Connexin-43 channels are a pathway for discharging lactate from glycolytic pancreatic ductal adenocarcinoma cells View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-04-03

AUTHORS

T H Dovmark, M Saccomano, A Hulikova, F Alves, P Swietach

ABSTRACT

Glycolytic cancer cells produce large quantities of lactate that must be removed to sustain metabolism in the absence of oxidative phosphorylation. The only venting mechanism described to do this at an adequate rate is H+-coupled lactate efflux on monocarboxylate transporters (MCTs). Outward MCT activity is, however, thermodynamically inhibited by extracellular acidity, a hallmark of solid tumours. This inhibition would feedback unfavourably on metabolism and growth, raising the possibility that other venting mechanisms become important in under-perfused tumours. We investigated connexin-assembled gap junctions as an alternative route for discharging lactate from pancreatic ductal adenocarcinoma (PDAC) cells. Diffusive coupling (calcein transmission) in vitro was strong between Colo357 cells, weaker yet hypoxia-inducible between BxPC3 cells, and very low between MiaPaCa2 cells. Coupling correlated with levels of connexin-43 (Cx43), a protein previously linked to late-stage disease. Evoked lactate dynamics, imaged in Colo357 spheroids using cytoplasmic pH as a read-out, indicated that lactate anions permeate gap junctions faster than highly-buffered H+ ions. At steady-state, junctional transmission of lactate (a chemical base) from the spheroid core had an alkalinizing effect on the rim, producing therein a milieu conducive for growth. Metabolite assays demonstrated that Cx43 knockdown increased cytoplasmic lactate retention in Colo357 spheroids (diameter ~150 μm). MiaPaCa2 cells, which are Cx43 negative in monolayer culture, showed markedly increased Cx43 immunoreactivity at areas of invasion in orthotopic xenograft mouse models. These tissue areas were associated with chronic extracellular acidosis (as indicated by the marker LAMP2 near/at the plasmalemma), which can explain the advantage of junctional transmission over MCT in vivo. We propose that Cx43 channels are important conduits for dissipating lactate anions from glycolytic PDAC cells. Furthermore, lactate entry into the better-perfused recipient cells has a favourable alkalinizing effect and supplies substrate for oxidative phosphorylation. Cx43 is thus a novel target for influencing metabolite handling in junctionally-coupled tumours. More... »

PAGES

4538-4550

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/onc.2017.71

DOI

http://dx.doi.org/10.1038/onc.2017.71

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084508985

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28368405


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Acidosis, Lactic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carcinoma, Pancreatic Ductal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Line, Tumor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Connexin 43", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gap Junctions", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glycolysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lactic Acid", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lysosomal-Associated Membrane Protein 2", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice, Nude", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Monocarboxylic Acid Transporters", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasm Transplantation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pancreatic Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phosphorylation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Small Interfering", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Spheroids, Cellular", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Physiology, Anatomy and Genetics, Oxford University, Oxford, UK.", 
          "id": "http://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Department of Physiology, Anatomy and Genetics, Oxford University, Oxford, UK."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dovmark", 
        "givenName": "T H", 
        "id": "sg:person.01332673715.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332673715.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max-Planck-Institute of Experimental Medicine, Goettingen, Germany.", 
          "id": "http://www.grid.ac/institutes/grid.419522.9", 
          "name": [
            "Max-Planck-Institute of Experimental Medicine, Goettingen, Germany."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Saccomano", 
        "givenName": "M", 
        "id": "sg:person.01132541112.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132541112.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physiology, Anatomy and Genetics, Oxford University, Oxford, UK.", 
          "id": "http://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Department of Physiology, Anatomy and Genetics, Oxford University, Oxford, UK."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hulikova", 
        "givenName": "A", 
        "id": "sg:person.0615722514.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615722514.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Haematology and Medical Oncology, University Medical Center Goettingen, Goettingen, Germany.", 
          "id": "http://www.grid.ac/institutes/grid.411984.1", 
          "name": [
            "Max-Planck-Institute of Experimental Medicine, Goettingen, Germany.", 
            "Institute for Diagnostic and Interventional Radiology, University Medical Center Goettingen, Goettingen, Germany.", 
            "Department of Haematology and Medical Oncology, University Medical Center Goettingen, Goettingen, Germany."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alves", 
        "givenName": "F", 
        "id": "sg:person.0707257110.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707257110.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physiology, Anatomy and Genetics, Oxford University, Oxford, UK.", 
          "id": "http://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Department of Physiology, Anatomy and Genetics, Oxford University, Oxford, UK."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Swietach", 
        "givenName": "P", 
        "id": "sg:person.01021256701.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021256701.32"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1471-2164-5-46", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033137175", 
          "https://doi.org/10.1186/1471-2164-5-46"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc3579", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049443705", 
          "https://doi.org/10.1038/nrc3579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc2841", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053731767", 
          "https://doi.org/10.1038/nrc2841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/2091248a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024725585", 
          "https://doi.org/10.1038/2091248a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1741-7015-6-20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019663327", 
          "https://doi.org/10.1186/1741-7015-6-20"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms9752", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020508490", 
          "https://doi.org/10.1038/ncomms9752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4684-8181-5_103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028294689", 
          "https://doi.org/10.1007/978-1-4684-8181-5_103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc1478", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032257073", 
          "https://doi.org/10.1038/nrc1478"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-04-03", 
    "datePublishedReg": "2017-04-03", 
    "description": "Glycolytic cancer cells produce large quantities of lactate that must be removed to sustain metabolism in the absence of oxidative phosphorylation. The only venting mechanism described to do this at an adequate rate is H+-coupled lactate efflux on monocarboxylate transporters (MCTs). Outward MCT activity is, however, thermodynamically inhibited by extracellular acidity, a hallmark of solid tumours. This inhibition would feedback unfavourably on metabolism and growth, raising the possibility that other venting mechanisms become important in under-perfused tumours. We investigated connexin-assembled gap junctions as an alternative route for discharging lactate from pancreatic ductal adenocarcinoma (PDAC) cells. Diffusive coupling (calcein transmission) in vitro was strong between Colo357 cells, weaker yet hypoxia-inducible between BxPC3 cells, and very low between MiaPaCa2 cells. Coupling correlated with levels of connexin-43 (Cx43), a protein previously linked to late-stage disease. Evoked lactate dynamics, imaged in Colo357 spheroids using cytoplasmic pH as a read-out, indicated that lactate anions permeate gap junctions faster than highly-buffered H+ ions. At steady-state, junctional transmission of lactate (a chemical base) from the spheroid core had an alkalinizing effect on the rim, producing therein a milieu conducive for growth. Metabolite assays demonstrated that Cx43 knockdown increased cytoplasmic lactate retention in Colo357 spheroids (diameter ~150\u2009\u03bcm). MiaPaCa2 cells, which are Cx43 negative in monolayer culture, showed markedly increased Cx43 immunoreactivity at areas of invasion in orthotopic xenograft mouse models. These tissue areas were associated with chronic extracellular acidosis (as indicated by the marker LAMP2 near/at the plasmalemma), which can explain the advantage of junctional transmission over MCT in vivo. We propose that Cx43 channels are important conduits for dissipating lactate anions from glycolytic PDAC cells. Furthermore, lactate entry into the better-perfused recipient cells has a favourable alkalinizing effect and supplies substrate for oxidative phosphorylation. Cx43 is thus a novel target for influencing metabolite handling in junctionally-coupled tumours.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/onc.2017.71", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5144307", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3781463", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1097543", 
        "issn": [
          "0950-9232", 
          "1476-5594"
        ], 
        "name": "Oncogene", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "32", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "36"
      }
    ], 
    "keywords": [
      "pancreatic ductal adenocarcinoma cells", 
      "ductal adenocarcinoma cells", 
      "junctional transmission", 
      "monocarboxylate transporters", 
      "MiaPaCa2 cells", 
      "orthotopic xenograft mouse model", 
      "adenocarcinoma cells", 
      "late-stage disease", 
      "xenograft mouse model", 
      "gap junctions", 
      "areas of invasion", 
      "Colo357 cells", 
      "Cx43 immunoreactivity", 
      "glycolytic cancer cells", 
      "mouse model", 
      "PDAC cells", 
      "solid tumors", 
      "lactate efflux", 
      "connexin 43 channels", 
      "novel target", 
      "extracellular acidosis", 
      "connexin 43", 
      "tumors", 
      "cancer cells", 
      "lactate dynamics", 
      "tissue area", 
      "oxidative phosphorylation", 
      "BxPC3 cells", 
      "metabolite assays", 
      "extracellular acidity", 
      "lactate", 
      "lactate retention", 
      "cells", 
      "Cx43 knockdown", 
      "monolayer cultures", 
      "recipient cells", 
      "metabolism", 
      "Cx43 channels", 
      "MCT activity", 
      "lactate anion", 
      "acidosis", 
      "immunoreactivity", 
      "disease", 
      "phosphorylation", 
      "spheroid core", 
      "cytoplasmic pH", 
      "Cx43", 
      "vitro", 
      "vivo", 
      "inhibition", 
      "invasion", 
      "knockdown", 
      "hallmark", 
      "efflux", 
      "assays", 
      "effect", 
      "transmission", 
      "mechanism", 
      "transporters", 
      "junction", 
      "adequate rate", 
      "pathway", 
      "target", 
      "absence", 
      "levels", 
      "spheroids", 
      "activity", 
      "protein", 
      "conduit", 
      "rate", 
      "entry", 
      "alternative route", 
      "area", 
      "culture", 
      "growth", 
      "important conduit", 
      "retention", 
      "rim", 
      "handling", 
      "large quantities", 
      "route", 
      "possibility", 
      "channels", 
      "model", 
      "supply", 
      "pH", 
      "advantages", 
      "quantity", 
      "acidity", 
      "diffusive coupling", 
      "coupling", 
      "anions", 
      "core", 
      "dynamics", 
      "ions", 
      "Outward MCT activity", 
      "connexin-assembled gap junctions", 
      "Colo357 spheroids", 
      "cytoplasmic lactate retention", 
      "chronic extracellular acidosis", 
      "glycolytic PDAC cells", 
      "metabolite handling", 
      "glycolytic pancreatic ductal adenocarcinoma cells"
    ], 
    "name": "Connexin-43 channels are a pathway for discharging lactate from glycolytic pancreatic ductal adenocarcinoma cells", 
    "pagination": "4538-4550", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084508985"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/onc.2017.71"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28368405"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/onc.2017.71", 
      "https://app.dimensions.ai/details/publication/pub.1084508985"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_741.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/onc.2017.71"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/onc.2017.71'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/onc.2017.71'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/onc.2017.71'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/onc.2017.71'


 

This table displays all metadata directly associated to this object as RDF triples.

317 TRIPLES      22 PREDICATES      157 URIs      140 LITERALS      26 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/onc.2017.71 schema:about N02351332d8ae446693626a774a6cd2e3
2 N074145a0966546309a4d646daf45a753
3 N1d6d926f84654fd3932e6a41a4ed439d
4 N356994035f6f429687c5ce5461ea43e7
5 N47d493abd7a64ad0b0784e6504870798
6 N592d09b9dac8455ca75dbfd7e07602b9
7 N60f8095f5d484f6bb870a8986a125f04
8 N7453f881f5fb4a84ac01931048e6bd99
9 N74e41dfd6a8849f59b237cb56ae4b31d
10 N7c0fec7998794e6a94583710bab7f530
11 N84dc9b4316984bc190548db3a19e8d7c
12 N91aa2a9a425d43cd948b596f40ceac35
13 Na18ff2b475ef4cf28d54794bafa2491f
14 Na47b884deef44019ab74b376fccc64a4
15 Ndaa7ed8c34a146fe9cb25abc7040cf3e
16 Ne92e953253fe44faadaac543f92c79c8
17 Nedf87ce4fc944775be19fcdd799f93b5
18 Nf41f3fd3024f4057bfc7d00773afae49
19 Nfddb3fc998334d8db51f83d83d72e508
20 anzsrc-for:11
21 anzsrc-for:1103
22 anzsrc-for:1112
23 schema:author Nedaf2d63447943b09c896f33539abd94
24 schema:citation sg:pub.10.1007/978-1-4684-8181-5_103
25 sg:pub.10.1038/2091248a0
26 sg:pub.10.1038/ncomms9752
27 sg:pub.10.1038/nrc1478
28 sg:pub.10.1038/nrc2841
29 sg:pub.10.1038/nrc3579
30 sg:pub.10.1186/1471-2164-5-46
31 sg:pub.10.1186/1741-7015-6-20
32 schema:datePublished 2017-04-03
33 schema:datePublishedReg 2017-04-03
34 schema:description Glycolytic cancer cells produce large quantities of lactate that must be removed to sustain metabolism in the absence of oxidative phosphorylation. The only venting mechanism described to do this at an adequate rate is H<sup>+</sup>-coupled lactate efflux on monocarboxylate transporters (MCTs). Outward MCT activity is, however, thermodynamically inhibited by extracellular acidity, a hallmark of solid tumours. This inhibition would feedback unfavourably on metabolism and growth, raising the possibility that other venting mechanisms become important in under-perfused tumours. We investigated connexin-assembled gap junctions as an alternative route for discharging lactate from pancreatic ductal adenocarcinoma (PDAC) cells. Diffusive coupling (calcein transmission) in vitro was strong between Colo357 cells, weaker yet hypoxia-inducible between BxPC3 cells, and very low between MiaPaCa2 cells. Coupling correlated with levels of connexin-43 (Cx43), a protein previously linked to late-stage disease. Evoked lactate dynamics, imaged in Colo357 spheroids using cytoplasmic pH as a read-out, indicated that lactate anions permeate gap junctions faster than highly-buffered H<sup>+</sup> ions. At steady-state, junctional transmission of lactate (a chemical base) from the spheroid core had an alkalinizing effect on the rim, producing therein a milieu conducive for growth. Metabolite assays demonstrated that Cx43 knockdown increased cytoplasmic lactate retention in Colo357 spheroids (diameter ~150 μm). MiaPaCa2 cells, which are Cx43 negative in monolayer culture, showed markedly increased Cx43 immunoreactivity at areas of invasion in orthotopic xenograft mouse models. These tissue areas were associated with chronic extracellular acidosis (as indicated by the marker LAMP2 near/at the plasmalemma), which can explain the advantage of junctional transmission over MCT in vivo. We propose that Cx43 channels are important conduits for dissipating lactate anions from glycolytic PDAC cells. Furthermore, lactate entry into the better-perfused recipient cells has a favourable alkalinizing effect and supplies substrate for oxidative phosphorylation. Cx43 is thus a novel target for influencing metabolite handling in junctionally-coupled tumours.
35 schema:genre article
36 schema:inLanguage en
37 schema:isAccessibleForFree true
38 schema:isPartOf N758beefefc184a198129fa08edb099ad
39 N9b17997fb83c408d8a4a4061fed82a33
40 sg:journal.1097543
41 schema:keywords BxPC3 cells
42 Colo357 cells
43 Colo357 spheroids
44 Cx43
45 Cx43 channels
46 Cx43 immunoreactivity
47 Cx43 knockdown
48 MCT activity
49 MiaPaCa2 cells
50 Outward MCT activity
51 PDAC cells
52 absence
53 acidity
54 acidosis
55 activity
56 adenocarcinoma cells
57 adequate rate
58 advantages
59 alternative route
60 anions
61 area
62 areas of invasion
63 assays
64 cancer cells
65 cells
66 channels
67 chronic extracellular acidosis
68 conduit
69 connexin 43
70 connexin 43 channels
71 connexin-assembled gap junctions
72 core
73 coupling
74 culture
75 cytoplasmic lactate retention
76 cytoplasmic pH
77 diffusive coupling
78 disease
79 ductal adenocarcinoma cells
80 dynamics
81 effect
82 efflux
83 entry
84 extracellular acidity
85 extracellular acidosis
86 gap junctions
87 glycolytic PDAC cells
88 glycolytic cancer cells
89 glycolytic pancreatic ductal adenocarcinoma cells
90 growth
91 hallmark
92 handling
93 immunoreactivity
94 important conduit
95 inhibition
96 invasion
97 ions
98 junction
99 junctional transmission
100 knockdown
101 lactate
102 lactate anion
103 lactate dynamics
104 lactate efflux
105 lactate retention
106 large quantities
107 late-stage disease
108 levels
109 mechanism
110 metabolism
111 metabolite assays
112 metabolite handling
113 model
114 monocarboxylate transporters
115 monolayer cultures
116 mouse model
117 novel target
118 orthotopic xenograft mouse model
119 oxidative phosphorylation
120 pH
121 pancreatic ductal adenocarcinoma cells
122 pathway
123 phosphorylation
124 possibility
125 protein
126 quantity
127 rate
128 recipient cells
129 retention
130 rim
131 route
132 solid tumors
133 spheroid core
134 spheroids
135 supply
136 target
137 tissue area
138 transmission
139 transporters
140 tumors
141 vitro
142 vivo
143 xenograft mouse model
144 schema:name Connexin-43 channels are a pathway for discharging lactate from glycolytic pancreatic ductal adenocarcinoma cells
145 schema:pagination 4538-4550
146 schema:productId N0ccec5d64da74db28bfe629a13f7762a
147 N7648203dd2564c1c850ff4b2ca2e8959
148 Ne715eb6b3b5746dfbd0257594ad30d98
149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084508985
150 https://doi.org/10.1038/onc.2017.71
151 schema:sdDatePublished 2022-01-01T18:44
152 schema:sdLicense https://scigraph.springernature.com/explorer/license/
153 schema:sdPublisher Ndc3daf6bd9ed4ec3b35563242c9f5625
154 schema:url https://doi.org/10.1038/onc.2017.71
155 sgo:license sg:explorer/license/
156 sgo:sdDataset articles
157 rdf:type schema:ScholarlyArticle
158 N02351332d8ae446693626a774a6cd2e3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Acidosis, Lactic
160 rdf:type schema:DefinedTerm
161 N074145a0966546309a4d646daf45a753 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Lysosomal-Associated Membrane Protein 2
163 rdf:type schema:DefinedTerm
164 N0ccec5d64da74db28bfe629a13f7762a schema:name pubmed_id
165 schema:value 28368405
166 rdf:type schema:PropertyValue
167 N1d6d926f84654fd3932e6a41a4ed439d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Spheroids, Cellular
169 rdf:type schema:DefinedTerm
170 N356994035f6f429687c5ce5461ea43e7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Phosphorylation
172 rdf:type schema:DefinedTerm
173 N47d493abd7a64ad0b0784e6504870798 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
174 schema:name Gap Junctions
175 rdf:type schema:DefinedTerm
176 N592d09b9dac8455ca75dbfd7e07602b9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
177 schema:name Glycolysis
178 rdf:type schema:DefinedTerm
179 N60f8095f5d484f6bb870a8986a125f04 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
180 schema:name Pancreatic Neoplasms
181 rdf:type schema:DefinedTerm
182 N659cf3e1244345d086c692aa518797d7 rdf:first sg:person.0615722514.95
183 rdf:rest N831e042866a044829241513d87b438d8
184 N7453f881f5fb4a84ac01931048e6bd99 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
185 schema:name Monocarboxylic Acid Transporters
186 rdf:type schema:DefinedTerm
187 N74e41dfd6a8849f59b237cb56ae4b31d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
188 schema:name Connexin 43
189 rdf:type schema:DefinedTerm
190 N758beefefc184a198129fa08edb099ad schema:issueNumber 32
191 rdf:type schema:PublicationIssue
192 N7648203dd2564c1c850ff4b2ca2e8959 schema:name dimensions_id
193 schema:value pub.1084508985
194 rdf:type schema:PropertyValue
195 N7c0fec7998794e6a94583710bab7f530 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
196 schema:name Male
197 rdf:type schema:DefinedTerm
198 N831e042866a044829241513d87b438d8 rdf:first sg:person.0707257110.38
199 rdf:rest Ne022d542e3344e2d9321a6be605ed1d2
200 N84dc9b4316984bc190548db3a19e8d7c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
201 schema:name RNA, Small Interfering
202 rdf:type schema:DefinedTerm
203 N91aa2a9a425d43cd948b596f40ceac35 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
204 schema:name Carcinoma, Pancreatic Ductal
205 rdf:type schema:DefinedTerm
206 N9b17997fb83c408d8a4a4061fed82a33 schema:volumeNumber 36
207 rdf:type schema:PublicationVolume
208 Na18ff2b475ef4cf28d54794bafa2491f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
209 schema:name Mice
210 rdf:type schema:DefinedTerm
211 Na47b884deef44019ab74b376fccc64a4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
212 schema:name Animals
213 rdf:type schema:DefinedTerm
214 Nc7ffdf7994654261a1ddad2a2aec47f8 rdf:first sg:person.01132541112.52
215 rdf:rest N659cf3e1244345d086c692aa518797d7
216 Ndaa7ed8c34a146fe9cb25abc7040cf3e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
217 schema:name Humans
218 rdf:type schema:DefinedTerm
219 Ndc3daf6bd9ed4ec3b35563242c9f5625 schema:name Springer Nature - SN SciGraph project
220 rdf:type schema:Organization
221 Ne022d542e3344e2d9321a6be605ed1d2 rdf:first sg:person.01021256701.32
222 rdf:rest rdf:nil
223 Ne715eb6b3b5746dfbd0257594ad30d98 schema:name doi
224 schema:value 10.1038/onc.2017.71
225 rdf:type schema:PropertyValue
226 Ne92e953253fe44faadaac543f92c79c8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
227 schema:name Cell Line, Tumor
228 rdf:type schema:DefinedTerm
229 Nedaf2d63447943b09c896f33539abd94 rdf:first sg:person.01332673715.15
230 rdf:rest Nc7ffdf7994654261a1ddad2a2aec47f8
231 Nedf87ce4fc944775be19fcdd799f93b5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
232 schema:name Mice, Nude
233 rdf:type schema:DefinedTerm
234 Nf41f3fd3024f4057bfc7d00773afae49 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
235 schema:name Neoplasm Transplantation
236 rdf:type schema:DefinedTerm
237 Nfddb3fc998334d8db51f83d83d72e508 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
238 schema:name Lactic Acid
239 rdf:type schema:DefinedTerm
240 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
241 schema:name Medical and Health Sciences
242 rdf:type schema:DefinedTerm
243 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
244 schema:name Clinical Sciences
245 rdf:type schema:DefinedTerm
246 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
247 schema:name Oncology and Carcinogenesis
248 rdf:type schema:DefinedTerm
249 sg:grant.3781463 http://pending.schema.org/fundedItem sg:pub.10.1038/onc.2017.71
250 rdf:type schema:MonetaryGrant
251 sg:grant.5144307 http://pending.schema.org/fundedItem sg:pub.10.1038/onc.2017.71
252 rdf:type schema:MonetaryGrant
253 sg:journal.1097543 schema:issn 0950-9232
254 1476-5594
255 schema:name Oncogene
256 schema:publisher Springer Nature
257 rdf:type schema:Periodical
258 sg:person.01021256701.32 schema:affiliation grid-institutes:grid.4991.5
259 schema:familyName Swietach
260 schema:givenName P
261 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021256701.32
262 rdf:type schema:Person
263 sg:person.01132541112.52 schema:affiliation grid-institutes:grid.419522.9
264 schema:familyName Saccomano
265 schema:givenName M
266 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132541112.52
267 rdf:type schema:Person
268 sg:person.01332673715.15 schema:affiliation grid-institutes:grid.4991.5
269 schema:familyName Dovmark
270 schema:givenName T H
271 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332673715.15
272 rdf:type schema:Person
273 sg:person.0615722514.95 schema:affiliation grid-institutes:grid.4991.5
274 schema:familyName Hulikova
275 schema:givenName A
276 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615722514.95
277 rdf:type schema:Person
278 sg:person.0707257110.38 schema:affiliation grid-institutes:grid.411984.1
279 schema:familyName Alves
280 schema:givenName F
281 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707257110.38
282 rdf:type schema:Person
283 sg:pub.10.1007/978-1-4684-8181-5_103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028294689
284 https://doi.org/10.1007/978-1-4684-8181-5_103
285 rdf:type schema:CreativeWork
286 sg:pub.10.1038/2091248a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024725585
287 https://doi.org/10.1038/2091248a0
288 rdf:type schema:CreativeWork
289 sg:pub.10.1038/ncomms9752 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020508490
290 https://doi.org/10.1038/ncomms9752
291 rdf:type schema:CreativeWork
292 sg:pub.10.1038/nrc1478 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032257073
293 https://doi.org/10.1038/nrc1478
294 rdf:type schema:CreativeWork
295 sg:pub.10.1038/nrc2841 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053731767
296 https://doi.org/10.1038/nrc2841
297 rdf:type schema:CreativeWork
298 sg:pub.10.1038/nrc3579 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049443705
299 https://doi.org/10.1038/nrc3579
300 rdf:type schema:CreativeWork
301 sg:pub.10.1186/1471-2164-5-46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033137175
302 https://doi.org/10.1186/1471-2164-5-46
303 rdf:type schema:CreativeWork
304 sg:pub.10.1186/1741-7015-6-20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019663327
305 https://doi.org/10.1186/1741-7015-6-20
306 rdf:type schema:CreativeWork
307 grid-institutes:grid.411984.1 schema:alternateName Department of Haematology and Medical Oncology, University Medical Center Goettingen, Goettingen, Germany.
308 schema:name Department of Haematology and Medical Oncology, University Medical Center Goettingen, Goettingen, Germany.
309 Institute for Diagnostic and Interventional Radiology, University Medical Center Goettingen, Goettingen, Germany.
310 Max-Planck-Institute of Experimental Medicine, Goettingen, Germany.
311 rdf:type schema:Organization
312 grid-institutes:grid.419522.9 schema:alternateName Max-Planck-Institute of Experimental Medicine, Goettingen, Germany.
313 schema:name Max-Planck-Institute of Experimental Medicine, Goettingen, Germany.
314 rdf:type schema:Organization
315 grid-institutes:grid.4991.5 schema:alternateName Department of Physiology, Anatomy and Genetics, Oxford University, Oxford, UK.
316 schema:name Department of Physiology, Anatomy and Genetics, Oxford University, Oxford, UK.
317 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...