ThermoTRP channels and beyond: mechanisms of temperature sensation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-07

AUTHORS

Ardem Patapoutian, Andrea M. Peier, Gina M. Story, Veena Viswanath

ABSTRACT

Key PointsThe identification of a family of transient receptor potential (TRP) ion channels that are gated by specific temperatures has been an important advance in the elucidation of the molecular mechanisms of thermosensitivity.Hot temperatures in the noxious range (≥ 42°C) activate the channels Trpv1 and Trpv2. Trpv1 is also activated by low pH and by capsaicin, whereas Trpv2, which has a higher activation threshold, is not.Warm temperatures in the innocuous range (34–42°C) activate the channels Trpv3 and Trpv4. Although the activation properties of these channels parallel the behaviour of the relevant afferent sensory fibres, there is no evidence yet for a functional role of Trpv3 and Trpv4 in vivo.Cool and cold temperatures activate the channels Trpv8 and Anktn1. Trpm8 is also activated by menthol, whereas the activation threshold of Anktm1 is set at temperatures that humans tend to regard as painfully cold.According to the labelled-line hypothesis, distinct sets of sensory neurons are tuned to convey specific sensory information through dedicated pathways to the central nervous system. However, the exact connectivity between the primary thermoreceptors and their spinal interneuron targets is not clear. It will be important to establish whether the pattern of expression of the different thermoTRPs sheds light on the organization of those dedicated pathways.Another enigma concerns the gating mechanism of thermoTRPs by hot or cold temperatures. Although their interaction with cytoplasmic elements has been proposed to be important, the evidence is still incomplete.In addition to thermoTRPs, other mechanisms for thermosensation have been put forward, They include the inhibition of background potassium conductances (perhaps the TREK-1 channel) or of a Na+/K+ ATPase, or the activation of pH-sensitive channels such as ASIC and DRASIC.In invertebrates, the neuroanatomy of thermosensation is partially understood, but the molecular mechanisms remain to be elucidated. Recent evidence indicates that TRP channels might also be involved in these organisms.An important development in this field will be the generation of mice that lack the different thermoTRPs, as they will make it possible to establish their function in vivo. More... »

PAGES

529-539

References to SciGraph publications

  • 1997-10. The capsaicin receptor: a heat-activated ion channel in the pain pathway in NATURE
  • 2002-02-10. Identification of a cold receptor reveals a general role for TRP channels in thermosensation in NATURE
  • 2001-10. Cold current in thermoreceptive neurons in NATURE
  • 2002-06-23. TRPV3 is a calcium-permeable temperature-sensitive cation channel in NATURE
  • 1999-04. A capsaicin-receptor homologue with a high threshold for noxious heat in NATURE
  • 2003-06. Opposite thermosensor in fruitfly and mouse in NATURE
  • 2001-09. Molecular mechanisms of nociception in NATURE
  • 1990-07. Protein gene product 9.5-immunoreactive nerve fibres and cells in human skin in CELL AND TISSUE RESEARCH
  • 2002-02-11. Specificity of cold thermotransduction is determined by differential ionic channel expression in NATURE NEUROSCIENCE
  • 2002-08-05. Altered urinary bladder function in mice lacking the vanilloid receptor TRPV1 in NATURE NEUROSCIENCE
  • 2000-05. Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia in NATURE
  • 2001-06. Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition in NATURE
  • 1999-06-11. Translocation of a calcium-permeable cation channel induced by insulin-like growth factor-I in NATURE CELL BIOLOGY
  • 2000-10. Warm-coding deficits and aberrant inflammatory pain in mice lacking P2X3 receptors in NATURE
  • 2000-09-08. OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity in NATURE CELL BIOLOGY
  • 2002-06-23. TRPV3 is a temperature-sensitive vanilloid receptor-like protein in NATURE
  • 1999-07. Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide in NATURE
  • 1996-11. Functional imaging of an illusion of pain in NATURE
  • 2000-12. Induction of vanilloid receptor channel activity by protein kinase C in NATURE
  • 2001-06. The trp ion channel family in NATURE REVIEWS NEUROSCIENCE
  • 2003-02-03. Identification and function of thermosensory neurons in Drosophila larvae in NATURE NEUROSCIENCE
  • 1971-03. Analysis of cutaneous warm and cold fibres in primates in PFLÜGERS ARCHIV - EUROPEAN JOURNAL OF PHYSIOLOGY
  • 2002-10-07. A transient receptor potential channel expressed in taste receptor cells in NATURE NEUROSCIENCE
  • 2002-05-06. Ethanol elicits and potentiates nociceptor responses via the vanilloid receptor-1 in NATURE NEUROSCIENCE
  • 2003-01-06. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells in NATURE GENETICS
  • 1998-07. Nociceptive and thermoreceptive lamina I neurons are anatomically distinct in NATURE NEUROSCIENCE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nrn1141

    DOI

    http://dx.doi.org/10.1038/nrn1141

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1004168886

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/12838328


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Neurosciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Body Temperature Regulation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cold Temperature", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Hot Temperature", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Ion Channel Gating", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Ion Channels", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neurons, Afferent", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Signal Transduction", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Thermoreceptors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Thermosensing", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Genomics Institute of the Novartis Research Foundation, 92121, San Diego, California, USA", 
              "id": "http://www.grid.ac/institutes/grid.418185.1", 
              "name": [
                "Department of Cell Biology, The Scripps Research Institute, 92037, La Jolla, California, USA", 
                "Genomics Institute of the Novartis Research Foundation, 92121, San Diego, California, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Patapoutian", 
            "givenName": "Ardem", 
            "id": "sg:person.01367225306.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367225306.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Genomics Institute of the Novartis Research Foundation, 92121, San Diego, California, USA", 
              "id": "http://www.grid.ac/institutes/grid.418185.1", 
              "name": [
                "Genomics Institute of the Novartis Research Foundation, 92121, San Diego, California, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Peier", 
            "givenName": "Andrea M.", 
            "id": "sg:person.01067316567.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067316567.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Cell Biology, The Scripps Research Institute, 92037, La Jolla, California, USA", 
              "id": "http://www.grid.ac/institutes/grid.214007.0", 
              "name": [
                "Department of Cell Biology, The Scripps Research Institute, 92037, La Jolla, California, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Story", 
            "givenName": "Gina M.", 
            "id": "sg:person.0642502667.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642502667.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Genomics Institute of the Novartis Research Foundation, 92121, San Diego, California, USA", 
              "id": "http://www.grid.ac/institutes/grid.418185.1", 
              "name": [
                "Genomics Institute of the Novartis Research Foundation, 92121, San Diego, California, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Viswanath", 
            "givenName": "Veena", 
            "id": "sg:person.01055260342.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055260342.20"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/35093019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045775706", 
              "https://doi.org/10.1038/35093019"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/665", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033920459", 
              "https://doi.org/10.1038/665"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00586896", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036713573", 
              "https://doi.org/10.1007/bf00586896"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/11086", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015322960", 
              "https://doi.org/10.1038/11086"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35036318", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029741434", 
              "https://doi.org/10.1038/35036318"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature00894", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006281558", 
              "https://doi.org/10.1038/nature00894"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35039526", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018657410", 
              "https://doi.org/10.1038/35039526"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature00882", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014675898", 
              "https://doi.org/10.1038/nature00882"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nn952", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017563216", 
              "https://doi.org/10.1038/nn952"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature719", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044215674", 
              "https://doi.org/10.1038/nature719"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nn0602-852", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007761325", 
              "https://doi.org/10.1038/nn0602-852"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00329435", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049088040", 
              "https://doi.org/10.1007/bf00329435"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1076", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037681936", 
              "https://doi.org/10.1038/ng1076"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35097164", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030715196", 
              "https://doi.org/10.1038/35097164"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/22761", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015236341", 
              "https://doi.org/10.1038/22761"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/423822a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047717110", 
              "https://doi.org/10.1038/423822a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nn809", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039456541", 
              "https://doi.org/10.1038/nn809"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35082088", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004453955", 
              "https://doi.org/10.1038/35082088"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35012076", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024834170", 
              "https://doi.org/10.1038/35012076"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nn902", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023315516", 
              "https://doi.org/10.1038/nn902"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35077544", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024001280", 
              "https://doi.org/10.1038/35077544"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/39807", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005468710", 
              "https://doi.org/10.1038/39807"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/384258a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050293734", 
              "https://doi.org/10.1038/384258a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35050121", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050365472", 
              "https://doi.org/10.1038/35050121"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nn1009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013341421", 
              "https://doi.org/10.1038/nn1009"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/18906", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046797649", 
              "https://doi.org/10.1038/18906"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2003-07", 
        "datePublishedReg": "2003-07-01", 
        "description": "Key PointsThe identification of a family of transient receptor potential (TRP) ion channels that are gated by specific temperatures has been an important advance in the elucidation of the molecular mechanisms of thermosensitivity.Hot temperatures in the noxious range (\u2265 42\u00b0C) activate the channels Trpv1 and Trpv2. Trpv1 is also activated by low pH and by capsaicin, whereas Trpv2, which has a higher activation threshold, is not.Warm temperatures in the innocuous range (34\u201342\u00b0C) activate the channels Trpv3 and Trpv4. Although the activation properties of these channels parallel the behaviour of the relevant afferent sensory fibres, there is no evidence yet for a functional role of Trpv3 and Trpv4 in vivo.Cool and cold temperatures activate the channels Trpv8 and Anktn1. Trpm8 is also activated by menthol, whereas the activation threshold of Anktm1 is set at temperatures that humans tend to regard as painfully cold.According to the labelled-line hypothesis, distinct sets of sensory neurons are tuned to convey specific sensory information through dedicated pathways to the central nervous system. However, the exact connectivity between the primary thermoreceptors and their spinal interneuron targets is not clear. It will be important to establish whether the pattern of expression of the different thermoTRPs sheds light on the organization of those dedicated pathways.Another enigma concerns the gating mechanism of thermoTRPs by hot or cold temperatures. Although their interaction with cytoplasmic elements has been proposed to be important, the evidence is still incomplete.In addition to thermoTRPs, other mechanisms for thermosensation have been put forward, They include the inhibition of background potassium conductances (perhaps the TREK-1 channel) or of a Na+/K+ ATPase, or the activation of pH-sensitive channels such as ASIC and DRASIC.In invertebrates, the neuroanatomy of thermosensation is partially understood, but the molecular mechanisms remain to be elucidated. Recent evidence indicates that TRP channels might also be involved in these organisms.An important development in this field will be the generation of mice that lack the different thermoTRPs, as they will make it possible to establish their function in vivo.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/nrn1141", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1023608", 
            "issn": [
              "1471-003X", 
              "1471-0048"
            ], 
            "name": "Nature Reviews Neuroscience", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "4"
          }
        ], 
        "keywords": [
          "afferent sensory fibers", 
          "background potassium conductance", 
          "transient receptor potential (TRP) ion channels", 
          "activation threshold", 
          "central nervous system", 
          "specific sensory information", 
          "high activation threshold", 
          "pH-sensitive channels", 
          "potential ion channels", 
          "primary thermoreceptors", 
          "interneuron targets", 
          "sensory fibers", 
          "molecular mechanisms", 
          "sensory neurons", 
          "nervous system", 
          "noxious range", 
          "innocuous range", 
          "potassium conductance", 
          "generation of mice", 
          "TRP channels", 
          "pattern of expression", 
          "temperature sensation", 
          "Recent evidence", 
          "TRPV2", 
          "ion channels", 
          "TRPV3", 
          "sensory information", 
          "thermoTRPs", 
          "thermoTRP channels", 
          "functional role", 
          "vivo", 
          "important advances", 
          "ANKTM1", 
          "evidence", 
          "thermosensation", 
          "TRPV1", 
          "capsaicin", 
          "pathway", 
          "mice", 
          "neurons", 
          "TRPM8", 
          "dedicated pathways", 
          "DRASIC", 
          "TRPV4", 
          "activation properties", 
          "neuroanatomy", 
          "sensation", 
          "inhibition", 
          "mechanism", 
          "activation", 
          "thermoreceptors", 
          "humans", 
          "exact connectivity", 
          "cytoplasmic elements", 
          "expression", 
          "threshold", 
          "menthol", 
          "distinct sets", 
          "gating mechanism", 
          "target", 
          "Key PointsThe identification", 
          "ATPase", 
          "role", 
          "cold temperatures", 
          "low pH", 
          "hypothesis", 
          "enigma", 
          "advances", 
          "family", 
          "patterns", 
          "function", 
          "identification", 
          "addition", 
          "important developments", 
          "development", 
          "elucidation", 
          "hot temperatures", 
          "fibers", 
          "thermosensitivity", 
          "channels", 
          "organisms", 
          "connectivity", 
          "conductance", 
          "warmer temperatures", 
          "information", 
          "range", 
          "interaction", 
          "organization", 
          "invertebrates", 
          "pH", 
          "generation", 
          "light", 
          "system", 
          "behavior", 
          "properties", 
          "elements", 
          "field", 
          "set", 
          "specific temperature", 
          "temperature", 
          "ASIC", 
          "PointsThe identification", 
          "receptor potential (TRP) ion channels", 
          "channels Trpv3", 
          "relevant afferent sensory fibres", 
          "Anktn1", 
          "labelled-line hypothesis", 
          "spinal interneuron targets", 
          "different thermoTRPs", 
          "neuroanatomy of thermosensation"
        ], 
        "name": "ThermoTRP channels and beyond: mechanisms of temperature sensation", 
        "pagination": "529-539", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1004168886"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nrn1141"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "12838328"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nrn1141", 
          "https://app.dimensions.ai/details/publication/pub.1004168886"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:13", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_377.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/nrn1141"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nrn1141'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nrn1141'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nrn1141'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nrn1141'


     

    This table displays all metadata directly associated to this object as RDF triples.

    345 TRIPLES      22 PREDICATES      174 URIs      140 LITERALS      18 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nrn1141 schema:about N0a45746d0bf74629b2cd52b5031f8ae0
    2 N1d054571e5af4bef99eb7decb13d1db0
    3 N3971a782f312475cab91ab9f3bcbe452
    4 N3f357d61bd3f4b89ae1b2dd0ba8604e7
    5 N4f3cbb87a5d448f382762b38a56cc161
    6 N683739f00de64abc8bfd74f0d6903ca3
    7 N7b478906086f47aaba469812854d0b3c
    8 N9dcd8bfa21c343bc8fa4db68490ea501
    9 Na8cf221b68d745fea4f8729965606208
    10 Nb1d98e139d6b4aed9e9e251e8f6bb421
    11 Nc14fb100f2b04b4785c188674b9b1c2c
    12 anzsrc-for:11
    13 anzsrc-for:1109
    14 schema:author N7c5aab12d0164f63ab40ebb82b955a30
    15 schema:citation sg:pub.10.1007/bf00329435
    16 sg:pub.10.1007/bf00586896
    17 sg:pub.10.1038/11086
    18 sg:pub.10.1038/18906
    19 sg:pub.10.1038/22761
    20 sg:pub.10.1038/35012076
    21 sg:pub.10.1038/35036318
    22 sg:pub.10.1038/35039526
    23 sg:pub.10.1038/35050121
    24 sg:pub.10.1038/35077544
    25 sg:pub.10.1038/35082088
    26 sg:pub.10.1038/35093019
    27 sg:pub.10.1038/35097164
    28 sg:pub.10.1038/384258a0
    29 sg:pub.10.1038/39807
    30 sg:pub.10.1038/423822a
    31 sg:pub.10.1038/665
    32 sg:pub.10.1038/nature00882
    33 sg:pub.10.1038/nature00894
    34 sg:pub.10.1038/nature719
    35 sg:pub.10.1038/ng1076
    36 sg:pub.10.1038/nn0602-852
    37 sg:pub.10.1038/nn1009
    38 sg:pub.10.1038/nn809
    39 sg:pub.10.1038/nn902
    40 sg:pub.10.1038/nn952
    41 schema:datePublished 2003-07
    42 schema:datePublishedReg 2003-07-01
    43 schema:description Key PointsThe identification of a family of transient receptor potential (TRP) ion channels that are gated by specific temperatures has been an important advance in the elucidation of the molecular mechanisms of thermosensitivity.Hot temperatures in the noxious range (≥ 42°C) activate the channels Trpv1 and Trpv2. Trpv1 is also activated by low pH and by capsaicin, whereas Trpv2, which has a higher activation threshold, is not.Warm temperatures in the innocuous range (34–42°C) activate the channels Trpv3 and Trpv4. Although the activation properties of these channels parallel the behaviour of the relevant afferent sensory fibres, there is no evidence yet for a functional role of Trpv3 and Trpv4 in vivo.Cool and cold temperatures activate the channels Trpv8 and Anktn1. Trpm8 is also activated by menthol, whereas the activation threshold of Anktm1 is set at temperatures that humans tend to regard as painfully cold.According to the labelled-line hypothesis, distinct sets of sensory neurons are tuned to convey specific sensory information through dedicated pathways to the central nervous system. However, the exact connectivity between the primary thermoreceptors and their spinal interneuron targets is not clear. It will be important to establish whether the pattern of expression of the different thermoTRPs sheds light on the organization of those dedicated pathways.Another enigma concerns the gating mechanism of thermoTRPs by hot or cold temperatures. Although their interaction with cytoplasmic elements has been proposed to be important, the evidence is still incomplete.In addition to thermoTRPs, other mechanisms for thermosensation have been put forward, They include the inhibition of background potassium conductances (perhaps the TREK-1 channel) or of a Na+/K+ ATPase, or the activation of pH-sensitive channels such as ASIC and DRASIC.In invertebrates, the neuroanatomy of thermosensation is partially understood, but the molecular mechanisms remain to be elucidated. Recent evidence indicates that TRP channels might also be involved in these organisms.An important development in this field will be the generation of mice that lack the different thermoTRPs, as they will make it possible to establish their function in vivo.
    44 schema:genre article
    45 schema:inLanguage en
    46 schema:isAccessibleForFree false
    47 schema:isPartOf N58755a256c8a44a59931454fd6eab207
    48 Nd11eb73bde524d30b09bc1dd85e02d41
    49 sg:journal.1023608
    50 schema:keywords ANKTM1
    51 ASIC
    52 ATPase
    53 Anktn1
    54 DRASIC
    55 Key PointsThe identification
    56 PointsThe identification
    57 Recent evidence
    58 TRP channels
    59 TRPM8
    60 TRPV1
    61 TRPV2
    62 TRPV3
    63 TRPV4
    64 activation
    65 activation properties
    66 activation threshold
    67 addition
    68 advances
    69 afferent sensory fibers
    70 background potassium conductance
    71 behavior
    72 capsaicin
    73 central nervous system
    74 channels
    75 channels Trpv3
    76 cold temperatures
    77 conductance
    78 connectivity
    79 cytoplasmic elements
    80 dedicated pathways
    81 development
    82 different thermoTRPs
    83 distinct sets
    84 elements
    85 elucidation
    86 enigma
    87 evidence
    88 exact connectivity
    89 expression
    90 family
    91 fibers
    92 field
    93 function
    94 functional role
    95 gating mechanism
    96 generation
    97 generation of mice
    98 high activation threshold
    99 hot temperatures
    100 humans
    101 hypothesis
    102 identification
    103 important advances
    104 important developments
    105 information
    106 inhibition
    107 innocuous range
    108 interaction
    109 interneuron targets
    110 invertebrates
    111 ion channels
    112 labelled-line hypothesis
    113 light
    114 low pH
    115 mechanism
    116 menthol
    117 mice
    118 molecular mechanisms
    119 nervous system
    120 neuroanatomy
    121 neuroanatomy of thermosensation
    122 neurons
    123 noxious range
    124 organisms
    125 organization
    126 pH
    127 pH-sensitive channels
    128 pathway
    129 pattern of expression
    130 patterns
    131 potassium conductance
    132 potential ion channels
    133 primary thermoreceptors
    134 properties
    135 range
    136 receptor potential (TRP) ion channels
    137 relevant afferent sensory fibres
    138 role
    139 sensation
    140 sensory fibers
    141 sensory information
    142 sensory neurons
    143 set
    144 specific sensory information
    145 specific temperature
    146 spinal interneuron targets
    147 system
    148 target
    149 temperature
    150 temperature sensation
    151 thermoTRP channels
    152 thermoTRPs
    153 thermoreceptors
    154 thermosensation
    155 thermosensitivity
    156 threshold
    157 transient receptor potential (TRP) ion channels
    158 vivo
    159 warmer temperatures
    160 schema:name ThermoTRP channels and beyond: mechanisms of temperature sensation
    161 schema:pagination 529-539
    162 schema:productId N5042d3aac25845fc82fbcd83a0e6fa77
    163 Nc1d495ff3f4a4a32bf0a62e5542769f6
    164 Nd52f5e93a44c42aca0ff3562d935913a
    165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004168886
    166 https://doi.org/10.1038/nrn1141
    167 schema:sdDatePublished 2022-01-01T18:13
    168 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    169 schema:sdPublisher N1a36d86b5d534fb5ba82f1a80b78f531
    170 schema:url https://doi.org/10.1038/nrn1141
    171 sgo:license sg:explorer/license/
    172 sgo:sdDataset articles
    173 rdf:type schema:ScholarlyArticle
    174 N0a45746d0bf74629b2cd52b5031f8ae0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    175 schema:name Ion Channel Gating
    176 rdf:type schema:DefinedTerm
    177 N16cf7c4a075744b58499d0683bcdcfab rdf:first sg:person.01055260342.20
    178 rdf:rest rdf:nil
    179 N1a36d86b5d534fb5ba82f1a80b78f531 schema:name Springer Nature - SN SciGraph project
    180 rdf:type schema:Organization
    181 N1d054571e5af4bef99eb7decb13d1db0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    182 schema:name Hot Temperature
    183 rdf:type schema:DefinedTerm
    184 N31474df3cdf64a8185f297e5491062fc rdf:first sg:person.01067316567.00
    185 rdf:rest N53ec2a1f65eb4b648fa2752d1f3dc982
    186 N3971a782f312475cab91ab9f3bcbe452 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    187 schema:name Thermoreceptors
    188 rdf:type schema:DefinedTerm
    189 N3f357d61bd3f4b89ae1b2dd0ba8604e7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    190 schema:name Cold Temperature
    191 rdf:type schema:DefinedTerm
    192 N4f3cbb87a5d448f382762b38a56cc161 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    193 schema:name Ion Channels
    194 rdf:type schema:DefinedTerm
    195 N5042d3aac25845fc82fbcd83a0e6fa77 schema:name pubmed_id
    196 schema:value 12838328
    197 rdf:type schema:PropertyValue
    198 N53ec2a1f65eb4b648fa2752d1f3dc982 rdf:first sg:person.0642502667.10
    199 rdf:rest N16cf7c4a075744b58499d0683bcdcfab
    200 N58755a256c8a44a59931454fd6eab207 schema:volumeNumber 4
    201 rdf:type schema:PublicationVolume
    202 N683739f00de64abc8bfd74f0d6903ca3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    203 schema:name Animals
    204 rdf:type schema:DefinedTerm
    205 N7b478906086f47aaba469812854d0b3c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    206 schema:name Thermosensing
    207 rdf:type schema:DefinedTerm
    208 N7c5aab12d0164f63ab40ebb82b955a30 rdf:first sg:person.01367225306.34
    209 rdf:rest N31474df3cdf64a8185f297e5491062fc
    210 N9dcd8bfa21c343bc8fa4db68490ea501 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    211 schema:name Neurons, Afferent
    212 rdf:type schema:DefinedTerm
    213 Na8cf221b68d745fea4f8729965606208 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    214 schema:name Body Temperature Regulation
    215 rdf:type schema:DefinedTerm
    216 Nb1d98e139d6b4aed9e9e251e8f6bb421 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    217 schema:name Signal Transduction
    218 rdf:type schema:DefinedTerm
    219 Nc14fb100f2b04b4785c188674b9b1c2c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    220 schema:name Humans
    221 rdf:type schema:DefinedTerm
    222 Nc1d495ff3f4a4a32bf0a62e5542769f6 schema:name doi
    223 schema:value 10.1038/nrn1141
    224 rdf:type schema:PropertyValue
    225 Nd11eb73bde524d30b09bc1dd85e02d41 schema:issueNumber 7
    226 rdf:type schema:PublicationIssue
    227 Nd52f5e93a44c42aca0ff3562d935913a schema:name dimensions_id
    228 schema:value pub.1004168886
    229 rdf:type schema:PropertyValue
    230 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    231 schema:name Medical and Health Sciences
    232 rdf:type schema:DefinedTerm
    233 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
    234 schema:name Neurosciences
    235 rdf:type schema:DefinedTerm
    236 sg:journal.1023608 schema:issn 1471-003X
    237 1471-0048
    238 schema:name Nature Reviews Neuroscience
    239 schema:publisher Springer Nature
    240 rdf:type schema:Periodical
    241 sg:person.01055260342.20 schema:affiliation grid-institutes:grid.418185.1
    242 schema:familyName Viswanath
    243 schema:givenName Veena
    244 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055260342.20
    245 rdf:type schema:Person
    246 sg:person.01067316567.00 schema:affiliation grid-institutes:grid.418185.1
    247 schema:familyName Peier
    248 schema:givenName Andrea M.
    249 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067316567.00
    250 rdf:type schema:Person
    251 sg:person.01367225306.34 schema:affiliation grid-institutes:grid.418185.1
    252 schema:familyName Patapoutian
    253 schema:givenName Ardem
    254 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367225306.34
    255 rdf:type schema:Person
    256 sg:person.0642502667.10 schema:affiliation grid-institutes:grid.214007.0
    257 schema:familyName Story
    258 schema:givenName Gina M.
    259 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642502667.10
    260 rdf:type schema:Person
    261 sg:pub.10.1007/bf00329435 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049088040
    262 https://doi.org/10.1007/bf00329435
    263 rdf:type schema:CreativeWork
    264 sg:pub.10.1007/bf00586896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036713573
    265 https://doi.org/10.1007/bf00586896
    266 rdf:type schema:CreativeWork
    267 sg:pub.10.1038/11086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015322960
    268 https://doi.org/10.1038/11086
    269 rdf:type schema:CreativeWork
    270 sg:pub.10.1038/18906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046797649
    271 https://doi.org/10.1038/18906
    272 rdf:type schema:CreativeWork
    273 sg:pub.10.1038/22761 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015236341
    274 https://doi.org/10.1038/22761
    275 rdf:type schema:CreativeWork
    276 sg:pub.10.1038/35012076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024834170
    277 https://doi.org/10.1038/35012076
    278 rdf:type schema:CreativeWork
    279 sg:pub.10.1038/35036318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029741434
    280 https://doi.org/10.1038/35036318
    281 rdf:type schema:CreativeWork
    282 sg:pub.10.1038/35039526 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018657410
    283 https://doi.org/10.1038/35039526
    284 rdf:type schema:CreativeWork
    285 sg:pub.10.1038/35050121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050365472
    286 https://doi.org/10.1038/35050121
    287 rdf:type schema:CreativeWork
    288 sg:pub.10.1038/35077544 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024001280
    289 https://doi.org/10.1038/35077544
    290 rdf:type schema:CreativeWork
    291 sg:pub.10.1038/35082088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004453955
    292 https://doi.org/10.1038/35082088
    293 rdf:type schema:CreativeWork
    294 sg:pub.10.1038/35093019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045775706
    295 https://doi.org/10.1038/35093019
    296 rdf:type schema:CreativeWork
    297 sg:pub.10.1038/35097164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030715196
    298 https://doi.org/10.1038/35097164
    299 rdf:type schema:CreativeWork
    300 sg:pub.10.1038/384258a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050293734
    301 https://doi.org/10.1038/384258a0
    302 rdf:type schema:CreativeWork
    303 sg:pub.10.1038/39807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005468710
    304 https://doi.org/10.1038/39807
    305 rdf:type schema:CreativeWork
    306 sg:pub.10.1038/423822a schema:sameAs https://app.dimensions.ai/details/publication/pub.1047717110
    307 https://doi.org/10.1038/423822a
    308 rdf:type schema:CreativeWork
    309 sg:pub.10.1038/665 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033920459
    310 https://doi.org/10.1038/665
    311 rdf:type schema:CreativeWork
    312 sg:pub.10.1038/nature00882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014675898
    313 https://doi.org/10.1038/nature00882
    314 rdf:type schema:CreativeWork
    315 sg:pub.10.1038/nature00894 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006281558
    316 https://doi.org/10.1038/nature00894
    317 rdf:type schema:CreativeWork
    318 sg:pub.10.1038/nature719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044215674
    319 https://doi.org/10.1038/nature719
    320 rdf:type schema:CreativeWork
    321 sg:pub.10.1038/ng1076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037681936
    322 https://doi.org/10.1038/ng1076
    323 rdf:type schema:CreativeWork
    324 sg:pub.10.1038/nn0602-852 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007761325
    325 https://doi.org/10.1038/nn0602-852
    326 rdf:type schema:CreativeWork
    327 sg:pub.10.1038/nn1009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013341421
    328 https://doi.org/10.1038/nn1009
    329 rdf:type schema:CreativeWork
    330 sg:pub.10.1038/nn809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039456541
    331 https://doi.org/10.1038/nn809
    332 rdf:type schema:CreativeWork
    333 sg:pub.10.1038/nn902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023315516
    334 https://doi.org/10.1038/nn902
    335 rdf:type schema:CreativeWork
    336 sg:pub.10.1038/nn952 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017563216
    337 https://doi.org/10.1038/nn952
    338 rdf:type schema:CreativeWork
    339 grid-institutes:grid.214007.0 schema:alternateName Department of Cell Biology, The Scripps Research Institute, 92037, La Jolla, California, USA
    340 schema:name Department of Cell Biology, The Scripps Research Institute, 92037, La Jolla, California, USA
    341 rdf:type schema:Organization
    342 grid-institutes:grid.418185.1 schema:alternateName Genomics Institute of the Novartis Research Foundation, 92121, San Diego, California, USA
    343 schema:name Department of Cell Biology, The Scripps Research Institute, 92037, La Jolla, California, USA
    344 Genomics Institute of the Novartis Research Foundation, 92121, San Diego, California, USA
    345 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...