Evolution of multisubunit RNA polymerases in the three domains of life View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-01-13

AUTHORS

Finn Werner, Dina Grohmann

ABSTRACT

Key PointsMultisubunit RNA polymerases (RNAPs) from the three domains of life are evolutionarily related, and this is reflected in the sequence and structure of their subunits, their interactions with transcription factors and their molecular mechanisms of action.RNAP subunits contribute in distinct ways to enzyme function and facilitate assembly, catalysis, interaction with DNA and RNA, and regulation of RNAP activity.The Rpo4–Rpo7 subunits of archaeal RNAP and the RPB4–RPB7 subunits of eukaryotic RNAPs constitute the stalk, which modulates the elongation and termination properties of these RNAPs but is not conserved in bacteria.RNAP function is dependent on and regulated by exogenous transcription factors, some of which are universally conserved in evolution.Transcription factors that enable transcription initiation in bacteria (σ-factors) and archaea and eukaryotes (TATA box-binding protein (TBP) and TFIIB) are not homologous.Transcript cleavage factors in bacteria (GreB) and archaea and eukaryotes (TFIIS) are not homologous.Non-homologous transcription factors can adapt a similar structure and can therefore interact with and regulate their cognate RNAPs using closely related molecular mechanisms.NusG is the only RNAP-associated transcription factor that is universally conserved in evolution (NusG in bacteria, Spt5 in archaea and SPT5 in eukaryotes), indicating that regulation of transcription during elongation predated regulation of transcription initiation. More... »

PAGES

85-98

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nrmicro2507

DOI

http://dx.doi.org/10.1038/nrmicro2507

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1053742539

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21233849


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Archaea", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacteria", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Conserved Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA-Directed RNA Polymerases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Evolution, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Regulation, Enzymologic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phylogeny", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Structure, Quaternary", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Saccharomyces cerevisiae", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transcriptional Elongation Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Division of Biosciences, RNA Polymerase Laboratory, Institute for Structural and Molecular Biology, University College London, Darwin Building, Gower Street, WC1E 6BT, London, UK", 
          "id": "http://www.grid.ac/institutes/grid.509978.a", 
          "name": [
            "Division of Biosciences, RNA Polymerase Laboratory, Institute for Structural and Molecular Biology, University College London, Darwin Building, Gower Street, WC1E 6BT, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Werner", 
        "givenName": "Finn", 
        "id": "sg:person.01022042101.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022042101.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Biosciences, RNA Polymerase Laboratory, Institute for Structural and Molecular Biology, University College London, Darwin Building, Gower Street, WC1E 6BT, London, UK", 
          "id": "http://www.grid.ac/institutes/grid.509978.a", 
          "name": [
            "Division of Biosciences, RNA Polymerase Laboratory, Institute for Structural and Molecular Biology, University College London, Darwin Building, Gower Street, WC1E 6BT, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grohmann", 
        "givenName": "Dina", 
        "id": "sg:person.01341311262.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341311262.95"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature05932", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000750315", 
          "https://doi.org/10.1038/nature05932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047553257", 
          "https://doi.org/10.1038/nature06290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08548", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009664227", 
          "https://doi.org/10.1038/nature08548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1472-6807-3-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006727782", 
          "https://doi.org/10.1186/1472-6807-3-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/jbiol98", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006566886", 
          "https://doi.org/10.1186/jbiol98"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/364401a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042015984", 
          "https://doi.org/10.1038/364401a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrm1588", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039731997", 
          "https://doi.org/10.1038/nrm1588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/354401a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008143164", 
          "https://doi.org/10.1038/354401a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2484", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030687647", 
          "https://doi.org/10.1038/nrg2484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/354398a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036695125", 
          "https://doi.org/10.1038/354398a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06530", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016216700", 
          "https://doi.org/10.1038/nature06530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2592", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043449587", 
          "https://doi.org/10.1038/nrg2592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nsmb757", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038057289", 
          "https://doi.org/10.1038/nsmb757"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-01-13", 
    "datePublishedReg": "2011-01-13", 
    "description": "Key PointsMultisubunit RNA polymerases (RNAPs) from the three domains of life are evolutionarily related, and this is reflected in the sequence and structure of their subunits, their interactions with transcription factors and their molecular mechanisms of action.RNAP subunits contribute in distinct ways to enzyme function and facilitate assembly, catalysis, interaction with DNA and RNA, and regulation of RNAP activity.The Rpo4\u2013Rpo7 subunits of archaeal RNAP and the RPB4\u2013RPB7 subunits of eukaryotic RNAPs constitute the stalk, which modulates the elongation and termination properties of these RNAPs but is not conserved in bacteria.RNAP function is dependent on and regulated by exogenous transcription factors, some of which are universally conserved in evolution.Transcription factors that enable transcription initiation in bacteria (\u03c3-factors) and archaea and eukaryotes (TATA box-binding protein (TBP) and TFIIB) are not homologous.Transcript cleavage factors in bacteria (GreB) and archaea and eukaryotes (TFIIS) are not homologous.Non-homologous transcription factors can adapt a similar structure and can therefore interact with and regulate their cognate RNAPs using closely related molecular mechanisms.NusG is the only RNAP-associated transcription factor that is universally conserved in evolution (NusG in bacteria, Spt5 in archaea and SPT5 in eukaryotes), indicating that regulation of transcription during elongation predated regulation of transcription initiation.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/nrmicro2507", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2770761", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1032854", 
        "issn": [
          "1740-1526", 
          "1740-1534"
        ], 
        "name": "Nature Reviews Microbiology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "keywords": [
      "domains of life", 
      "RNA polymerase", 
      "transcription factors", 
      "transcription initiation", 
      "molecular mechanisms", 
      "archaeal RNA polymerase", 
      "eukaryotic RNA polymerases", 
      "exogenous transcription factors", 
      "cognate RNA polymerases", 
      "multisubunit RNA polymerases", 
      "regulation of transcription", 
      "transcript cleavage factors", 
      "RNAP function", 
      "RNAP subunits", 
      "RNAP activity", 
      "facilitates assembly", 
      "cleavage factors", 
      "subunits", 
      "eukaryotes", 
      "archaea", 
      "polymerase", 
      "bacteria", 
      "regulation", 
      "NusG", 
      "transcription", 
      "evolution", 
      "elongation", 
      "RNA", 
      "domain", 
      "DNA", 
      "similar structure", 
      "mechanism", 
      "sequence", 
      "initiation", 
      "distinct ways", 
      "assembly", 
      "interaction", 
      "stalk", 
      "function", 
      "factors", 
      "structure", 
      "activity", 
      "catalysis", 
      "action", 
      "termination properties", 
      "life", 
      "properties", 
      "way"
    ], 
    "name": "Evolution of multisubunit RNA polymerases in the three domains of life", 
    "pagination": "85-98", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1053742539"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nrmicro2507"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21233849"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nrmicro2507", 
      "https://app.dimensions.ai/details/publication/pub.1053742539"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T20:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_543.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/nrmicro2507"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nrmicro2507'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nrmicro2507'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nrmicro2507'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nrmicro2507'


 

This table displays all metadata directly associated to this object as RDF triples.

222 TRIPLES      21 PREDICATES      99 URIs      76 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nrmicro2507 schema:about N0dd47593f85e4601afb969ce228cf776
2 N26db48f5db264963921db750c8390199
3 N3d9c7fa647bc45ebb28407ba13abc208
4 N44be8abc8d394a0c9c062b9bfcb5f561
5 N4871d594dd2544349904039db72fe875
6 N6f54b7eed18149d1abdcf2e9f75d4faa
7 N8fa73bd6129b47b5aa03bd93ce5c033a
8 N906ff5a9499c452ab7067cf8e8dad07a
9 Na43b78d2f5774084a7c13889298291e0
10 Nb2d62b120302461aa7d0dc5a82c870e5
11 Nbb80c9b77b33426f95db97329aa9a3d0
12 anzsrc-for:06
13 anzsrc-for:0601
14 anzsrc-for:0604
15 anzsrc-for:0605
16 schema:author Nb16bd4a172fd451e97da218556be03f7
17 schema:citation sg:pub.10.1038/354398a0
18 sg:pub.10.1038/354401a0
19 sg:pub.10.1038/364401a0
20 sg:pub.10.1038/nature05932
21 sg:pub.10.1038/nature06290
22 sg:pub.10.1038/nature06530
23 sg:pub.10.1038/nature08548
24 sg:pub.10.1038/nrg2484
25 sg:pub.10.1038/nrg2592
26 sg:pub.10.1038/nrm1588
27 sg:pub.10.1038/nsmb757
28 sg:pub.10.1186/1472-6807-3-1
29 sg:pub.10.1186/jbiol98
30 schema:datePublished 2011-01-13
31 schema:datePublishedReg 2011-01-13
32 schema:description Key PointsMultisubunit RNA polymerases (RNAPs) from the three domains of life are evolutionarily related, and this is reflected in the sequence and structure of their subunits, their interactions with transcription factors and their molecular mechanisms of action.RNAP subunits contribute in distinct ways to enzyme function and facilitate assembly, catalysis, interaction with DNA and RNA, and regulation of RNAP activity.The Rpo4–Rpo7 subunits of archaeal RNAP and the RPB4–RPB7 subunits of eukaryotic RNAPs constitute the stalk, which modulates the elongation and termination properties of these RNAPs but is not conserved in bacteria.RNAP function is dependent on and regulated by exogenous transcription factors, some of which are universally conserved in evolution.Transcription factors that enable transcription initiation in bacteria (σ-factors) and archaea and eukaryotes (TATA box-binding protein (TBP) and TFIIB) are not homologous.Transcript cleavage factors in bacteria (GreB) and archaea and eukaryotes (TFIIS) are not homologous.Non-homologous transcription factors can adapt a similar structure and can therefore interact with and regulate their cognate RNAPs using closely related molecular mechanisms.NusG is the only RNAP-associated transcription factor that is universally conserved in evolution (NusG in bacteria, Spt5 in archaea and SPT5 in eukaryotes), indicating that regulation of transcription during elongation predated regulation of transcription initiation.
33 schema:genre article
34 schema:isAccessibleForFree false
35 schema:isPartOf N2c36a707551b456bb317ce41bb8fc6e5
36 N405d6b8bddb6454c8827b109098dc1aa
37 sg:journal.1032854
38 schema:keywords DNA
39 NusG
40 RNA
41 RNA polymerase
42 RNAP activity
43 RNAP function
44 RNAP subunits
45 action
46 activity
47 archaea
48 archaeal RNA polymerase
49 assembly
50 bacteria
51 catalysis
52 cleavage factors
53 cognate RNA polymerases
54 distinct ways
55 domain
56 domains of life
57 elongation
58 eukaryotes
59 eukaryotic RNA polymerases
60 evolution
61 exogenous transcription factors
62 facilitates assembly
63 factors
64 function
65 initiation
66 interaction
67 life
68 mechanism
69 molecular mechanisms
70 multisubunit RNA polymerases
71 polymerase
72 properties
73 regulation
74 regulation of transcription
75 sequence
76 similar structure
77 stalk
78 structure
79 subunits
80 termination properties
81 transcript cleavage factors
82 transcription
83 transcription factors
84 transcription initiation
85 way
86 schema:name Evolution of multisubunit RNA polymerases in the three domains of life
87 schema:pagination 85-98
88 schema:productId N1a60209392ca46108c28575cbe7521a0
89 N41936b9a98ff442e8a525bdc046ecd5c
90 Nc9182407a950407aad2af04cdcf72947
91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053742539
92 https://doi.org/10.1038/nrmicro2507
93 schema:sdDatePublished 2022-11-24T20:56
94 schema:sdLicense https://scigraph.springernature.com/explorer/license/
95 schema:sdPublisher Nee9743290924496f9f30ecc0712b628c
96 schema:url https://doi.org/10.1038/nrmicro2507
97 sgo:license sg:explorer/license/
98 sgo:sdDataset articles
99 rdf:type schema:ScholarlyArticle
100 N0dd47593f85e4601afb969ce228cf776 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Models, Molecular
102 rdf:type schema:DefinedTerm
103 N1a60209392ca46108c28575cbe7521a0 schema:name doi
104 schema:value 10.1038/nrmicro2507
105 rdf:type schema:PropertyValue
106 N26db48f5db264963921db750c8390199 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Conserved Sequence
108 rdf:type schema:DefinedTerm
109 N2c36a707551b456bb317ce41bb8fc6e5 schema:volumeNumber 9
110 rdf:type schema:PublicationVolume
111 N3d9c7fa647bc45ebb28407ba13abc208 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Phylogeny
113 rdf:type schema:DefinedTerm
114 N405d6b8bddb6454c8827b109098dc1aa schema:issueNumber 2
115 rdf:type schema:PublicationIssue
116 N41936b9a98ff442e8a525bdc046ecd5c schema:name dimensions_id
117 schema:value pub.1053742539
118 rdf:type schema:PropertyValue
119 N44be8abc8d394a0c9c062b9bfcb5f561 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Protein Structure, Quaternary
121 rdf:type schema:DefinedTerm
122 N4871d594dd2544349904039db72fe875 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name DNA-Directed RNA Polymerases
124 rdf:type schema:DefinedTerm
125 N6f54b7eed18149d1abdcf2e9f75d4faa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Evolution, Molecular
127 rdf:type schema:DefinedTerm
128 N80e2e690de784da4b319d00e26a1ae43 rdf:first sg:person.01341311262.95
129 rdf:rest rdf:nil
130 N8fa73bd6129b47b5aa03bd93ce5c033a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Bacteria
132 rdf:type schema:DefinedTerm
133 N906ff5a9499c452ab7067cf8e8dad07a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Saccharomyces cerevisiae
135 rdf:type schema:DefinedTerm
136 Na43b78d2f5774084a7c13889298291e0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Transcriptional Elongation Factors
138 rdf:type schema:DefinedTerm
139 Nb16bd4a172fd451e97da218556be03f7 rdf:first sg:person.01022042101.55
140 rdf:rest N80e2e690de784da4b319d00e26a1ae43
141 Nb2d62b120302461aa7d0dc5a82c870e5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Archaea
143 rdf:type schema:DefinedTerm
144 Nbb80c9b77b33426f95db97329aa9a3d0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Gene Expression Regulation, Enzymologic
146 rdf:type schema:DefinedTerm
147 Nc9182407a950407aad2af04cdcf72947 schema:name pubmed_id
148 schema:value 21233849
149 rdf:type schema:PropertyValue
150 Nee9743290924496f9f30ecc0712b628c schema:name Springer Nature - SN SciGraph project
151 rdf:type schema:Organization
152 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
153 schema:name Biological Sciences
154 rdf:type schema:DefinedTerm
155 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
156 schema:name Biochemistry and Cell Biology
157 rdf:type schema:DefinedTerm
158 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
159 schema:name Genetics
160 rdf:type schema:DefinedTerm
161 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
162 schema:name Microbiology
163 rdf:type schema:DefinedTerm
164 sg:grant.2770761 http://pending.schema.org/fundedItem sg:pub.10.1038/nrmicro2507
165 rdf:type schema:MonetaryGrant
166 sg:journal.1032854 schema:issn 1740-1526
167 1740-1534
168 schema:name Nature Reviews Microbiology
169 schema:publisher Springer Nature
170 rdf:type schema:Periodical
171 sg:person.01022042101.55 schema:affiliation grid-institutes:grid.509978.a
172 schema:familyName Werner
173 schema:givenName Finn
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022042101.55
175 rdf:type schema:Person
176 sg:person.01341311262.95 schema:affiliation grid-institutes:grid.509978.a
177 schema:familyName Grohmann
178 schema:givenName Dina
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341311262.95
180 rdf:type schema:Person
181 sg:pub.10.1038/354398a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036695125
182 https://doi.org/10.1038/354398a0
183 rdf:type schema:CreativeWork
184 sg:pub.10.1038/354401a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008143164
185 https://doi.org/10.1038/354401a0
186 rdf:type schema:CreativeWork
187 sg:pub.10.1038/364401a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042015984
188 https://doi.org/10.1038/364401a0
189 rdf:type schema:CreativeWork
190 sg:pub.10.1038/nature05932 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000750315
191 https://doi.org/10.1038/nature05932
192 rdf:type schema:CreativeWork
193 sg:pub.10.1038/nature06290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047553257
194 https://doi.org/10.1038/nature06290
195 rdf:type schema:CreativeWork
196 sg:pub.10.1038/nature06530 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016216700
197 https://doi.org/10.1038/nature06530
198 rdf:type schema:CreativeWork
199 sg:pub.10.1038/nature08548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009664227
200 https://doi.org/10.1038/nature08548
201 rdf:type schema:CreativeWork
202 sg:pub.10.1038/nrg2484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030687647
203 https://doi.org/10.1038/nrg2484
204 rdf:type schema:CreativeWork
205 sg:pub.10.1038/nrg2592 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043449587
206 https://doi.org/10.1038/nrg2592
207 rdf:type schema:CreativeWork
208 sg:pub.10.1038/nrm1588 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039731997
209 https://doi.org/10.1038/nrm1588
210 rdf:type schema:CreativeWork
211 sg:pub.10.1038/nsmb757 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038057289
212 https://doi.org/10.1038/nsmb757
213 rdf:type schema:CreativeWork
214 sg:pub.10.1186/1472-6807-3-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006727782
215 https://doi.org/10.1186/1472-6807-3-1
216 rdf:type schema:CreativeWork
217 sg:pub.10.1186/jbiol98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006566886
218 https://doi.org/10.1186/jbiol98
219 rdf:type schema:CreativeWork
220 grid-institutes:grid.509978.a schema:alternateName Division of Biosciences, RNA Polymerase Laboratory, Institute for Structural and Molecular Biology, University College London, Darwin Building, Gower Street, WC1E 6BT, London, UK
221 schema:name Division of Biosciences, RNA Polymerase Laboratory, Institute for Structural and Molecular Biology, University College London, Darwin Building, Gower Street, WC1E 6BT, London, UK
222 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...