Parallel processing in the mammalian retina View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2004-10

AUTHORS

Heinz Wässle

ABSTRACT

Key PointsThe mammalian retina — the first component of the visual system — not only transduces light signals into neuronal representations, but also acts as a filter that transfers specific aspects of images to the brain. Movement, colour, fine detail and contrast are processed by different classes of ganglion cell. The underlying circuits are analysed in this article.The first synapse of the retina, the cone pedicle, is the most complex synapse in the CNS. Light signals are transferred here by 500 contacts to a minimum of 10 postsynaptic horizontal and bipolar cells. Horizontal cells regulate the synaptic transmission at the cone pedicle by negative feedback, and bipolar cells transfer the light signals into the inner retina.There are ten different types of bipolar cell, and in the primate retina midget bipolar cells provide a private line from the cones to the midget ganglion cells. They represent the red–green-selective colour channel of the primate retina. Most other bipolar cells transfer a brightness signal to the inner retina.The rod signal is transferred by a special bipolar cell, and is fed into the ON and OFF cone pathway through the AII amacrine cell. This is the most sensitive rod pathway. Recently, other routes of the rod signal through the retina have been discovered.There are at least 10–15 different morphological types of ganglion cell in any mammalian retina. Their dendritic trees tile the retina without leaving gaps. The brisk-transient (Y)-cells, direction-selective ganglion cells, colour-coded ganglion cells and recently discovered melanopsin-containing ganglion cells are described in detail in the article.Within the inner plexiform layer both the bipolar cell axon terminals and the ganglion cell dendrites stratify at different heights. There they meet specific classes of amacrine cell and different levels of the inner plexiform layer, which represent different neuronal circuits for image analysis.Many tasks in visual processing that have previously been attributed to higher stages of the visual system, such as the visual cortex, take place as early as the mammalian retina. More... »

PAGES

747-757

References to SciGraph publications

  • 2001-09. The fundamental plan of the retina in NATURE NEUROSCIENCE
  • 2003-05-11. Segregation of object and background motion in the retina in NATURE
  • 1999-03. Anticipation of moving stimuli by the retina in NATURE
  • 2002-11. Mechanisms and circuitry underlying directional selectivity in the retina in NATURE
  • 2001-04. Chromatic sensitivity of ganglion cells in the peripheral primate retina in NATURE
  • 1994-02. The 'blue-on' opponent pathway in primate retina originates from a distinct bistratified ganglion cell type in NATURE
  • 2004-06-20. Electrical coupling between red and green cones in primate retina in NATURE NEUROSCIENCE
  • 2004-06-20. Separate blue and green cone networks in the mammalian retina in NATURE NEUROSCIENCE
  • 2001-02. The computation of directional selectivity in the retina occurs presynaptic to the ganglion cell in NATURE NEUROSCIENCE
  • 2003-11-02. Contextual tuning of direction-selective retinal ganglion cells in NATURE NEUROSCIENCE
  • 2002-08-04. Directionally selective calcium signals in dendrites of starburst amacrine cells in NATURE
  • 2003-01. The midget pathways of the primate retina in DOCUMENTA OPHTHALMOLOGICA
  • 2003-10. Retinal remodeling in inherited photoreceptor degenerations in MOLECULAR NEUROBIOLOGY
  • 1999-02. A patchwork of cones in NATURE
  • 2001-01. Spatial scale and cellular substrate of contrast adaptation by retinal ganglion cells in NATURE NEUROSCIENCE
  • 2001-03. Vertical interactions across ten parallel, stacked representations in the mammalian retina in NATURE
  • 2004-01. Dopamine and retinal function in DOCUMENTA OPHTHALMOLOGICA
  • 1991. Which Cells Code for Color? in FROM PIGMENTS TO PERCEPTION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nrn1497

    DOI

    http://dx.doi.org/10.1038/nrn1497

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1012560945

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/15378035


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Neurosciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Feedback", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Neurological", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nerve Net", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neural Networks, Computer", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neurons", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Retina", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Retinal Cone Photoreceptor Cells", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Retinal Rod Photoreceptor Cells", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Synapses", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Vision, Ocular", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Visual Pathways", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Neuroanatomy, Max-Planck-Institut f\u00fcr Hirnforschung, Deutschordenstrasse 46, D-60528, Frankfurt/Main, Germany", 
              "id": "http://www.grid.ac/institutes/grid.419505.c", 
              "name": [
                "Department of Neuroanatomy, Max-Planck-Institut f\u00fcr Hirnforschung, Deutschordenstrasse 46, D-60528, Frankfurt/Main, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "W\u00e4ssle", 
            "givenName": "Heinz", 
            "id": "sg:person.0770636050.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0770636050.88"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/17216", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019394327", 
              "https://doi.org/10.1038/17216"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nn0901-877", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005436641", 
              "https://doi.org/10.1038/nn0901-877"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature00931", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037717178", 
              "https://doi.org/10.1038/nature00931"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nn1274", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003061342", 
              "https://doi.org/10.1038/nn1274"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/84007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047894188", 
              "https://doi.org/10.1038/84007"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature01652", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037286949", 
              "https://doi.org/10.1038/nature01652"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nn1275", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010611622", 
              "https://doi.org/10.1038/nn1275"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1385/mn:28:2:139", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030611150", 
              "https://doi.org/10.1385/mn:28:2:139"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nn1147", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052799058", 
              "https://doi.org/10.1038/nn1147"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:doop.0000019487.88486.0a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013547753", 
              "https://doi.org/10.1023/b:doop.0000019487.88486.0a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/18678", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018566559", 
              "https://doi.org/10.1038/18678"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/367731a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041019601", 
              "https://doi.org/10.1038/367731a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature01179", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044195794", 
              "https://doi.org/10.1038/nature01179"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35073587", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012513868", 
              "https://doi.org/10.1038/35073587"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4615-3718-2_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052538500", 
              "https://doi.org/10.1007/978-1-4615-3718-2_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/82888", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051780700", 
              "https://doi.org/10.1038/82888"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35069068", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004850591", 
              "https://doi.org/10.1038/35069068"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1022469002511", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013275285", 
              "https://doi.org/10.1023/a:1022469002511"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2004-10", 
        "datePublishedReg": "2004-10-01", 
        "description": "Key PointsThe mammalian retina \u2014 the first component of the visual system \u2014 not only transduces light signals into neuronal representations, but also acts as a filter that transfers specific aspects of images to the brain. Movement, colour, fine detail and contrast are processed by different classes of ganglion cell. The underlying circuits are analysed in this article.The first synapse of the retina, the cone pedicle, is the most complex synapse in the CNS. Light signals are transferred here by 500 contacts to a minimum of 10 postsynaptic horizontal and bipolar cells. Horizontal cells regulate the synaptic transmission at the cone pedicle by negative feedback, and bipolar cells transfer the light signals into the inner retina.There are ten different types of bipolar cell, and in the primate retina midget bipolar cells provide a private line from the cones to the midget ganglion cells. They represent the red\u2013green-selective colour channel of the primate retina. Most other bipolar cells transfer a brightness signal to the inner retina.The rod signal is transferred by a special bipolar cell, and is fed into the ON and OFF cone pathway through the AII amacrine cell. This is the most sensitive rod pathway. Recently, other routes of the rod signal through the retina have been discovered.There are at least 10\u201315 different morphological types of ganglion cell in any mammalian retina. Their dendritic trees tile the retina without leaving gaps. The brisk-transient (Y)-cells, direction-selective ganglion cells, colour-coded ganglion cells and recently discovered melanopsin-containing ganglion cells are described in detail in the article.Within the inner plexiform layer both the bipolar cell axon terminals and the ganglion cell dendrites stratify at different heights. There they meet specific classes of amacrine cell and different levels of the inner plexiform layer, which represent different neuronal circuits for image analysis.Many tasks in visual processing that have previously been attributed to higher stages of the visual system, such as the visual cortex, take place as early as the mammalian retina.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/nrn1497", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1023608", 
            "issn": [
              "1471-003X", 
              "1471-0048"
            ], 
            "name": "Nature Reviews Neuroscience", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "10", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "5"
          }
        ], 
        "keywords": [
          "inner plexiform layer", 
          "ganglion cells", 
          "bipolar cells", 
          "mammalian retina", 
          "inner retina", 
          "amacrine cells", 
          "plexiform layer", 
          "cone pedicles", 
          "colour-coded ganglion cells", 
          "melanopsin-containing ganglion cells", 
          "rod signals", 
          "bipolar cell axon terminals", 
          "direction-selective ganglion cells", 
          "midget ganglion cells", 
          "OFF cone pathways", 
          "midget bipolar cells", 
          "AII amacrine cells", 
          "different neuronal circuits", 
          "complex synapse", 
          "first synapse", 
          "primate retina", 
          "rod pathway", 
          "axon terminals", 
          "synaptic transmission", 
          "horizontal cells", 
          "visual cortex", 
          "cone pathways", 
          "neuronal circuits", 
          "dendritic tree", 
          "retina", 
          "higher stage", 
          "visual system", 
          "neuronal representations", 
          "pedicle", 
          "synapse", 
          "cells", 
          "visual processing", 
          "different morphological types", 
          "pathway", 
          "cortex", 
          "brain", 
          "morphological types", 
          "specific aspects", 
          "negative feedback", 
          "CN", 
          "levels", 
          "types", 
          "different levels", 
          "contrast", 
          "image analysis", 
          "terminals", 
          "different classes", 
          "different types", 
          "transmission", 
          "first component", 
          "ON", 
          "stage", 
          "lines", 
          "contact", 
          "article", 
          "analysis", 
          "specific class", 
          "movement", 
          "signals", 
          "route", 
          "aspects", 
          "brightness signals", 
          "light signals", 
          "height", 
          "system", 
          "components", 
          "class", 
          "cone", 
          "feedback", 
          "processing", 
          "minimum", 
          "detail", 
          "private line", 
          "circuit", 
          "channels", 
          "task", 
          "place", 
          "images", 
          "gap", 
          "color", 
          "fine details", 
          "layer", 
          "different heights", 
          "trees", 
          "filter", 
          "representation", 
          "color channels", 
          "parallel processing"
        ], 
        "name": "Parallel processing in the mammalian retina", 
        "pagination": "747-757", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1012560945"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nrn1497"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "15378035"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nrn1497", 
          "https://app.dimensions.ai/details/publication/pub.1012560945"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-08-04T16:54", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_392.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/nrn1497"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nrn1497'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nrn1497'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nrn1497'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nrn1497'


     

    This table displays all metadata directly associated to this object as RDF triples.

    278 TRIPLES      21 PREDICATES      149 URIs      123 LITERALS      20 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nrn1497 schema:about N3d7e8379ad4e47c3bd04323123cb5a5f
    2 N433b356e1d834d82a3dc6454aadcd9ed
    3 N6913b695bff941ea898d8128180efe1b
    4 N718d358b15894717b1ab3744bf4bb1bc
    5 N77aa4dc22056442bbf1d50237672f041
    6 N87bed4b3a738451cb7c7b9a5ed828ab6
    7 N9e9adcc3d7114f55b243513f105886f1
    8 Nc3c1b2f8df23420e9a9a528ba96aeb1e
    9 Nc8a24f750bd2437ab0fe5649bc6f9f54
    10 Ncc6843ab0bcc4e499a72b5a8c7a29f1a
    11 Nd1c0dac916974035acacdad3681b3948
    12 Nd3938803e9a14dfe8a0e60f76e9c91fb
    13 Nf4b07356f5d949cc899df6f9a65165be
    14 anzsrc-for:11
    15 anzsrc-for:1109
    16 schema:author N81fa16d8993947f1b0f2f7a8e314e69f
    17 schema:citation sg:pub.10.1007/978-1-4615-3718-2_10
    18 sg:pub.10.1023/a:1022469002511
    19 sg:pub.10.1023/b:doop.0000019487.88486.0a
    20 sg:pub.10.1038/17216
    21 sg:pub.10.1038/18678
    22 sg:pub.10.1038/35069068
    23 sg:pub.10.1038/35073587
    24 sg:pub.10.1038/367731a0
    25 sg:pub.10.1038/82888
    26 sg:pub.10.1038/84007
    27 sg:pub.10.1038/nature00931
    28 sg:pub.10.1038/nature01179
    29 sg:pub.10.1038/nature01652
    30 sg:pub.10.1038/nn0901-877
    31 sg:pub.10.1038/nn1147
    32 sg:pub.10.1038/nn1274
    33 sg:pub.10.1038/nn1275
    34 sg:pub.10.1385/mn:28:2:139
    35 schema:datePublished 2004-10
    36 schema:datePublishedReg 2004-10-01
    37 schema:description Key PointsThe mammalian retina — the first component of the visual system — not only transduces light signals into neuronal representations, but also acts as a filter that transfers specific aspects of images to the brain. Movement, colour, fine detail and contrast are processed by different classes of ganglion cell. The underlying circuits are analysed in this article.The first synapse of the retina, the cone pedicle, is the most complex synapse in the CNS. Light signals are transferred here by 500 contacts to a minimum of 10 postsynaptic horizontal and bipolar cells. Horizontal cells regulate the synaptic transmission at the cone pedicle by negative feedback, and bipolar cells transfer the light signals into the inner retina.There are ten different types of bipolar cell, and in the primate retina midget bipolar cells provide a private line from the cones to the midget ganglion cells. They represent the red–green-selective colour channel of the primate retina. Most other bipolar cells transfer a brightness signal to the inner retina.The rod signal is transferred by a special bipolar cell, and is fed into the ON and OFF cone pathway through the AII amacrine cell. This is the most sensitive rod pathway. Recently, other routes of the rod signal through the retina have been discovered.There are at least 10–15 different morphological types of ganglion cell in any mammalian retina. Their dendritic trees tile the retina without leaving gaps. The brisk-transient (Y)-cells, direction-selective ganglion cells, colour-coded ganglion cells and recently discovered melanopsin-containing ganglion cells are described in detail in the article.Within the inner plexiform layer both the bipolar cell axon terminals and the ganglion cell dendrites stratify at different heights. There they meet specific classes of amacrine cell and different levels of the inner plexiform layer, which represent different neuronal circuits for image analysis.Many tasks in visual processing that have previously been attributed to higher stages of the visual system, such as the visual cortex, take place as early as the mammalian retina.
    38 schema:genre article
    39 schema:isAccessibleForFree false
    40 schema:isPartOf Nbce12db6edad4d16a5ffdf814be89916
    41 Ne15000e0617a4656b455df45b90fba5d
    42 sg:journal.1023608
    43 schema:keywords AII amacrine cells
    44 CN
    45 OFF cone pathways
    46 ON
    47 amacrine cells
    48 analysis
    49 article
    50 aspects
    51 axon terminals
    52 bipolar cell axon terminals
    53 bipolar cells
    54 brain
    55 brightness signals
    56 cells
    57 channels
    58 circuit
    59 class
    60 color
    61 color channels
    62 colour-coded ganglion cells
    63 complex synapse
    64 components
    65 cone
    66 cone pathways
    67 cone pedicles
    68 contact
    69 contrast
    70 cortex
    71 dendritic tree
    72 detail
    73 different classes
    74 different heights
    75 different levels
    76 different morphological types
    77 different neuronal circuits
    78 different types
    79 direction-selective ganglion cells
    80 feedback
    81 filter
    82 fine details
    83 first component
    84 first synapse
    85 ganglion cells
    86 gap
    87 height
    88 higher stage
    89 horizontal cells
    90 image analysis
    91 images
    92 inner plexiform layer
    93 inner retina
    94 layer
    95 levels
    96 light signals
    97 lines
    98 mammalian retina
    99 melanopsin-containing ganglion cells
    100 midget bipolar cells
    101 midget ganglion cells
    102 minimum
    103 morphological types
    104 movement
    105 negative feedback
    106 neuronal circuits
    107 neuronal representations
    108 parallel processing
    109 pathway
    110 pedicle
    111 place
    112 plexiform layer
    113 primate retina
    114 private line
    115 processing
    116 representation
    117 retina
    118 rod pathway
    119 rod signals
    120 route
    121 signals
    122 specific aspects
    123 specific class
    124 stage
    125 synapse
    126 synaptic transmission
    127 system
    128 task
    129 terminals
    130 transmission
    131 trees
    132 types
    133 visual cortex
    134 visual processing
    135 visual system
    136 schema:name Parallel processing in the mammalian retina
    137 schema:pagination 747-757
    138 schema:productId N2d10a15a8e0e46139346c203df267d7a
    139 N3854591fc1094690ab030e37f0a9fe1d
    140 Nbfd7f5f7fe924a798854fd4179ba4bf2
    141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012560945
    142 https://doi.org/10.1038/nrn1497
    143 schema:sdDatePublished 2022-08-04T16:54
    144 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    145 schema:sdPublisher N4db815161f3541c58acf598d485b842e
    146 schema:url https://doi.org/10.1038/nrn1497
    147 sgo:license sg:explorer/license/
    148 sgo:sdDataset articles
    149 rdf:type schema:ScholarlyArticle
    150 N2d10a15a8e0e46139346c203df267d7a schema:name pubmed_id
    151 schema:value 15378035
    152 rdf:type schema:PropertyValue
    153 N3854591fc1094690ab030e37f0a9fe1d schema:name dimensions_id
    154 schema:value pub.1012560945
    155 rdf:type schema:PropertyValue
    156 N3d7e8379ad4e47c3bd04323123cb5a5f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    157 schema:name Vision, Ocular
    158 rdf:type schema:DefinedTerm
    159 N433b356e1d834d82a3dc6454aadcd9ed schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    160 schema:name Feedback
    161 rdf:type schema:DefinedTerm
    162 N4db815161f3541c58acf598d485b842e schema:name Springer Nature - SN SciGraph project
    163 rdf:type schema:Organization
    164 N6913b695bff941ea898d8128180efe1b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    165 schema:name Humans
    166 rdf:type schema:DefinedTerm
    167 N718d358b15894717b1ab3744bf4bb1bc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    168 schema:name Animals
    169 rdf:type schema:DefinedTerm
    170 N77aa4dc22056442bbf1d50237672f041 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    171 schema:name Synapses
    172 rdf:type schema:DefinedTerm
    173 N81fa16d8993947f1b0f2f7a8e314e69f rdf:first sg:person.0770636050.88
    174 rdf:rest rdf:nil
    175 N87bed4b3a738451cb7c7b9a5ed828ab6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    176 schema:name Neural Networks, Computer
    177 rdf:type schema:DefinedTerm
    178 N9e9adcc3d7114f55b243513f105886f1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    179 schema:name Nerve Net
    180 rdf:type schema:DefinedTerm
    181 Nbce12db6edad4d16a5ffdf814be89916 schema:volumeNumber 5
    182 rdf:type schema:PublicationVolume
    183 Nbfd7f5f7fe924a798854fd4179ba4bf2 schema:name doi
    184 schema:value 10.1038/nrn1497
    185 rdf:type schema:PropertyValue
    186 Nc3c1b2f8df23420e9a9a528ba96aeb1e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    187 schema:name Neurons
    188 rdf:type schema:DefinedTerm
    189 Nc8a24f750bd2437ab0fe5649bc6f9f54 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    190 schema:name Retina
    191 rdf:type schema:DefinedTerm
    192 Ncc6843ab0bcc4e499a72b5a8c7a29f1a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    193 schema:name Models, Neurological
    194 rdf:type schema:DefinedTerm
    195 Nd1c0dac916974035acacdad3681b3948 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    196 schema:name Visual Pathways
    197 rdf:type schema:DefinedTerm
    198 Nd3938803e9a14dfe8a0e60f76e9c91fb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    199 schema:name Retinal Cone Photoreceptor Cells
    200 rdf:type schema:DefinedTerm
    201 Ne15000e0617a4656b455df45b90fba5d schema:issueNumber 10
    202 rdf:type schema:PublicationIssue
    203 Nf4b07356f5d949cc899df6f9a65165be schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    204 schema:name Retinal Rod Photoreceptor Cells
    205 rdf:type schema:DefinedTerm
    206 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    207 schema:name Medical and Health Sciences
    208 rdf:type schema:DefinedTerm
    209 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
    210 schema:name Neurosciences
    211 rdf:type schema:DefinedTerm
    212 sg:journal.1023608 schema:issn 1471-003X
    213 1471-0048
    214 schema:name Nature Reviews Neuroscience
    215 schema:publisher Springer Nature
    216 rdf:type schema:Periodical
    217 sg:person.0770636050.88 schema:affiliation grid-institutes:grid.419505.c
    218 schema:familyName Wässle
    219 schema:givenName Heinz
    220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0770636050.88
    221 rdf:type schema:Person
    222 sg:pub.10.1007/978-1-4615-3718-2_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052538500
    223 https://doi.org/10.1007/978-1-4615-3718-2_10
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1023/a:1022469002511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013275285
    226 https://doi.org/10.1023/a:1022469002511
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1023/b:doop.0000019487.88486.0a schema:sameAs https://app.dimensions.ai/details/publication/pub.1013547753
    229 https://doi.org/10.1023/b:doop.0000019487.88486.0a
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1038/17216 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019394327
    232 https://doi.org/10.1038/17216
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1038/18678 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018566559
    235 https://doi.org/10.1038/18678
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1038/35069068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004850591
    238 https://doi.org/10.1038/35069068
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1038/35073587 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012513868
    241 https://doi.org/10.1038/35073587
    242 rdf:type schema:CreativeWork
    243 sg:pub.10.1038/367731a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041019601
    244 https://doi.org/10.1038/367731a0
    245 rdf:type schema:CreativeWork
    246 sg:pub.10.1038/82888 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051780700
    247 https://doi.org/10.1038/82888
    248 rdf:type schema:CreativeWork
    249 sg:pub.10.1038/84007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047894188
    250 https://doi.org/10.1038/84007
    251 rdf:type schema:CreativeWork
    252 sg:pub.10.1038/nature00931 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037717178
    253 https://doi.org/10.1038/nature00931
    254 rdf:type schema:CreativeWork
    255 sg:pub.10.1038/nature01179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044195794
    256 https://doi.org/10.1038/nature01179
    257 rdf:type schema:CreativeWork
    258 sg:pub.10.1038/nature01652 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037286949
    259 https://doi.org/10.1038/nature01652
    260 rdf:type schema:CreativeWork
    261 sg:pub.10.1038/nn0901-877 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005436641
    262 https://doi.org/10.1038/nn0901-877
    263 rdf:type schema:CreativeWork
    264 sg:pub.10.1038/nn1147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052799058
    265 https://doi.org/10.1038/nn1147
    266 rdf:type schema:CreativeWork
    267 sg:pub.10.1038/nn1274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003061342
    268 https://doi.org/10.1038/nn1274
    269 rdf:type schema:CreativeWork
    270 sg:pub.10.1038/nn1275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010611622
    271 https://doi.org/10.1038/nn1275
    272 rdf:type schema:CreativeWork
    273 sg:pub.10.1385/mn:28:2:139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030611150
    274 https://doi.org/10.1385/mn:28:2:139
    275 rdf:type schema:CreativeWork
    276 grid-institutes:grid.419505.c schema:alternateName Department of Neuroanatomy, Max-Planck-Institut für Hirnforschung, Deutschordenstrasse 46, D-60528, Frankfurt/Main, Germany
    277 schema:name Department of Neuroanatomy, Max-Planck-Institut für Hirnforschung, Deutschordenstrasse 46, D-60528, Frankfurt/Main, Germany
    278 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...