", 
      "route", 
      "possibility", 
      "channels", 
      "model", 
      "supply", 
      "pH", 
      "advantages", 
      "quantity", 
      "acidity", 
      "diffusive coupling", 
      "coupling", 
      "anions", 
      "core", 
      "dynamics", 
      "ions", 
      "Outward MCT activity", 
      "connexin-assembled gap junctions", 
      "Colo357 spheroids", 
      "cytoplasmic lactate retention", 
      "chronic extracellular acidosis", 
      "glycolytic PDAC cells", 
      "metabolite handling", 
      "glycolytic pancreatic ductal adenocarcinoma cells"
    ], 
    "name": "Connexin-43 channels are a pathway for discharging lactate from glycolytic pancreatic ductal adenocarcinoma cells", 
    "pagination": "4538-4550", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084508985"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/onc.2017.71"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28368405"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/onc.2017.71", 
      "https://app.dimensions.ai/details/publication/pub.1084508985"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_741.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/onc.2017.71"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/onc.2017.71'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/onc.2017.71'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/onc.2017.71'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/onc.2017.71'


 

This table displays all metadata directly associated to this object as RDF triples.

317 TRIPLES      22 PREDICATES      157 URIs      140 LITERALS      26 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/onc.2017.71 schema:about N060a608d0f3d49adb0095ae4dbbbc083
2 N0c82fad28cf545638ca98e781d2d001a
3 N1098036fb2124c58ba40ed62d9dc6544
4 N188e597eae494759bb03793f1753d8a8
5 N209aa0bdfade4e63925533b0f5757024
6 N23a012f660444fa189a4e8d3d5708189
7 N2737c3758bf244ceb39232e1c1a69208
8 N28db3c22c7624f54a0003b227ec289ad
9 N52f9dc794ebc424bbd1716342e603b47
10 N6868b88f029742f283e477ad7db1126f
11 N7fe2472dd54a4abe856fc5260a75b0f5
12 Na0c2ade9e2724fba91de082539def669
13 Nae4707e8fff24a7fae6171126867f905
14 Nb4289215f557442c8c4dad38fdad86e8
15 Nc2d95d5befbd4c34a26bd721211b2668
16 Nd9c92b7122e0444aa3aee8a30d75c376
17 Ne15ff32184ea441784dabef9e87bf54e
18 Nef4b76d679d143788b7d318bec92c4c1
19 Nf614268b33984b0f9c58053d62d54ad0
20 anzsrc-for:11
21 anzsrc-for:1103
22 anzsrc-for:1112
23 schema:author Nd54ccb47a0854028b8fa2d78e0665fb3
24 schema:citation sg:pub.10.1007/978-1-4684-8181-5_103
25 sg:pub.10.1038/2091248a0
26 sg:pub.10.1038/ncomms9752
27 sg:pub.10.1038/nrc1478
28 sg:pub.10.1038/nrc2841
29 sg:pub.10.1038/nrc3579
30 sg:pub.10.1186/1471-2164-5-46
31 sg:pub.10.1186/1741-7015-6-20
32 schema:datePublished 2017-04-03
33 schema:datePublishedReg 2017-04-03
34 schema:description Glycolytic cancer cells produce large quantities of lactate that must be removed to sustain metabolism in the absence of oxidative phosphorylation. The only venting mechanism described to do this at an adequate rate is H<sup>+</sup>-coupled lactate efflux on monocarboxylate transporters (MCTs). Outward MCT activity is, however, thermodynamically inhibited by extracellular acidity, a hallmark of solid tumours. This inhibition would feedback unfavourably on metabolism and growth, raising the possibility that other venting mechanisms become important in under-perfused tumours. We investigated connexin-assembled gap junctions as an alternative route for discharging lactate from pancreatic ductal adenocarcinoma (PDAC) cells. Diffusive coupling (calcein transmission) in vitro was strong between Colo357 cells, weaker yet hypoxia-inducible between BxPC3 cells, and very low between MiaPaCa2 cells. Coupling correlated with levels of connexin-43 (Cx43), a protein previously linked to late-stage disease. Evoked lactate dynamics, imaged in Colo357 spheroids using cytoplasmic pH as a read-out, indicated that lactate anions permeate gap junctions faster than highly-buffered H<sup>+</sup> ions. At steady-state, junctional transmission of lactate (a chemical base) from the spheroid core had an alkalinizing effect on the rim, producing therein a milieu conducive for growth. Metabolite assays demonstrated that Cx43 knockdown increased cytoplasmic lactate retention in Colo357 spheroids (diameter ~150 μm). MiaPaCa2 cells, which are Cx43 negative in monolayer culture, showed markedly increased Cx43 immunoreactivity at areas of invasion in orthotopic xenograft mouse models. These tissue areas were associated with chronic extracellular acidosis (as indicated by the marker LAMP2 near/at the plasmalemma), which can explain the advantage of junctional transmission over MCT in vivo. We propose that Cx43 channels are important conduits for dissipating lactate anions from glycolytic PDAC cells. Furthermore, lactate entry into the better-perfused recipient cells has a favourable alkalinizing effect and supplies substrate for oxidative phosphorylation. Cx43 is thus a novel target for influencing metabolite handling in junctionally-coupled tumours.
35 schema:genre article
36 schema:inLanguage en
37 schema:isAccessibleForFree true
38 schema:isPartOf N72a9d15e5e7c45b1b760cf0ab4449446
39 Nf8f5ba4ac2764f79890c7cb0471cdeba
40 sg:journal.1097543
41 schema:keywords BxPC3 cells
42 Colo357 cells
43 Colo357 spheroids
44 Cx43
45 Cx43 channels
46 Cx43 immunoreactivity
47 Cx43 knockdown
48 MCT activity
49 MiaPaCa2 cells
50 Outward MCT activity
51 PDAC cells
52 absence
53 acidity
54 acidosis
55 activity
56 adenocarcinoma cells
57 adequate rate
58 advantages
59 alternative route
60 anions
61 area
62 areas of invasion
63 assays
64 cancer cells
65 cells
66 channels
67 chronic extracellular acidosis
68 conduit
69 connexin 43
70 connexin 43 channels
71 connexin-assembled gap junctions
72 core
73 coupling
74 culture
75 cytoplasmic lactate retention
76 cytoplasmic pH
77 diffusive coupling
78 disease
79 ductal adenocarcinoma cells
80 dynamics
81 effect
82 efflux
83 entry
84 extracellular acidity
85 extracellular acidosis
86 gap junctions
87 glycolytic PDAC cells
88 glycolytic cancer cells
89 glycolytic pancreatic ductal adenocarcinoma cells
90 growth
91 hallmark
92 handling
93 immunoreactivity
94 important conduit
95 inhibition
96 invasion
97 ions
98 junction
99 junctional transmission
100 knockdown
101 lactate
102 lactate anion
103 lactate dynamics
104 lactate efflux
105 lactate retention
106 large quantities
107 late-stage disease
108 levels
109 mechanism
110 metabolism
111 metabolite assays
112 metabolite handling
113 model
114 monocarboxylate transporters
115 monolayer cultures
116 mouse model
117 novel target
118 orthotopic xenograft mouse model
119 oxidative phosphorylation
120 pH
121 pancreatic ductal adenocarcinoma cells
122 pathway
123 phosphorylation
124 possibility
125 protein
126 quantity
127 rate
128 recipient cells
129 retention
130 rim
131 route
132 solid tumors
133 spheroid core
134 spheroids
135 supply
136 target
137 tissue area
138 transmission
139 transporters
140 tumors
141 vitro
142 vivo
143 xenograft mouse model
144 schema:name Connexin-43 channels are a pathway for discharging lactate from glycolytic pancreatic ductal adenocarcinoma cells
145 schema:pagination 4538-4550
146 schema:productId N49b969602d234fb59d06b1dbcf35371e
147 Nbd7216a6acbb47d0823d929cc25b1455
148 Nccf003108be847c99afd3b94d8792e85
149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084508985
150 https://doi.org/10.1038/onc.2017.71
151 schema:sdDatePublished 2021-12-01T19:38
152 schema:sdLicense https://scigraph.springernature.com/explorer/license/
153 schema:sdPublisher N519273f00b4d4390a0f0221626eb4d3a
154 schema:url https://doi.org/10.1038/onc.2017.71
155 sgo:license sg:explorer/license/
156 sgo:sdDataset articles
157 rdf:type schema:ScholarlyArticle
158 N060a608d0f3d49adb0095ae4dbbbc083 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Animals
160 rdf:type schema:DefinedTerm
161 N0c82fad28cf545638ca98e781d2d001a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Cell Line, Tumor
163 rdf:type schema:DefinedTerm
164 N0cb62f9276e94a26ad4e6572f6f86398 rdf:first sg:person.01132541112.52
165 rdf:rest N7da00a68a8bb48308945aff7e692bdb3
166 N1098036fb2124c58ba40ed62d9dc6544 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Carcinoma, Pancreatic Ductal
168 rdf:type schema:DefinedTerm
169 N188e597eae494759bb03793f1753d8a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Gap Junctions
171 rdf:type schema:DefinedTerm
172 N209aa0bdfade4e63925533b0f5757024 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Glycolysis
174 rdf:type schema:DefinedTerm
175 N23a012f660444fa189a4e8d3d5708189 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Monocarboxylic Acid Transporters
177 rdf:type schema:DefinedTerm
178 N2737c3758bf244ceb39232e1c1a69208 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Humans
180 rdf:type schema:DefinedTerm
181 N28db3c22c7624f54a0003b227ec289ad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
182 schema:name Mice
183 rdf:type schema:DefinedTerm
184 N49b969602d234fb59d06b1dbcf35371e schema:name dimensions_id
185 schema:value pub.1084508985
186 rdf:type schema:PropertyValue
187 N519273f00b4d4390a0f0221626eb4d3a schema:name Springer Nature - SN SciGraph project
188 rdf:type schema:Organization
189 N52f9dc794ebc424bbd1716342e603b47 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
190 schema:name Spheroids, Cellular
191 rdf:type schema:DefinedTerm
192 N6868b88f029742f283e477ad7db1126f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
193 schema:name Lactic Acid
194 rdf:type schema:DefinedTerm
195 N72a9d15e5e7c45b1b760cf0ab4449446 schema:issueNumber 32
196 rdf:type schema:PublicationIssue
197 N7da00a68a8bb48308945aff7e692bdb3 rdf:first sg:person.0615722514.95
198 rdf:rest Ndcf9c3cea87048b48179a188df169558
199 N7fe2472dd54a4abe856fc5260a75b0f5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
200 schema:name Connexin 43
201 rdf:type schema:DefinedTerm
202 Na0c2ade9e2724fba91de082539def669 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
203 schema:name Pancreatic Neoplasms
204 rdf:type schema:DefinedTerm
205 Nae4707e8fff24a7fae6171126867f905 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
206 schema:name Acidosis, Lactic
207 rdf:type schema:DefinedTerm
208 Nb4289215f557442c8c4dad38fdad86e8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
209 schema:name Phosphorylation
210 rdf:type schema:DefinedTerm
211 Nbd7216a6acbb47d0823d929cc25b1455 schema:name pubmed_id
212 schema:value 28368405
213 rdf:type schema:PropertyValue
214 Nc2d95d5befbd4c34a26bd721211b2668 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
215 schema:name RNA, Small Interfering
216 rdf:type schema:DefinedTerm
217 Nccf003108be847c99afd3b94d8792e85 schema:name doi
218 schema:value 10.1038/onc.2017.71
219 rdf:type schema:PropertyValue
220 Nd54ccb47a0854028b8fa2d78e0665fb3 rdf:first sg:person.01332673715.15
221 rdf:rest N0cb62f9276e94a26ad4e6572f6f86398
222 Nd9c92b7122e0444aa3aee8a30d75c376 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
223 schema:name Male
224 rdf:type schema:DefinedTerm
225 Ndcf9c3cea87048b48179a188df169558 rdf:first sg:person.0707257110.38
226 rdf:rest Ndfb30f6fb50f44d49c79f5b862c1b92b
227 Ndfb30f6fb50f44d49c79f5b862c1b92b rdf:first sg:person.01021256701.32
228 rdf:rest rdf:nil
229 Ne15ff32184ea441784dabef9e87bf54e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
230 schema:name Mice, Nude
231 rdf:type schema:DefinedTerm
232 Nef4b76d679d143788b7d318bec92c4c1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
233 schema:name Neoplasm Transplantation
234 rdf:type schema:DefinedTerm
235 Nf614268b33984b0f9c58053d62d54ad0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
236 schema:name Lysosomal-Associated Membrane Protein 2
237 rdf:type schema:DefinedTerm
238 Nf8f5ba4ac2764f79890c7cb0471cdeba schema:volumeNumber 36
239 rdf:type schema:PublicationVolume
240 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
241 schema:name Medical and Health Sciences
242 rdf:type schema:DefinedTerm
243 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
244 schema:name Clinical Sciences
245 rdf:type schema:DefinedTerm
246 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
247 schema:name Oncology and Carcinogenesis
248 rdf:type schema:DefinedTerm
249 sg:grant.3781463 http://pending.schema.org/fundedItem sg:pub.10.1038/onc.2017.71
250 rdf:type schema:MonetaryGrant
251 sg:grant.5144307 http://pending.schema.org/fundedItem sg:pub.10.1038/onc.2017.71
252 rdf:type schema:MonetaryGrant
253 sg:journal.1097543 schema:issn 0950-9232
254 1476-5594
255 schema:name Oncogene
256 schema:publisher Springer Nature
257 rdf:type schema:Periodical
258 sg:person.01021256701.32 schema:affiliation grid-institutes:grid.4991.5
259 schema:familyName Swietach
260 schema:givenName P
261 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021256701.32
262 rdf:type schema:Person
263 sg:person.01132541112.52 schema:affiliation grid-institutes:grid.419522.9
264 schema:familyName Saccomano
265 schema:givenName M
266 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132541112.52
267 rdf:type schema:Person
268 sg:person.01332673715.15 schema:affiliation grid-institutes:grid.4991.5
269 schema:familyName Dovmark
270 schema:givenName T H
271 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332673715.15
272 rdf:type schema:Person
273 sg:person.0615722514.95 schema:affiliation grid-institutes:grid.4991.5
274 schema:familyName Hulikova
275 schema:givenName A
276 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615722514.95
277 rdf:type schema:Person
278 sg:person.0707257110.38 schema:affiliation grid-institutes:grid.411984.1
279 schema:familyName Alves
280 schema:givenName F
281 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707257110.38
282 rdf:type schema:Person
283 sg:pub.10.1007/978-1-4684-8181-5_103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028294689
284 https://doi.org/10.1007/978-1-4684-8181-5_103
285 rdf:type schema:CreativeWork
286 sg:pub.10.1038/2091248a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024725585
287 https://doi.org/10.1038/2091248a0
288 rdf:type schema:CreativeWork
289 sg:pub.10.1038/ncomms9752 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020508490
290 https://doi.org/10.1038/ncomms9752
291 rdf:type schema:CreativeWork
292 sg:pub.10.1038/nrc1478 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032257073
293 https://doi.org/10.1038/nrc1478
294 rdf:type schema:CreativeWork
295 sg:pub.10.1038/nrc2841 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053731767
296 https://doi.org/10.1038/nrc2841
297 rdf:type schema:CreativeWork
298 sg:pub.10.1038/nrc3579 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049443705
299 https://doi.org/10.1038/nrc3579
300 rdf:type schema:CreativeWork
301 sg:pub.10.1186/1471-2164-5-46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033137175
302 https://doi.org/10.1186/1471-2164-5-46
303 rdf:type schema:CreativeWork
304 sg:pub.10.1186/1741-7015-6-20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019663327
305 https://doi.org/10.1186/1741-7015-6-20
306 rdf:type schema:CreativeWork
307 grid-institutes:grid.411984.1 schema:alternateName Department of Haematology and Medical Oncology, University Medical Center Goettingen, Goettingen, Germany.
308 schema:name Department of Haematology and Medical Oncology, University Medical Center Goettingen, Goettingen, Germany.
309 Institute for Diagnostic and Interventional Radiology, University Medical Center Goettingen, Goettingen, Germany.
310 Max-Planck-Institute of Experimental Medicine, Goettingen, Germany.
311 rdf:type schema:Organization
312 grid-institutes:grid.419522.9 schema:alternateName Max-Planck-Institute of Experimental Medicine, Goettingen, Germany.
313 schema:name Max-Planck-Institute of Experimental Medicine, Goettingen, Germany.
314 rdf:type schema:Organization
315 grid-institutes:grid.4991.5 schema:alternateName Department of Physiology, Anatomy and Genetics, Oxford University, Oxford, UK.
316 schema:name Department of Physiology, Anatomy and Genetics, Oxford University, Oxford, UK.
317 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...