The COPII cage sharpens its image View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-02-05

AUTHORS

Elizabeth A. Miller

ABSTRACT

Self-assembly of the COPII coat proteins Sec13 and Sec31 creates a spherical cage that drives vesicle formation from the endoplasmic reticulum. A multipronged approach now provides a convincing pseudoatomic model of the assembled cage that sharpens our understanding of the architecture, contact sites and flexibility of this remarkable structure.

PAGES

139-140

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nsmb.2507

DOI

http://dx.doi.org/10.1038/nsmb.2507

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038709882

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23381629


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0303", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Macromolecular and Materials Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "COP-Coated Vesicles", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carrier Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Vesicular Transport Proteins", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Elizabeth A. Miller is at the Department of Biological Sciences, Columbia University, New York, New York, USA.", 
          "id": "http://www.grid.ac/institutes/grid.21729.3f", 
          "name": [
            "Elizabeth A. Miller is at the Department of Biological Sciences, Columbia University, New York, New York, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miller", 
        "givenName": "Elizabeth A.", 
        "id": "sg:person.0627102647.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627102647.36"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature03079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046851028", 
          "https://doi.org/10.1038/nature03079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncb2478", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032173264", 
          "https://doi.org/10.1038/ncb2478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nsmb.2467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014728151", 
          "https://doi.org/10.1038/nsmb.2467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04339", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007438875", 
          "https://doi.org/10.1038/nature04339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35043117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003610067", 
          "https://doi.org/10.1038/35043117"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-02-05", 
    "datePublishedReg": "2013-02-05", 
    "description": "Self-assembly of the COPII coat proteins Sec13 and Sec31 creates a spherical cage that drives vesicle formation from the endoplasmic reticulum. A multipronged approach now provides a convincing pseudoatomic model of the assembled cage that sharpens our understanding of the architecture, contact sites and flexibility of this remarkable structure.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/nsmb.2507", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2519239", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2520109", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1295033", 
        "issn": [
          "1545-9993", 
          "2331-365X"
        ], 
        "name": "Nature Structural & Molecular Biology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "keywords": [
      "spherical cage", 
      "remarkable structure", 
      "cages", 
      "pseudoatomic model", 
      "vesicle formation", 
      "formation", 
      "structure", 
      "sites", 
      "flexibility", 
      "multipronged approach", 
      "contact sites", 
      "architecture", 
      "understanding", 
      "approach", 
      "Sec31", 
      "model", 
      "images", 
      "Sec13", 
      "endoplasmic reticulum", 
      "reticulum"
    ], 
    "name": "The COPII cage sharpens its image", 
    "pagination": "139-140", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038709882"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nsmb.2507"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23381629"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nsmb.2507", 
      "https://app.dimensions.ai/details/publication/pub.1038709882"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_596.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/nsmb.2507"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nsmb.2507'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nsmb.2507'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nsmb.2507'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nsmb.2507'


 

This table displays all metadata directly associated to this object as RDF triples.

125 TRIPLES      21 PREDICATES      55 URIs      42 LITERALS      12 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nsmb.2507 schema:about N1e0ae12cefc1449ca2a1655e5c4dfe34
2 N45649e408b1c470492612d7c40f59c09
3 N552ae5c11d154099ba6c436d59e87e16
4 Na8dd1afe4b7546718bdc509620ca82a9
5 Ne1f991bac84b4c65855e994319ca0a23
6 anzsrc-for:03
7 anzsrc-for:0303
8 schema:author N91b25f09330044fe804c97896486f668
9 schema:citation sg:pub.10.1038/35043117
10 sg:pub.10.1038/nature03079
11 sg:pub.10.1038/nature04339
12 sg:pub.10.1038/ncb2478
13 sg:pub.10.1038/nsmb.2467
14 schema:datePublished 2013-02-05
15 schema:datePublishedReg 2013-02-05
16 schema:description Self-assembly of the COPII coat proteins Sec13 and Sec31 creates a spherical cage that drives vesicle formation from the endoplasmic reticulum. A multipronged approach now provides a convincing pseudoatomic model of the assembled cage that sharpens our understanding of the architecture, contact sites and flexibility of this remarkable structure.
17 schema:genre article
18 schema:isAccessibleForFree false
19 schema:isPartOf N88e987e3ef3b4fadb02a55447c5b20b3
20 N94504efa1d7c4d03989c03223e881881
21 sg:journal.1295033
22 schema:keywords Sec13
23 Sec31
24 approach
25 architecture
26 cages
27 contact sites
28 endoplasmic reticulum
29 flexibility
30 formation
31 images
32 model
33 multipronged approach
34 pseudoatomic model
35 remarkable structure
36 reticulum
37 sites
38 spherical cage
39 structure
40 understanding
41 vesicle formation
42 schema:name The COPII cage sharpens its image
43 schema:pagination 139-140
44 schema:productId N30f8c89fc72746a3814e3da96a1fc569
45 N73f87ab5c9e840209b6d56380b9e4aa4
46 N787b7d250b4c4da083177357a9743cc5
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038709882
48 https://doi.org/10.1038/nsmb.2507
49 schema:sdDatePublished 2022-10-01T06:38
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher N510709dca6e7458597db93458ec4fb2e
52 schema:url https://doi.org/10.1038/nsmb.2507
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N1e0ae12cefc1449ca2a1655e5c4dfe34 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
57 schema:name Models, Molecular
58 rdf:type schema:DefinedTerm
59 N30f8c89fc72746a3814e3da96a1fc569 schema:name pubmed_id
60 schema:value 23381629
61 rdf:type schema:PropertyValue
62 N45649e408b1c470492612d7c40f59c09 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
63 schema:name Carrier Proteins
64 rdf:type schema:DefinedTerm
65 N510709dca6e7458597db93458ec4fb2e schema:name Springer Nature - SN SciGraph project
66 rdf:type schema:Organization
67 N552ae5c11d154099ba6c436d59e87e16 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name COP-Coated Vesicles
69 rdf:type schema:DefinedTerm
70 N73f87ab5c9e840209b6d56380b9e4aa4 schema:name doi
71 schema:value 10.1038/nsmb.2507
72 rdf:type schema:PropertyValue
73 N787b7d250b4c4da083177357a9743cc5 schema:name dimensions_id
74 schema:value pub.1038709882
75 rdf:type schema:PropertyValue
76 N88e987e3ef3b4fadb02a55447c5b20b3 schema:issueNumber 2
77 rdf:type schema:PublicationIssue
78 N91b25f09330044fe804c97896486f668 rdf:first sg:person.0627102647.36
79 rdf:rest rdf:nil
80 N94504efa1d7c4d03989c03223e881881 schema:volumeNumber 20
81 rdf:type schema:PublicationVolume
82 Na8dd1afe4b7546718bdc509620ca82a9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Humans
84 rdf:type schema:DefinedTerm
85 Ne1f991bac84b4c65855e994319ca0a23 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Vesicular Transport Proteins
87 rdf:type schema:DefinedTerm
88 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
89 schema:name Chemical Sciences
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0303 schema:inDefinedTermSet anzsrc-for:
92 schema:name Macromolecular and Materials Chemistry
93 rdf:type schema:DefinedTerm
94 sg:grant.2519239 http://pending.schema.org/fundedItem sg:pub.10.1038/nsmb.2507
95 rdf:type schema:MonetaryGrant
96 sg:grant.2520109 http://pending.schema.org/fundedItem sg:pub.10.1038/nsmb.2507
97 rdf:type schema:MonetaryGrant
98 sg:journal.1295033 schema:issn 1545-9993
99 2331-365X
100 schema:name Nature Structural & Molecular Biology
101 schema:publisher Springer Nature
102 rdf:type schema:Periodical
103 sg:person.0627102647.36 schema:affiliation grid-institutes:grid.21729.3f
104 schema:familyName Miller
105 schema:givenName Elizabeth A.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627102647.36
107 rdf:type schema:Person
108 sg:pub.10.1038/35043117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003610067
109 https://doi.org/10.1038/35043117
110 rdf:type schema:CreativeWork
111 sg:pub.10.1038/nature03079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046851028
112 https://doi.org/10.1038/nature03079
113 rdf:type schema:CreativeWork
114 sg:pub.10.1038/nature04339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007438875
115 https://doi.org/10.1038/nature04339
116 rdf:type schema:CreativeWork
117 sg:pub.10.1038/ncb2478 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032173264
118 https://doi.org/10.1038/ncb2478
119 rdf:type schema:CreativeWork
120 sg:pub.10.1038/nsmb.2467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014728151
121 https://doi.org/10.1038/nsmb.2467
122 rdf:type schema:CreativeWork
123 grid-institutes:grid.21729.3f schema:alternateName Elizabeth A. Miller is at the Department of Biological Sciences, Columbia University, New York, New York, USA.
124 schema:name Elizabeth A. Miller is at the Department of Biological Sciences, Columbia University, New York, New York, USA.
125 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...