Complex brain networks: graph theoretical analysis of structural and functional systems View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-02-04

AUTHORS

Ed Bullmore, Olaf Sporns

ABSTRACT

Key PointsUnderstanding the network organization of the brain has been a long-standing challenge for neuroscience. In the past decade, developments in graph theory have provided many new methods for topologically analysing complex networks, some of which have already been translated to the characterization of anatomical and functional brain networks.Anatomical networks at whole-brain and cellular scales in several species consistently demonstrate conservation of wiring costs and small-world topology (high clustering and short path length). Human brain anatomical networks, derived from MRI or diffusion tensor imaging data, have high-degree cortical 'hubs' and modular and hierarchical properties.Functional networks also demonstrate small-world properties at whole-brain and cellular spatial scales. Additionally, complex network properties including small-worldness and the existence of hubs are conserved over different frequency scales in functional MRI and electrophysiological data.Convergent experimental and computational data suggest that there is interdependence in the organization of structural and functional networks. The topology, synchronizability and other dynamic properties of functional networks are strongly affected by small-world and other metrics of structural connectivity. Conversely, over a slower timescale the dynamics can modulate structural network topology.Neuropsychiatric disorders can be thought of as dysconnectivity syndromes, and graph theory has already been used to quantify abnormality of structural and functional network properties in schizophrenia, Alzheimer's disease and other disorders. Graph theory can help us to understand the vulnerability of brain networks to lesions and could in future be used to provide markers of genetic risk for disorders or to measure therapeutic effects of drug treatments on functional networks.The network organization of the brain, as it is beginning to be revealed by graph theory, is compatible with the hypothesis that the brain, perhaps in common with other complex networks, has evolved both to maximize the efficiency of information transfer and to minimize connection cost, at all scales of space and time. Key issues for future work include clarifying the relationship between the brain's network properties and its emergent cognitive behaviours in health and disease. More... »

PAGES

186-198

References to SciGraph publications

  • 2004-03-01. Complex networks in THE EUROPEAN PHYSICAL JOURNAL B
  • 2007-07-05. Graph theoretical analysis of complex networks in the brain in EPJ NONLINEAR BIOMEDICAL PHYSICS
  • 2000-01. A quantitative analysis of the local connectivity between pyramidal neurons in layers 2/3 of the rat visual cortex in BIOLOGICAL CYBERNETICS
  • 2003-03. Economic small-world behavior in weighted networks in THE EUROPEAN PHYSICAL JOURNAL B
  • 2001-10. Searching for a baseline: Functional imaging and the resting human brain in NATURE REVIEWS NEUROSCIENCE
  • 2004-03-01. Betweenness centrality in large complex networks in THE EUROPEAN PHYSICAL JOURNAL B
  • 2006-04-01. Weak pairwise correlations imply strongly correlated network states in a neural population in NATURE
  • 1998. Cortex: Statistics and Geometry of Neuronal Connectivity in NONE
  • 2002-08. The anatomical basis of functional localization in the cortex in NATURE REVIEWS NEUROSCIENCE
  • 2001-03. Exploring complex networks in NATURE
  • 2004-02. Network biology: understanding the cell's functional organization in NATURE REVIEWS GENETICS
  • 2007-09. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging in NATURE REVIEWS NEUROSCIENCE
  • 2004-06. The small world of the cerebral cortex in NEUROINFORMATICS
  • 2008-04-23. Cortical network dynamics with time delays reveals functional connectivity in the resting brain in COGNITIVE NEURODYNAMICS
  • 2008-04-30. A technicolour approach to the connectome in NATURE REVIEWS NEUROSCIENCE
  • 2005-02. Functional cartography of complex metabolic networks in NATURE
  • 1998-06. Collective dynamics of ‘small-world’ networks in NATURE
  • 2007-11. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system in NATURE
  • 2003-07. Organization of cell assemblies in the hippocampus in NATURE
  • 2006-07. Variability, compensation and homeostasis in neuron and network function in NATURE REVIEWS NEUROSCIENCE
  • 2002-12. Long-term dendritic spine stability in the adult cortex in NATURE
  • Journal

    TITLE

    Nature Reviews Neuroscience

    ISSUE

    3

    VOLUME

    10

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nrn2575

    DOI

    http://dx.doi.org/10.1038/nrn2575

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1004953014

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/19190637


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Neurosciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Brain", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Brain Mapping", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computer Graphics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Electroencephalography", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Image Processing, Computer-Assisted", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Magnetic Resonance Imaging", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Magnetoencephalography", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nerve Net", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neural Networks, Computer", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "GlaxoSmithKline, Clinical Unit Cambridge, Addenbrooke's Hospital, CB2 2QQ, Cambridge, UK", 
              "id": "http://www.grid.ac/institutes/grid.120073.7", 
              "name": [
                "Department of Psychiatry, University of Cambridge, Behavioural & Clinical Neurosciences Institute, Addenbrooke's Hospital, CB2 2QQ, Cambridge, UK", 
                "GlaxoSmithKline, Clinical Unit Cambridge, Addenbrooke's Hospital, CB2 2QQ, Cambridge, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bullmore", 
            "givenName": "Ed", 
            "id": "sg:person.011217154100.86", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011217154100.86"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Psychological and Brain Sciences, Indiana University, 47405, Bloomington, Indiana, USA", 
              "id": "http://www.grid.ac/institutes/grid.257410.5", 
              "name": [
                "Department of Psychological and Brain Sciences, Indiana University, 47405, Bloomington, Indiana, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sporns", 
            "givenName": "Olaf", 
            "id": "sg:person.01014274462.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014274462.31"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nature03288", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016416471", 
              "https://doi.org/10.1038/nature03288"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35065725", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005249327", 
              "https://doi.org/10.1038/35065725"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06293", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047553374", 
              "https://doi.org/10.1038/nature06293"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35094500", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015263170", 
              "https://doi.org/10.1038/35094500"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg1272", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018231980", 
              "https://doi.org/10.1038/nrg1272"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-03733-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040027094", 
              "https://doi.org/10.1007/978-3-662-03733-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/30918", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041985305", 
              "https://doi.org/10.1038/30918"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04701", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013920925", 
              "https://doi.org/10.1038/nature04701"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1385/ni:2:2:145", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045648324", 
              "https://doi.org/10.1385/ni:2:2:145"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/pl00007964", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027071465", 
              "https://doi.org/10.1007/pl00007964"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrn2391", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027561576", 
              "https://doi.org/10.1038/nrn2391"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11571-008-9044-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019632173", 
              "https://doi.org/10.1007/s11571-008-9044-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrn1949", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050354047", 
              "https://doi.org/10.1038/nrn1949"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrn893", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001971055", 
              "https://doi.org/10.1038/nrn893"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1753-4631-1-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052914108", 
              "https://doi.org/10.1186/1753-4631-1-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature01276", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031112982", 
              "https://doi.org/10.1038/nature01276"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjb/e2004-00110-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032650139", 
              "https://doi.org/10.1140/epjb/e2004-00110-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature01834", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005413008", 
              "https://doi.org/10.1038/nature01834"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjb/e2003-00095-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017530513", 
              "https://doi.org/10.1140/epjb/e2003-00095-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrn2201", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053109894", 
              "https://doi.org/10.1038/nrn2201"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjb/e2004-00111-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036848513", 
              "https://doi.org/10.1140/epjb/e2004-00111-4"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2009-02-04", 
        "datePublishedReg": "2009-02-04", 
        "description": "Key PointsUnderstanding the network organization of the brain has been a long-standing challenge for neuroscience. In the past decade, developments in graph theory have provided many new methods for topologically analysing complex networks, some of which have already been translated to the characterization of anatomical and functional brain networks.Anatomical networks at whole-brain and cellular scales in several species consistently demonstrate conservation of wiring costs and small-world topology (high clustering and short path length). Human brain anatomical networks, derived from MRI or diffusion tensor imaging data, have high-degree cortical 'hubs' and modular and hierarchical properties.Functional networks also demonstrate small-world properties at whole-brain and cellular spatial scales. Additionally, complex network properties including small-worldness and the existence of hubs are conserved over different frequency scales in functional MRI and electrophysiological data.Convergent experimental and computational data suggest that there is interdependence in the organization of structural and functional networks. The topology, synchronizability and other dynamic properties of functional networks are strongly affected by small-world and other metrics of structural connectivity. Conversely, over a slower timescale the dynamics can modulate structural network topology.Neuropsychiatric disorders can be thought of as dysconnectivity syndromes, and graph theory has already been used to quantify abnormality of structural and functional network properties in schizophrenia, Alzheimer's disease and other disorders. Graph theory can help us to understand the vulnerability of brain networks to lesions and could in future be used to provide markers of genetic risk for disorders or to measure therapeutic effects of drug treatments on functional networks.The network organization of the brain, as it is beginning to be revealed by graph theory, is compatible with the hypothesis that the brain, perhaps in common with other complex networks, has evolved both to maximize the efficiency of information transfer and to minimize connection cost, at all scales of space and time. Key issues for future work include clarifying the relationship between the brain's network properties and its emergent cognitive behaviours in health and disease.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/nrn2575", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2762165", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1023608", 
            "issn": [
              "1471-003X", 
              "1471-0048"
            ], 
            "name": "Nature Reviews Neuroscience", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "10"
          }
        ], 
        "keywords": [
          "graph theory", 
          "network properties", 
          "complex networks", 
          "small-world topology", 
          "small-world properties", 
          "existence of hubs", 
          "complex network properties", 
          "scales of space", 
          "human brain anatomical networks", 
          "network topology", 
          "graph theoretical analysis", 
          "theoretical analysis", 
          "different frequency scales", 
          "wiring cost", 
          "Key PointsUnderstanding", 
          "slow timescale", 
          "structural network topology", 
          "hierarchical properties", 
          "theory", 
          "topology", 
          "dysconnectivity syndrome", 
          "synchronizability", 
          "dynamic properties", 
          "new method", 
          "computational data", 
          "anatomical networks", 
          "connection cost", 
          "network", 
          "cellular scale", 
          "functional brain networks", 
          "functional networks", 
          "properties", 
          "information transfer", 
          "brain networks", 
          "functional network properties", 
          "network organization", 
          "space", 
          "diffusion tensor imaging (DTI) data", 
          "dynamics", 
          "brain anatomical networks", 
          "frequency scale", 
          "existence", 
          "tensor imaging data", 
          "spatial scales", 
          "imaging data", 
          "metrics", 
          "structural connectivity", 
          "timescales", 
          "scale", 
          "system", 
          "cost", 
          "connectivity", 
          "data", 
          "future work", 
          "brain network properties", 
          "key issues", 
          "functional systems", 
          "hub", 
          "efficiency", 
          "behavior", 
          "work", 
          "analysis", 
          "past decade", 
          "time", 
          "transfer", 
          "neuroscience", 
          "characterization", 
          "electrophysiological data", 
          "interdependence", 
          "conservation", 
          "issues", 
          "effect", 
          "decades", 
          "challenges", 
          "hypothesis", 
          "relationship", 
          "development", 
          "future", 
          "cognitive behavior", 
          "organization", 
          "vulnerability", 
          "functional MRI", 
          "MRI", 
          "disorders", 
          "risk", 
          "species", 
          "brain", 
          "treatment", 
          "genetic risk", 
          "therapeutic effect", 
          "drug treatment", 
          "neuropsychiatric disorders", 
          "Alzheimer's disease", 
          "disease", 
          "health", 
          "method", 
          "syndrome", 
          "lesions", 
          "abnormalities", 
          "schizophrenia", 
          "markers", 
          "PointsUnderstanding", 
          "cellular spatial scales", 
          "emergent cognitive behaviours"
        ], 
        "name": "Complex brain networks: graph theoretical analysis of structural and functional systems", 
        "pagination": "186-198", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1004953014"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nrn2575"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "19190637"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nrn2575", 
          "https://app.dimensions.ai/details/publication/pub.1004953014"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:19", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_487.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/nrn2575"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nrn2575'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nrn2575'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nrn2575'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nrn2575'


     

    This table displays all metadata directly associated to this object as RDF triples.

    307 TRIPLES      22 PREDICATES      162 URIs      133 LITERALS      18 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nrn2575 schema:about N2996a01e1c804245adab3e4e752e5c01
    2 N677ddbb15b774d4485233d7473c98a63
    3 N70c1f617f89747bb90eee1dbca1ab38c
    4 N750a5561ad0142039bacd306c36c0dce
    5 N8a935978e4a44f30b6d0d7d782bb3096
    6 N90c43444a3324edb9a58376cc8e9810b
    7 Nae629426a75b4b42a01996bd237663ba
    8 Ncdccd1d9a81b4264b74aeef5f95c9dc9
    9 Nce243f482d1c4bfd989716050c7af5a4
    10 Nf28f566cbca7452f9946d13a8d41f5db
    11 Nfb80a376953147a3b0564f18f50d387b
    12 anzsrc-for:11
    13 anzsrc-for:1109
    14 schema:author N8ca53e3257b14e50a5d6496e3cf83131
    15 schema:citation sg:pub.10.1007/978-3-662-03733-1
    16 sg:pub.10.1007/pl00007964
    17 sg:pub.10.1007/s11571-008-9044-2
    18 sg:pub.10.1038/30918
    19 sg:pub.10.1038/35065725
    20 sg:pub.10.1038/35094500
    21 sg:pub.10.1038/nature01276
    22 sg:pub.10.1038/nature01834
    23 sg:pub.10.1038/nature03288
    24 sg:pub.10.1038/nature04701
    25 sg:pub.10.1038/nature06293
    26 sg:pub.10.1038/nrg1272
    27 sg:pub.10.1038/nrn1949
    28 sg:pub.10.1038/nrn2201
    29 sg:pub.10.1038/nrn2391
    30 sg:pub.10.1038/nrn893
    31 sg:pub.10.1140/epjb/e2003-00095-5
    32 sg:pub.10.1140/epjb/e2004-00110-5
    33 sg:pub.10.1140/epjb/e2004-00111-4
    34 sg:pub.10.1186/1753-4631-1-3
    35 sg:pub.10.1385/ni:2:2:145
    36 schema:datePublished 2009-02-04
    37 schema:datePublishedReg 2009-02-04
    38 schema:description Key PointsUnderstanding the network organization of the brain has been a long-standing challenge for neuroscience. In the past decade, developments in graph theory have provided many new methods for topologically analysing complex networks, some of which have already been translated to the characterization of anatomical and functional brain networks.Anatomical networks at whole-brain and cellular scales in several species consistently demonstrate conservation of wiring costs and small-world topology (high clustering and short path length). Human brain anatomical networks, derived from MRI or diffusion tensor imaging data, have high-degree cortical 'hubs' and modular and hierarchical properties.Functional networks also demonstrate small-world properties at whole-brain and cellular spatial scales. Additionally, complex network properties including small-worldness and the existence of hubs are conserved over different frequency scales in functional MRI and electrophysiological data.Convergent experimental and computational data suggest that there is interdependence in the organization of structural and functional networks. The topology, synchronizability and other dynamic properties of functional networks are strongly affected by small-world and other metrics of structural connectivity. Conversely, over a slower timescale the dynamics can modulate structural network topology.Neuropsychiatric disorders can be thought of as dysconnectivity syndromes, and graph theory has already been used to quantify abnormality of structural and functional network properties in schizophrenia, Alzheimer's disease and other disorders. Graph theory can help us to understand the vulnerability of brain networks to lesions and could in future be used to provide markers of genetic risk for disorders or to measure therapeutic effects of drug treatments on functional networks.The network organization of the brain, as it is beginning to be revealed by graph theory, is compatible with the hypothesis that the brain, perhaps in common with other complex networks, has evolved both to maximize the efficiency of information transfer and to minimize connection cost, at all scales of space and time. Key issues for future work include clarifying the relationship between the brain's network properties and its emergent cognitive behaviours in health and disease.
    39 schema:genre article
    40 schema:inLanguage en
    41 schema:isAccessibleForFree false
    42 schema:isPartOf N6ae0545231d44b2eb46fce65e4f989eb
    43 Nd0c9b6afb60f40f7aa0bec28ca7b6d5d
    44 sg:journal.1023608
    45 schema:keywords Alzheimer's disease
    46 Key PointsUnderstanding
    47 MRI
    48 PointsUnderstanding
    49 abnormalities
    50 analysis
    51 anatomical networks
    52 behavior
    53 brain
    54 brain anatomical networks
    55 brain network properties
    56 brain networks
    57 cellular scale
    58 cellular spatial scales
    59 challenges
    60 characterization
    61 cognitive behavior
    62 complex network properties
    63 complex networks
    64 computational data
    65 connection cost
    66 connectivity
    67 conservation
    68 cost
    69 data
    70 decades
    71 development
    72 different frequency scales
    73 diffusion tensor imaging (DTI) data
    74 disease
    75 disorders
    76 drug treatment
    77 dynamic properties
    78 dynamics
    79 dysconnectivity syndrome
    80 effect
    81 efficiency
    82 electrophysiological data
    83 emergent cognitive behaviours
    84 existence
    85 existence of hubs
    86 frequency scale
    87 functional MRI
    88 functional brain networks
    89 functional network properties
    90 functional networks
    91 functional systems
    92 future
    93 future work
    94 genetic risk
    95 graph theoretical analysis
    96 graph theory
    97 health
    98 hierarchical properties
    99 hub
    100 human brain anatomical networks
    101 hypothesis
    102 imaging data
    103 information transfer
    104 interdependence
    105 issues
    106 key issues
    107 lesions
    108 markers
    109 method
    110 metrics
    111 network
    112 network organization
    113 network properties
    114 network topology
    115 neuropsychiatric disorders
    116 neuroscience
    117 new method
    118 organization
    119 past decade
    120 properties
    121 relationship
    122 risk
    123 scale
    124 scales of space
    125 schizophrenia
    126 slow timescale
    127 small-world properties
    128 small-world topology
    129 space
    130 spatial scales
    131 species
    132 structural connectivity
    133 structural network topology
    134 synchronizability
    135 syndrome
    136 system
    137 tensor imaging data
    138 theoretical analysis
    139 theory
    140 therapeutic effect
    141 time
    142 timescales
    143 topology
    144 transfer
    145 treatment
    146 vulnerability
    147 wiring cost
    148 work
    149 schema:name Complex brain networks: graph theoretical analysis of structural and functional systems
    150 schema:pagination 186-198
    151 schema:productId N7d7d5f0e49d245a4895dc554abf703b1
    152 Nde3538c84e8e43adb0751c27057710d0
    153 Nf08e2787ee8a4280a2365fdf9b69ce34
    154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004953014
    155 https://doi.org/10.1038/nrn2575
    156 schema:sdDatePublished 2022-01-01T18:19
    157 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    158 schema:sdPublisher N1c7cb47a8d2543d79bcccb46e29a9c24
    159 schema:url https://doi.org/10.1038/nrn2575
    160 sgo:license sg:explorer/license/
    161 sgo:sdDataset articles
    162 rdf:type schema:ScholarlyArticle
    163 N1c7cb47a8d2543d79bcccb46e29a9c24 schema:name Springer Nature - SN SciGraph project
    164 rdf:type schema:Organization
    165 N2996a01e1c804245adab3e4e752e5c01 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    166 schema:name Electroencephalography
    167 rdf:type schema:DefinedTerm
    168 N677ddbb15b774d4485233d7473c98a63 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    169 schema:name Magnetic Resonance Imaging
    170 rdf:type schema:DefinedTerm
    171 N6ae0545231d44b2eb46fce65e4f989eb schema:issueNumber 3
    172 rdf:type schema:PublicationIssue
    173 N70c1f617f89747bb90eee1dbca1ab38c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    174 schema:name Image Processing, Computer-Assisted
    175 rdf:type schema:DefinedTerm
    176 N750a5561ad0142039bacd306c36c0dce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    177 schema:name Neural Networks, Computer
    178 rdf:type schema:DefinedTerm
    179 N7d7d5f0e49d245a4895dc554abf703b1 schema:name dimensions_id
    180 schema:value pub.1004953014
    181 rdf:type schema:PropertyValue
    182 N8a935978e4a44f30b6d0d7d782bb3096 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    183 schema:name Brain
    184 rdf:type schema:DefinedTerm
    185 N8ca53e3257b14e50a5d6496e3cf83131 rdf:first sg:person.011217154100.86
    186 rdf:rest Nb07b91d11cfd443d9bb4e5a67b2a6f07
    187 N90c43444a3324edb9a58376cc8e9810b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    188 schema:name Nerve Net
    189 rdf:type schema:DefinedTerm
    190 Nae629426a75b4b42a01996bd237663ba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    191 schema:name Brain Mapping
    192 rdf:type schema:DefinedTerm
    193 Nb07b91d11cfd443d9bb4e5a67b2a6f07 rdf:first sg:person.01014274462.31
    194 rdf:rest rdf:nil
    195 Ncdccd1d9a81b4264b74aeef5f95c9dc9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    196 schema:name Computer Graphics
    197 rdf:type schema:DefinedTerm
    198 Nce243f482d1c4bfd989716050c7af5a4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    199 schema:name Humans
    200 rdf:type schema:DefinedTerm
    201 Nd0c9b6afb60f40f7aa0bec28ca7b6d5d schema:volumeNumber 10
    202 rdf:type schema:PublicationVolume
    203 Nde3538c84e8e43adb0751c27057710d0 schema:name pubmed_id
    204 schema:value 19190637
    205 rdf:type schema:PropertyValue
    206 Nf08e2787ee8a4280a2365fdf9b69ce34 schema:name doi
    207 schema:value 10.1038/nrn2575
    208 rdf:type schema:PropertyValue
    209 Nf28f566cbca7452f9946d13a8d41f5db schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    210 schema:name Animals
    211 rdf:type schema:DefinedTerm
    212 Nfb80a376953147a3b0564f18f50d387b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    213 schema:name Magnetoencephalography
    214 rdf:type schema:DefinedTerm
    215 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    216 schema:name Medical and Health Sciences
    217 rdf:type schema:DefinedTerm
    218 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
    219 schema:name Neurosciences
    220 rdf:type schema:DefinedTerm
    221 sg:grant.2762165 http://pending.schema.org/fundedItem sg:pub.10.1038/nrn2575
    222 rdf:type schema:MonetaryGrant
    223 sg:journal.1023608 schema:issn 1471-003X
    224 1471-0048
    225 schema:name Nature Reviews Neuroscience
    226 schema:publisher Springer Nature
    227 rdf:type schema:Periodical
    228 sg:person.01014274462.31 schema:affiliation grid-institutes:grid.257410.5
    229 schema:familyName Sporns
    230 schema:givenName Olaf
    231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014274462.31
    232 rdf:type schema:Person
    233 sg:person.011217154100.86 schema:affiliation grid-institutes:grid.120073.7
    234 schema:familyName Bullmore
    235 schema:givenName Ed
    236 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011217154100.86
    237 rdf:type schema:Person
    238 sg:pub.10.1007/978-3-662-03733-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040027094
    239 https://doi.org/10.1007/978-3-662-03733-1
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1007/pl00007964 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027071465
    242 https://doi.org/10.1007/pl00007964
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1007/s11571-008-9044-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019632173
    245 https://doi.org/10.1007/s11571-008-9044-2
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1038/30918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041985305
    248 https://doi.org/10.1038/30918
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1038/35065725 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005249327
    251 https://doi.org/10.1038/35065725
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1038/35094500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015263170
    254 https://doi.org/10.1038/35094500
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1038/nature01276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031112982
    257 https://doi.org/10.1038/nature01276
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1038/nature01834 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005413008
    260 https://doi.org/10.1038/nature01834
    261 rdf:type schema:CreativeWork
    262 sg:pub.10.1038/nature03288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016416471
    263 https://doi.org/10.1038/nature03288
    264 rdf:type schema:CreativeWork
    265 sg:pub.10.1038/nature04701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013920925
    266 https://doi.org/10.1038/nature04701
    267 rdf:type schema:CreativeWork
    268 sg:pub.10.1038/nature06293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047553374
    269 https://doi.org/10.1038/nature06293
    270 rdf:type schema:CreativeWork
    271 sg:pub.10.1038/nrg1272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018231980
    272 https://doi.org/10.1038/nrg1272
    273 rdf:type schema:CreativeWork
    274 sg:pub.10.1038/nrn1949 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050354047
    275 https://doi.org/10.1038/nrn1949
    276 rdf:type schema:CreativeWork
    277 sg:pub.10.1038/nrn2201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053109894
    278 https://doi.org/10.1038/nrn2201
    279 rdf:type schema:CreativeWork
    280 sg:pub.10.1038/nrn2391 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027561576
    281 https://doi.org/10.1038/nrn2391
    282 rdf:type schema:CreativeWork
    283 sg:pub.10.1038/nrn893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001971055
    284 https://doi.org/10.1038/nrn893
    285 rdf:type schema:CreativeWork
    286 sg:pub.10.1140/epjb/e2003-00095-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017530513
    287 https://doi.org/10.1140/epjb/e2003-00095-5
    288 rdf:type schema:CreativeWork
    289 sg:pub.10.1140/epjb/e2004-00110-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032650139
    290 https://doi.org/10.1140/epjb/e2004-00110-5
    291 rdf:type schema:CreativeWork
    292 sg:pub.10.1140/epjb/e2004-00111-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036848513
    293 https://doi.org/10.1140/epjb/e2004-00111-4
    294 rdf:type schema:CreativeWork
    295 sg:pub.10.1186/1753-4631-1-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052914108
    296 https://doi.org/10.1186/1753-4631-1-3
    297 rdf:type schema:CreativeWork
    298 sg:pub.10.1385/ni:2:2:145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045648324
    299 https://doi.org/10.1385/ni:2:2:145
    300 rdf:type schema:CreativeWork
    301 grid-institutes:grid.120073.7 schema:alternateName GlaxoSmithKline, Clinical Unit Cambridge, Addenbrooke's Hospital, CB2 2QQ, Cambridge, UK
    302 schema:name Department of Psychiatry, University of Cambridge, Behavioural & Clinical Neurosciences Institute, Addenbrooke's Hospital, CB2 2QQ, Cambridge, UK
    303 GlaxoSmithKline, Clinical Unit Cambridge, Addenbrooke's Hospital, CB2 2QQ, Cambridge, UK
    304 rdf:type schema:Organization
    305 grid-institutes:grid.257410.5 schema:alternateName Department of Psychological and Brain Sciences, Indiana University, 47405, Bloomington, Indiana, USA
    306 schema:name Department of Psychological and Brain Sciences, Indiana University, 47405, Bloomington, Indiana, USA
    307 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...