High-depth, high-accuracy microsatellite genotyping enables precision lung cancer risk classification View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-07-31

AUTHORS

K R Velmurugan, R T Varghese, N C Fonville, H R Garner

ABSTRACT

There remains a large discrepancy between the known genetic contributions to cancer and that which can be explained by genomic variants, both inherited and somatic. Recently, understudied repetitive DNA regions called microsatellites have been identified as genetic risk markers for a number of diseases including various cancers (breast, ovarian and brain). In this study, we demonstrate an integrated process for identifying and further evaluating microsatellite-based risk markers for lung cancer using data from the cancer genome atlas and the 1000 genomes project. Comparing whole-exome germline sequencing data from 488 TCGA lung cancer samples to germline exome data from 390 control samples from the 1000 genomes project, we identified 119 potentially informative microsatellite loci. These loci were found to be able to distinguish between cancer and control samples with sensitivity and specificity ratios over 0.8. Then these loci, supplemented with additional loci from other cancers and controls, were evaluated using a target enrichment kit and sample-multiplexed nextgen sequencing. Thirteen of the 119 risk markers were found to be informative in a well powered study (>0.99 for a 0.95 confidence interval) using high-depth (579x±315) nextgen sequencing of 30 lung cancer and 89 control samples, resulting in sensitivity and specificity ratios of 0.90 and 0.94, respectively. When 8 loci harvested from the bioinformatic analysis of other cancers are added to the classifier, then the sensitivity and specificity rise to 0.93 and 0.97, respectively. Analysis of the genes harboring these loci revealed two genes (ARID1B and REL) and two significantly enriched pathways (chromatin organization and cellular stress response) suggesting that the process of lung carcinogenesis is linked to chromatin remodeling, inflammation, and tumor microenvironment restructuring. We illustrate that high-depth sequencing enables a high-precision microsatellite-based risk classifier analysis approach. This microsatellite-based platform confirms the potential to create clinically actionable diagnostics for lung cancer. More... »

PAGES

6383-6390

References to SciGraph publications

  • 2016-05-09. Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas in NATURE GENETICS
  • 2003-04-03. DAVID: Database for Annotation, Visualization, and Integrated Discovery in GENOME BIOLOGY
  • 2013-03-29. A Brief History of Triplet Repeat Diseases in TRINUCLEOTIDE REPEAT PROTOCOLS
  • 2016-07-08. Biomarker development in the precision medicine era: lung cancer as a case study in NATURE REVIEWS CANCER
  • 2014-07-09. Comprehensive molecular profiling of lung adenocarcinoma in NATURE
  • 2015-12-15. Lung Cancer in Never Smokers in LUNG CANCER AND PERSONALIZED MEDICINE
  • 2014-05-17. Microsatellite genotyping reveals a signature in breast cancer exomes in BREAST CANCER RESEARCH AND TREATMENT
  • 2013-09-26. Emerging landscape of oncogenic signatures across human cancers in NATURE GENETICS
  • 2013-09-26. Pan-cancer patterns of somatic copy-number alteration in NATURE GENETICS
  • 2016-01-12. c-Rel and its many roles in cancer: an old story with new twists in BRITISH JOURNAL OF CANCER
  • 2013-05-09. ARID1B, a member of the human SWI/SNF chromatin remodeling complex, exhibits tumour-suppressor activities in pancreatic cancer cell lines in BRITISH JOURNAL OF CANCER
  • 2014-10-09. c-Rel is a critical mediator of NF-κB-dependent TRAIL resistance of pancreatic cancer cells in CELL DEATH & DISEASE
  • 2000-02. Selective activation of NF-κB subunits in human breast cancer: potential roles for NF-κB2/p52 and for Bcl-3 in ONCOGENE
  • 2012-09-09. Comprehensive genomic characterization of squamous cell lung cancers in NATURE
  • 2016-10-03. Classification and characterization of microsatellite instability across 18 cancer types in NATURE MEDICINE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/onc.2017.256

    DOI

    http://dx.doi.org/10.1038/onc.2017.256

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1090929919

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/28759038


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Oncology and Carcinogenesis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biomarkers, Tumor", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Exome", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Predisposition to Disease", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genomics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genotype", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genotyping Techniques", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "High-Throughput Nucleotide Sequencing", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Lung Neoplasms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Microsatellite Repeats", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Reproducibility of Results", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Risk Factors", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Biological Sciences, Gibbs Cancer Center and Research Institute, Spartanburg, SC, USA.", 
              "id": "http://www.grid.ac/institutes/grid.416226.5", 
              "name": [
                "Department of Biological Sciences, Center for Bioinformatics and Genetics and the Primary Care Research Network, Edward Via College of Osteopathic Medicine, Blacksburg, VA, USA.", 
                "Department of Biological Sciences, Gibbs Cancer Center and Research Institute, Spartanburg, SC, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Velmurugan", 
            "givenName": "K R", 
            "id": "sg:person.0630163045.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0630163045.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biological Sciences, Gibbs Cancer Center and Research Institute, Spartanburg, SC, USA.", 
              "id": "http://www.grid.ac/institutes/grid.416226.5", 
              "name": [
                "Department of Biological Sciences, Center for Bioinformatics and Genetics and the Primary Care Research Network, Edward Via College of Osteopathic Medicine, Blacksburg, VA, USA.", 
                "Department of Biological Sciences, Gibbs Cancer Center and Research Institute, Spartanburg, SC, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Varghese", 
            "givenName": "R T", 
            "id": "sg:person.015000421417.64", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015000421417.64"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biological Sciences, Riverside Law, LLP Glenhardie Corporate Center, Wayne, PA, USA.", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Department of Biological Sciences, Riverside Law, LLP Glenhardie Corporate Center, Wayne, PA, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fonville", 
            "givenName": "N C", 
            "id": "sg:person.01343452647.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343452647.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biological Sciences, Gibbs Cancer Center and Research Institute, Spartanburg, SC, USA.", 
              "id": "http://www.grid.ac/institutes/grid.416226.5", 
              "name": [
                "Department of Biological Sciences, Center for Bioinformatics and Genetics and the Primary Care Research Network, Edward Via College of Osteopathic Medicine, Blacksburg, VA, USA.", 
                "Department of Biological Sciences, Gibbs Cancer Center and Research Institute, Spartanburg, SC, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Garner", 
            "givenName": "H R", 
            "id": "sg:person.0613230631.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0613230631.83"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/bjc.2013.200", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033395589", 
              "https://doi.org/10.1038/bjc.2013.200"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nm.4191", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015240642", 
              "https://doi.org/10.1038/nm.4191"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-24223-1_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029751430", 
              "https://doi.org/10.1007/978-3-319-24223-1_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2760", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042520483", 
              "https://doi.org/10.1038/ng.2760"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10549-014-2908-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035928906", 
              "https://doi.org/10.1007/s10549-014-2908-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.onc.1203412", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046200001", 
              "https://doi.org/10.1038/sj.onc.1203412"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2003-4-5-p3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021292424", 
              "https://doi.org/10.1186/gb-2003-4-5-p3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-62703-411-1_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028634118", 
              "https://doi.org/10.1007/978-1-62703-411-1_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3564", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053389438", 
              "https://doi.org/10.1038/ng.3564"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2762", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048811261", 
              "https://doi.org/10.1038/ng.2762"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature13385", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038580641", 
              "https://doi.org/10.1038/nature13385"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/cddis.2014.417", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011782198", 
              "https://doi.org/10.1038/cddis.2014.417"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrc.2016.56", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019559711", 
              "https://doi.org/10.1038/nrc.2016.56"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11404", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006014163", 
              "https://doi.org/10.1038/nature11404"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/bjc.2015.410", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023897279", 
              "https://doi.org/10.1038/bjc.2015.410"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-07-31", 
        "datePublishedReg": "2017-07-31", 
        "description": "There remains a large discrepancy between the known genetic contributions to cancer and that which can be explained by genomic variants, both inherited and somatic. Recently, understudied repetitive DNA regions called microsatellites have been identified as genetic risk markers for a number of diseases including various cancers (breast, ovarian and brain). In this study, we demonstrate an integrated process for identifying and further evaluating microsatellite-based risk markers for lung cancer using data from the cancer genome atlas and the 1000 genomes project. Comparing whole-exome germline sequencing data from 488 TCGA lung cancer samples to germline exome data from 390 control samples from the 1000 genomes project, we identified 119 potentially informative microsatellite loci. These loci were found to be able to distinguish between cancer and control samples with sensitivity and specificity ratios over 0.8. Then these loci, supplemented with additional loci from other cancers and controls, were evaluated using a target enrichment kit and sample-multiplexed nextgen sequencing. Thirteen of the 119 risk markers were found to be informative in a well powered study (>0.99 for a 0.95 confidence interval) using high-depth (579x\u00b1315) nextgen sequencing of 30 lung cancer and 89 control samples, resulting in sensitivity and specificity ratios of 0.90 and 0.94, respectively. When 8 loci harvested from the bioinformatic analysis of other cancers are added to the classifier, then the sensitivity and specificity rise to 0.93 and 0.97, respectively. Analysis of the genes harboring these loci revealed two genes (ARID1B and REL) and two significantly enriched pathways (chromatin organization and cellular stress response) suggesting that the process of lung carcinogenesis is linked to chromatin remodeling, inflammation, and tumor microenvironment restructuring. We illustrate that high-depth sequencing enables a high-precision microsatellite-based risk classifier analysis approach. This microsatellite-based platform confirms the potential to create clinically actionable diagnostics for lung cancer.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/onc.2017.256", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3128065", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1097543", 
            "issn": [
              "0950-9232", 
              "1476-5594"
            ], 
            "name": "Oncogene", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "46", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "36"
          }
        ], 
        "keywords": [
          "NextGen sequencing", 
          "repetitive DNA regions", 
          "informative microsatellite loci", 
          "high-depth sequencing", 
          "chromatin remodeling", 
          "microsatellite loci", 
          "Cancer Genome Atlas", 
          "DNA regions", 
          "bioinformatics analysis", 
          "Genome Project", 
          "sequencing data", 
          "additional loci", 
          "microsatellite genotyping", 
          "genomic variants", 
          "number of diseases", 
          "loci", 
          "Genome Atlas", 
          "enrichment kit", 
          "genetic contribution", 
          "exome data", 
          "sequencing", 
          "microsatellites", 
          "genes", 
          "lung cancer samples", 
          "cancer samples", 
          "specificity ratio", 
          "lung carcinogenesis", 
          "markers", 
          "control samples", 
          "pathway", 
          "remodeling", 
          "cancer", 
          "genotyping", 
          "lung cancer", 
          "variants", 
          "carcinogenesis", 
          "atlas", 
          "genetic risk markers", 
          "region", 
          "analysis", 
          "process", 
          "sensitivity", 
          "data", 
          "kit", 
          "study", 
          "potential", 
          "disease", 
          "number", 
          "samples", 
          "control", 
          "inflammation", 
          "rise", 
          "contribution", 
          "diagnostics", 
          "identifying", 
          "platform", 
          "ratio", 
          "analysis approach", 
          "approach", 
          "classification", 
          "discrepancy", 
          "project", 
          "restructuring", 
          "large discrepancies", 
          "risk markers", 
          "classifier", 
          "risk classification", 
          "whole-exome germline sequencing data", 
          "germline sequencing data", 
          "TCGA lung cancer samples", 
          "target enrichment kit", 
          "sample-multiplexed nextgen sequencing", 
          "high-depth (579x\u00b1315) nextgen sequencing", 
          "specificity rise", 
          "tumor microenvironment restructuring", 
          "microenvironment restructuring", 
          "high-precision microsatellite-based risk classifier analysis approach", 
          "microsatellite-based risk classifier analysis approach", 
          "risk classifier analysis approach", 
          "classifier analysis approach", 
          "actionable diagnostics", 
          "high-accuracy microsatellite genotyping", 
          "precision lung cancer risk classification", 
          "lung cancer risk classification", 
          "cancer risk classification"
        ], 
        "name": "High-depth, high-accuracy microsatellite genotyping enables precision lung cancer risk classification", 
        "pagination": "6383-6390", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1090929919"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/onc.2017.256"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "28759038"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/onc.2017.256", 
          "https://app.dimensions.ai/details/publication/pub.1090929919"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:43", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_729.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/onc.2017.256"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/onc.2017.256'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/onc.2017.256'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/onc.2017.256'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/onc.2017.256'


     

    This table displays all metadata directly associated to this object as RDF triples.

    282 TRIPLES      22 PREDICATES      138 URIs      115 LITERALS      19 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/onc.2017.256 schema:about N033f8ef037ad4a1691525a721df4005a
    2 N0993fda85d1b4f0baf6ed883f8234bb8
    3 N150e5ce1c43e444b9eca1ea91eb817c5
    4 N73babe02261c4c41b38df23c82516b5d
    5 N8009bdcda884400ba03492655b37e311
    6 N84b54eaa049e4434932a28304d61a9d7
    7 N94c48658836440468ee5b0fdd52fe729
    8 Nc146895f51a249cc8582a543b9d5a214
    9 Ncafd08f12cc64535b4bbfd300126689b
    10 Nd2c6765104f4429c91115d286ee6493c
    11 Nda5d3e92b635423fb828fadf0c1ac318
    12 Ne0e32d4cda1b41d2bb80a0c7246b31b4
    13 anzsrc-for:11
    14 anzsrc-for:1112
    15 schema:author N01b2dd9ec77b439cb6812caf0acd88d8
    16 schema:citation sg:pub.10.1007/978-1-62703-411-1_1
    17 sg:pub.10.1007/978-3-319-24223-1_3
    18 sg:pub.10.1007/s10549-014-2908-8
    19 sg:pub.10.1038/bjc.2013.200
    20 sg:pub.10.1038/bjc.2015.410
    21 sg:pub.10.1038/cddis.2014.417
    22 sg:pub.10.1038/nature11404
    23 sg:pub.10.1038/nature13385
    24 sg:pub.10.1038/ng.2760
    25 sg:pub.10.1038/ng.2762
    26 sg:pub.10.1038/ng.3564
    27 sg:pub.10.1038/nm.4191
    28 sg:pub.10.1038/nrc.2016.56
    29 sg:pub.10.1038/sj.onc.1203412
    30 sg:pub.10.1186/gb-2003-4-5-p3
    31 schema:datePublished 2017-07-31
    32 schema:datePublishedReg 2017-07-31
    33 schema:description There remains a large discrepancy between the known genetic contributions to cancer and that which can be explained by genomic variants, both inherited and somatic. Recently, understudied repetitive DNA regions called microsatellites have been identified as genetic risk markers for a number of diseases including various cancers (breast, ovarian and brain). In this study, we demonstrate an integrated process for identifying and further evaluating microsatellite-based risk markers for lung cancer using data from the cancer genome atlas and the 1000 genomes project. Comparing whole-exome germline sequencing data from 488 TCGA lung cancer samples to germline exome data from 390 control samples from the 1000 genomes project, we identified 119 potentially informative microsatellite loci. These loci were found to be able to distinguish between cancer and control samples with sensitivity and specificity ratios over 0.8. Then these loci, supplemented with additional loci from other cancers and controls, were evaluated using a target enrichment kit and sample-multiplexed nextgen sequencing. Thirteen of the 119 risk markers were found to be informative in a well powered study (>0.99 for a 0.95 confidence interval) using high-depth (579x±315) nextgen sequencing of 30 lung cancer and 89 control samples, resulting in sensitivity and specificity ratios of 0.90 and 0.94, respectively. When 8 loci harvested from the bioinformatic analysis of other cancers are added to the classifier, then the sensitivity and specificity rise to 0.93 and 0.97, respectively. Analysis of the genes harboring these loci revealed two genes (ARID1B and REL) and two significantly enriched pathways (chromatin organization and cellular stress response) suggesting that the process of lung carcinogenesis is linked to chromatin remodeling, inflammation, and tumor microenvironment restructuring. We illustrate that high-depth sequencing enables a high-precision microsatellite-based risk classifier analysis approach. This microsatellite-based platform confirms the potential to create clinically actionable diagnostics for lung cancer.
    34 schema:genre article
    35 schema:inLanguage en
    36 schema:isAccessibleForFree true
    37 schema:isPartOf N53f9c039f5e14fe4b4307d706c743cfa
    38 N67af15624d4941cdb874cb4b8031c789
    39 sg:journal.1097543
    40 schema:keywords Cancer Genome Atlas
    41 DNA regions
    42 Genome Atlas
    43 Genome Project
    44 NextGen sequencing
    45 TCGA lung cancer samples
    46 actionable diagnostics
    47 additional loci
    48 analysis
    49 analysis approach
    50 approach
    51 atlas
    52 bioinformatics analysis
    53 cancer
    54 cancer risk classification
    55 cancer samples
    56 carcinogenesis
    57 chromatin remodeling
    58 classification
    59 classifier
    60 classifier analysis approach
    61 contribution
    62 control
    63 control samples
    64 data
    65 diagnostics
    66 discrepancy
    67 disease
    68 enrichment kit
    69 exome data
    70 genes
    71 genetic contribution
    72 genetic risk markers
    73 genomic variants
    74 genotyping
    75 germline sequencing data
    76 high-accuracy microsatellite genotyping
    77 high-depth (579x±315) nextgen sequencing
    78 high-depth sequencing
    79 high-precision microsatellite-based risk classifier analysis approach
    80 identifying
    81 inflammation
    82 informative microsatellite loci
    83 kit
    84 large discrepancies
    85 loci
    86 lung cancer
    87 lung cancer risk classification
    88 lung cancer samples
    89 lung carcinogenesis
    90 markers
    91 microenvironment restructuring
    92 microsatellite genotyping
    93 microsatellite loci
    94 microsatellite-based risk classifier analysis approach
    95 microsatellites
    96 number
    97 number of diseases
    98 pathway
    99 platform
    100 potential
    101 precision lung cancer risk classification
    102 process
    103 project
    104 ratio
    105 region
    106 remodeling
    107 repetitive DNA regions
    108 restructuring
    109 rise
    110 risk classification
    111 risk classifier analysis approach
    112 risk markers
    113 sample-multiplexed nextgen sequencing
    114 samples
    115 sensitivity
    116 sequencing
    117 sequencing data
    118 specificity ratio
    119 specificity rise
    120 study
    121 target enrichment kit
    122 tumor microenvironment restructuring
    123 variants
    124 whole-exome germline sequencing data
    125 schema:name High-depth, high-accuracy microsatellite genotyping enables precision lung cancer risk classification
    126 schema:pagination 6383-6390
    127 schema:productId N0bc180b7d7c64fbe8cf48d291912035e
    128 N81d30efef1fd4b059b5668e645a344dd
    129 Nc7256b2db7144734a7fe336d1edc0cac
    130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090929919
    131 https://doi.org/10.1038/onc.2017.256
    132 schema:sdDatePublished 2022-01-01T18:43
    133 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    134 schema:sdPublisher Nd4a3777df86d4ed6bb25f5fbed99dc5b
    135 schema:url https://doi.org/10.1038/onc.2017.256
    136 sgo:license sg:explorer/license/
    137 sgo:sdDataset articles
    138 rdf:type schema:ScholarlyArticle
    139 N01b2dd9ec77b439cb6812caf0acd88d8 rdf:first sg:person.0630163045.15
    140 rdf:rest Na32b717b1e7b4cf29d8ed635dd8a9955
    141 N033f8ef037ad4a1691525a721df4005a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    142 schema:name Genotype
    143 rdf:type schema:DefinedTerm
    144 N0993fda85d1b4f0baf6ed883f8234bb8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    145 schema:name Risk Factors
    146 rdf:type schema:DefinedTerm
    147 N0bc180b7d7c64fbe8cf48d291912035e schema:name pubmed_id
    148 schema:value 28759038
    149 rdf:type schema:PropertyValue
    150 N150e5ce1c43e444b9eca1ea91eb817c5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    151 schema:name High-Throughput Nucleotide Sequencing
    152 rdf:type schema:DefinedTerm
    153 N31a37283e899472493010cda64c0c642 rdf:first sg:person.0613230631.83
    154 rdf:rest rdf:nil
    155 N53f9c039f5e14fe4b4307d706c743cfa schema:issueNumber 46
    156 rdf:type schema:PublicationIssue
    157 N67af15624d4941cdb874cb4b8031c789 schema:volumeNumber 36
    158 rdf:type schema:PublicationVolume
    159 N73babe02261c4c41b38df23c82516b5d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    160 schema:name Exome
    161 rdf:type schema:DefinedTerm
    162 N8009bdcda884400ba03492655b37e311 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    163 schema:name Biomarkers, Tumor
    164 rdf:type schema:DefinedTerm
    165 N81d30efef1fd4b059b5668e645a344dd schema:name doi
    166 schema:value 10.1038/onc.2017.256
    167 rdf:type schema:PropertyValue
    168 N84b54eaa049e4434932a28304d61a9d7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    169 schema:name Lung Neoplasms
    170 rdf:type schema:DefinedTerm
    171 N94c48658836440468ee5b0fdd52fe729 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    172 schema:name Genomics
    173 rdf:type schema:DefinedTerm
    174 Na32b717b1e7b4cf29d8ed635dd8a9955 rdf:first sg:person.015000421417.64
    175 rdf:rest Ne0ede91873d84a7ea4d899ae96093903
    176 Nc146895f51a249cc8582a543b9d5a214 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    177 schema:name Microsatellite Repeats
    178 rdf:type schema:DefinedTerm
    179 Nc7256b2db7144734a7fe336d1edc0cac schema:name dimensions_id
    180 schema:value pub.1090929919
    181 rdf:type schema:PropertyValue
    182 Ncafd08f12cc64535b4bbfd300126689b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    183 schema:name Genetic Predisposition to Disease
    184 rdf:type schema:DefinedTerm
    185 Nd2c6765104f4429c91115d286ee6493c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    186 schema:name Reproducibility of Results
    187 rdf:type schema:DefinedTerm
    188 Nd4a3777df86d4ed6bb25f5fbed99dc5b schema:name Springer Nature - SN SciGraph project
    189 rdf:type schema:Organization
    190 Nda5d3e92b635423fb828fadf0c1ac318 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    191 schema:name Genotyping Techniques
    192 rdf:type schema:DefinedTerm
    193 Ne0e32d4cda1b41d2bb80a0c7246b31b4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    194 schema:name Humans
    195 rdf:type schema:DefinedTerm
    196 Ne0ede91873d84a7ea4d899ae96093903 rdf:first sg:person.01343452647.13
    197 rdf:rest N31a37283e899472493010cda64c0c642
    198 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    199 schema:name Medical and Health Sciences
    200 rdf:type schema:DefinedTerm
    201 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
    202 schema:name Oncology and Carcinogenesis
    203 rdf:type schema:DefinedTerm
    204 sg:grant.3128065 http://pending.schema.org/fundedItem sg:pub.10.1038/onc.2017.256
    205 rdf:type schema:MonetaryGrant
    206 sg:journal.1097543 schema:issn 0950-9232
    207 1476-5594
    208 schema:name Oncogene
    209 schema:publisher Springer Nature
    210 rdf:type schema:Periodical
    211 sg:person.01343452647.13 schema:affiliation grid-institutes:None
    212 schema:familyName Fonville
    213 schema:givenName N C
    214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343452647.13
    215 rdf:type schema:Person
    216 sg:person.015000421417.64 schema:affiliation grid-institutes:grid.416226.5
    217 schema:familyName Varghese
    218 schema:givenName R T
    219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015000421417.64
    220 rdf:type schema:Person
    221 sg:person.0613230631.83 schema:affiliation grid-institutes:grid.416226.5
    222 schema:familyName Garner
    223 schema:givenName H R
    224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0613230631.83
    225 rdf:type schema:Person
    226 sg:person.0630163045.15 schema:affiliation grid-institutes:grid.416226.5
    227 schema:familyName Velmurugan
    228 schema:givenName K R
    229 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0630163045.15
    230 rdf:type schema:Person
    231 sg:pub.10.1007/978-1-62703-411-1_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028634118
    232 https://doi.org/10.1007/978-1-62703-411-1_1
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1007/978-3-319-24223-1_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029751430
    235 https://doi.org/10.1007/978-3-319-24223-1_3
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1007/s10549-014-2908-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035928906
    238 https://doi.org/10.1007/s10549-014-2908-8
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1038/bjc.2013.200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033395589
    241 https://doi.org/10.1038/bjc.2013.200
    242 rdf:type schema:CreativeWork
    243 sg:pub.10.1038/bjc.2015.410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023897279
    244 https://doi.org/10.1038/bjc.2015.410
    245 rdf:type schema:CreativeWork
    246 sg:pub.10.1038/cddis.2014.417 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011782198
    247 https://doi.org/10.1038/cddis.2014.417
    248 rdf:type schema:CreativeWork
    249 sg:pub.10.1038/nature11404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006014163
    250 https://doi.org/10.1038/nature11404
    251 rdf:type schema:CreativeWork
    252 sg:pub.10.1038/nature13385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038580641
    253 https://doi.org/10.1038/nature13385
    254 rdf:type schema:CreativeWork
    255 sg:pub.10.1038/ng.2760 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042520483
    256 https://doi.org/10.1038/ng.2760
    257 rdf:type schema:CreativeWork
    258 sg:pub.10.1038/ng.2762 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048811261
    259 https://doi.org/10.1038/ng.2762
    260 rdf:type schema:CreativeWork
    261 sg:pub.10.1038/ng.3564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053389438
    262 https://doi.org/10.1038/ng.3564
    263 rdf:type schema:CreativeWork
    264 sg:pub.10.1038/nm.4191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015240642
    265 https://doi.org/10.1038/nm.4191
    266 rdf:type schema:CreativeWork
    267 sg:pub.10.1038/nrc.2016.56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019559711
    268 https://doi.org/10.1038/nrc.2016.56
    269 rdf:type schema:CreativeWork
    270 sg:pub.10.1038/sj.onc.1203412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046200001
    271 https://doi.org/10.1038/sj.onc.1203412
    272 rdf:type schema:CreativeWork
    273 sg:pub.10.1186/gb-2003-4-5-p3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021292424
    274 https://doi.org/10.1186/gb-2003-4-5-p3
    275 rdf:type schema:CreativeWork
    276 grid-institutes:None schema:alternateName Department of Biological Sciences, Riverside Law, LLP Glenhardie Corporate Center, Wayne, PA, USA.
    277 schema:name Department of Biological Sciences, Riverside Law, LLP Glenhardie Corporate Center, Wayne, PA, USA.
    278 rdf:type schema:Organization
    279 grid-institutes:grid.416226.5 schema:alternateName Department of Biological Sciences, Gibbs Cancer Center and Research Institute, Spartanburg, SC, USA.
    280 schema:name Department of Biological Sciences, Center for Bioinformatics and Genetics and the Primary Care Research Network, Edward Via College of Osteopathic Medicine, Blacksburg, VA, USA.
    281 Department of Biological Sciences, Gibbs Cancer Center and Research Institute, Spartanburg, SC, USA.
    282 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...