Evolution of antifungal-drug resistance: mechanisms and pathogen fitness View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-06-10

AUTHORS

James B. Anderson

ABSTRACT

Key PointsLike other microorganisms, fungi exist in populations that are adaptable. Under the selection imposed by antifungal drugs, initially drug-sensitive fungal pathogens frequently evolve resistance.Although molecular mechanisms of resistance to antifungal drugs are well characterized, it is the evolutionary processes, the divergent mechanisms that arise by mutation and the impact on the fitness of the pathogen that determine the fate of resistance in fungal pathogen populations.In fungi, unlike bacteria, drug-resistance (and other) genes do not usually spread horizontally among widely divergent taxa. The prevailing pattern is that antifungal-drug resistance evolves repeatedly in isolated populations.The evidence for the evolution of resistance in real time comes from two different types of study: those that monitor fungal populations in patients undergoing antifungal drug therapy; and, in replicate, artificial cultures containing an antifungal drug.A crucial factor in the evolution of resistance to drugs is whether different resistance mechanisms that occur in combination result in increased fitness in the presence of a drug, compared with the same mechanisms when they occur in isolation.In the development of new antifungal drugs, the evolutionary potential for resistance can be predicted by subjecting known target genes to the Barlow–Hall procedure for mutagenic PCR and artificial recombination, and by allowing pathogen populations to evolve under artificial conditions designed to favour as many different mechanisms of resistance as possible.Possible avenues for managing antifungal drug resistance in the future include developing methods to channel fungal evolution so that the pathogen population becomes more vulnerable to existing drugs, and interfering with the ability of the fungal population to produce phenotypic variation, which might be subject to natural selection and therefore impede evolvability. More... »

PAGES

547-556

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nrmicro1179

DOI

http://dx.doi.org/10.1038/nrmicro1179

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000015575

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15953931


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1108", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Antifungal Agents", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biological Evolution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Candida albicans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drug Resistance, Fungal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Epistasis, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Forecasting", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fungi", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microbial Sensitivity Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mutation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Saccharomyces cerevisiae", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Virulence", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Botany, 3359 Mississauga Road North, University of Toronto, L5L 1C6, Mississauga, Ontario, Canada", 
          "id": "http://www.grid.ac/institutes/grid.17063.33", 
          "name": [
            "Department of Botany, 3359 Mississauga Road North, University of Toronto, L5L 1C6, Mississauga, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Anderson", 
        "givenName": "James B.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nrg1088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008567554", 
          "https://doi.org/10.1038/nrg1088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrmicro732", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007743476", 
          "https://doi.org/10.1038/nrmicro732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/302495a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030988657", 
          "https://doi.org/10.1038/302495a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrmicro888", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037521269", 
          "https://doi.org/10.1038/nrmicro888"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-06-10", 
    "datePublishedReg": "2005-06-10", 
    "description": "Key PointsLike other microorganisms, fungi exist in populations that are adaptable. Under the selection imposed by antifungal drugs, initially drug-sensitive fungal pathogens frequently evolve resistance.Although molecular mechanisms of resistance to antifungal drugs are well characterized, it is the evolutionary processes, the divergent mechanisms that arise by mutation and the impact on the fitness of the pathogen that determine the fate of resistance in fungal pathogen populations.In fungi, unlike bacteria, drug-resistance (and other) genes do not usually spread horizontally among widely divergent taxa. The prevailing pattern is that antifungal-drug resistance evolves repeatedly in isolated populations.The evidence for the evolution of resistance in real time comes from two different types of study: those that monitor fungal populations in patients undergoing antifungal drug therapy; and, in replicate, artificial cultures containing an antifungal drug.A crucial factor in the evolution of resistance to drugs is whether different resistance mechanisms that occur in combination result in increased fitness in the presence of a drug, compared with the same mechanisms when they occur in isolation.In the development of new antifungal drugs, the evolutionary potential for resistance can be predicted by subjecting known target genes to the Barlow\u2013Hall procedure for mutagenic PCR and artificial recombination, and by allowing pathogen populations to evolve under artificial conditions designed to favour as many different mechanisms of resistance as possible.Possible avenues for managing antifungal drug resistance in the future include developing methods to channel fungal evolution so that the pathogen population becomes more vulnerable to existing drugs, and interfering with the ability of the fungal population to produce phenotypic variation, which might be subject to natural selection and therefore impede evolvability.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/nrmicro1179", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1032854", 
        "issn": [
          "1740-1526", 
          "1740-1534"
        ], 
        "name": "Nature Reviews Microbiology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "keywords": [
      "evolution of resistance", 
      "pathogen populations", 
      "antifungal drug resistance", 
      "fungal populations", 
      "fungal pathogen populations", 
      "fungal evolution", 
      "divergent taxa", 
      "evolutionary potential", 
      "pathogen fitness", 
      "phenotypic variation", 
      "natural selection", 
      "drug resistance genes", 
      "different resistance mechanisms", 
      "target genes", 
      "fungal pathogens", 
      "artificial recombination", 
      "resistance evolves", 
      "mutagenic PCR", 
      "evolutionary processes", 
      "molecular mechanisms", 
      "antifungal drugs", 
      "divergent mechanisms", 
      "new antifungal drugs", 
      "artificial conditions", 
      "resistance mechanisms", 
      "artificial culture", 
      "genes", 
      "fitness", 
      "fungi", 
      "drug resistance", 
      "pathogens", 
      "different mechanisms", 
      "taxa", 
      "evolution", 
      "evolvability", 
      "mechanism", 
      "population", 
      "same mechanism", 
      "mutations", 
      "microorganisms", 
      "bacteria", 
      "resistance", 
      "recombination", 
      "selection", 
      "fate", 
      "PCR", 
      "isolation", 
      "possible avenues", 
      "crucial factor", 
      "culture", 
      "avenues", 
      "variation", 
      "patterns", 
      "ability", 
      "drugs", 
      "development", 
      "presence", 
      "evidence", 
      "factors", 
      "potential", 
      "antifungal drug therapy", 
      "different types", 
      "types", 
      "evolves", 
      "combination results", 
      "process", 
      "conditions", 
      "study", 
      "impact", 
      "results", 
      "future", 
      "real time", 
      "time", 
      "drug therapy", 
      "therapy", 
      "method", 
      "procedure", 
      "patients"
    ], 
    "name": "Evolution of antifungal-drug resistance: mechanisms and pathogen fitness", 
    "pagination": "547-556", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000015575"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nrmicro1179"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15953931"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nrmicro1179", 
      "https://app.dimensions.ai/details/publication/pub.1000015575"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T16:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_394.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/nrmicro1179"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nrmicro1179'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nrmicro1179'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nrmicro1179'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nrmicro1179'


 

This table displays all metadata directly associated to this object as RDF triples.

214 TRIPLES      21 PREDICATES      122 URIs      107 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nrmicro1179 schema:about N15b67ed6525340dbaecd6b42c8d55bb7
2 N1633a48fc0944259be63d2a793414682
3 N2a95da141b364e4abd286e66d0a69eaa
4 N338c1237dec34e64af1f332e5b54be82
5 N482499417de04beb9c6539b35a0458fe
6 N6af6c1bf9a85429c909299a201d58268
7 N808a8cce1a18418bb0d2518ab9080ea3
8 N946ba55bb3934168a23ef3fc1aa081e2
9 Nb171b854a75443d9909d6785b9a8b8db
10 Ndd52a25c383c4be480a9440bed1a05ff
11 Ne551024f30f04befb3aeefa829edc0f9
12 Nef8e1d425499419f8549633119ccf1aa
13 anzsrc-for:06
14 anzsrc-for:0604
15 anzsrc-for:0605
16 anzsrc-for:11
17 anzsrc-for:1108
18 schema:author Nd48ca1e6a9d7498c8288614cc2404757
19 schema:citation sg:pub.10.1038/302495a0
20 sg:pub.10.1038/nrg1088
21 sg:pub.10.1038/nrmicro732
22 sg:pub.10.1038/nrmicro888
23 schema:datePublished 2005-06-10
24 schema:datePublishedReg 2005-06-10
25 schema:description Key PointsLike other microorganisms, fungi exist in populations that are adaptable. Under the selection imposed by antifungal drugs, initially drug-sensitive fungal pathogens frequently evolve resistance.Although molecular mechanisms of resistance to antifungal drugs are well characterized, it is the evolutionary processes, the divergent mechanisms that arise by mutation and the impact on the fitness of the pathogen that determine the fate of resistance in fungal pathogen populations.In fungi, unlike bacteria, drug-resistance (and other) genes do not usually spread horizontally among widely divergent taxa. The prevailing pattern is that antifungal-drug resistance evolves repeatedly in isolated populations.The evidence for the evolution of resistance in real time comes from two different types of study: those that monitor fungal populations in patients undergoing antifungal drug therapy; and, in replicate, artificial cultures containing an antifungal drug.A crucial factor in the evolution of resistance to drugs is whether different resistance mechanisms that occur in combination result in increased fitness in the presence of a drug, compared with the same mechanisms when they occur in isolation.In the development of new antifungal drugs, the evolutionary potential for resistance can be predicted by subjecting known target genes to the Barlow–Hall procedure for mutagenic PCR and artificial recombination, and by allowing pathogen populations to evolve under artificial conditions designed to favour as many different mechanisms of resistance as possible.Possible avenues for managing antifungal drug resistance in the future include developing methods to channel fungal evolution so that the pathogen population becomes more vulnerable to existing drugs, and interfering with the ability of the fungal population to produce phenotypic variation, which might be subject to natural selection and therefore impede evolvability.
26 schema:genre article
27 schema:isAccessibleForFree false
28 schema:isPartOf N8d3ed80f24ce4793a5d0b2d90b431db5
29 Necc7ae5e41f9418e9330fb1047210c8b
30 sg:journal.1032854
31 schema:keywords PCR
32 ability
33 antifungal drug resistance
34 antifungal drug therapy
35 antifungal drugs
36 artificial conditions
37 artificial culture
38 artificial recombination
39 avenues
40 bacteria
41 combination results
42 conditions
43 crucial factor
44 culture
45 development
46 different mechanisms
47 different resistance mechanisms
48 different types
49 divergent mechanisms
50 divergent taxa
51 drug resistance
52 drug resistance genes
53 drug therapy
54 drugs
55 evidence
56 evolution
57 evolution of resistance
58 evolutionary potential
59 evolutionary processes
60 evolvability
61 evolves
62 factors
63 fate
64 fitness
65 fungal evolution
66 fungal pathogen populations
67 fungal pathogens
68 fungal populations
69 fungi
70 future
71 genes
72 impact
73 isolation
74 mechanism
75 method
76 microorganisms
77 molecular mechanisms
78 mutagenic PCR
79 mutations
80 natural selection
81 new antifungal drugs
82 pathogen fitness
83 pathogen populations
84 pathogens
85 patients
86 patterns
87 phenotypic variation
88 population
89 possible avenues
90 potential
91 presence
92 procedure
93 process
94 real time
95 recombination
96 resistance
97 resistance evolves
98 resistance mechanisms
99 results
100 same mechanism
101 selection
102 study
103 target genes
104 taxa
105 therapy
106 time
107 types
108 variation
109 schema:name Evolution of antifungal-drug resistance: mechanisms and pathogen fitness
110 schema:pagination 547-556
111 schema:productId N00b99019a8f94183870fcd2aa02e8daa
112 Nbdc04daa00bc4f97aaf37382a7ad8c28
113 Nbea3001a2b9d49e08b3f4532b97c6855
114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000015575
115 https://doi.org/10.1038/nrmicro1179
116 schema:sdDatePublished 2022-08-04T16:54
117 schema:sdLicense https://scigraph.springernature.com/explorer/license/
118 schema:sdPublisher N61aaa4ef96c747f7a6d6c0053ab3a6c8
119 schema:url https://doi.org/10.1038/nrmicro1179
120 sgo:license sg:explorer/license/
121 sgo:sdDataset articles
122 rdf:type schema:ScholarlyArticle
123 N00b99019a8f94183870fcd2aa02e8daa schema:name dimensions_id
124 schema:value pub.1000015575
125 rdf:type schema:PropertyValue
126 N15b67ed6525340dbaecd6b42c8d55bb7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Forecasting
128 rdf:type schema:DefinedTerm
129 N1633a48fc0944259be63d2a793414682 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Candida albicans
131 rdf:type schema:DefinedTerm
132 N2a95da141b364e4abd286e66d0a69eaa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Epistasis, Genetic
134 rdf:type schema:DefinedTerm
135 N338c1237dec34e64af1f332e5b54be82 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Fungi
137 rdf:type schema:DefinedTerm
138 N482499417de04beb9c6539b35a0458fe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Drug Resistance, Fungal
140 rdf:type schema:DefinedTerm
141 N61aaa4ef96c747f7a6d6c0053ab3a6c8 schema:name Springer Nature - SN SciGraph project
142 rdf:type schema:Organization
143 N6af6c1bf9a85429c909299a201d58268 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Antifungal Agents
145 rdf:type schema:DefinedTerm
146 N7996e9de3db445a9a698f33179897abb schema:affiliation grid-institutes:grid.17063.33
147 schema:familyName Anderson
148 schema:givenName James B.
149 rdf:type schema:Person
150 N808a8cce1a18418bb0d2518ab9080ea3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Microbial Sensitivity Tests
152 rdf:type schema:DefinedTerm
153 N8d3ed80f24ce4793a5d0b2d90b431db5 schema:issueNumber 7
154 rdf:type schema:PublicationIssue
155 N946ba55bb3934168a23ef3fc1aa081e2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Humans
157 rdf:type schema:DefinedTerm
158 Nb171b854a75443d9909d6785b9a8b8db schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Biological Evolution
160 rdf:type schema:DefinedTerm
161 Nbdc04daa00bc4f97aaf37382a7ad8c28 schema:name doi
162 schema:value 10.1038/nrmicro1179
163 rdf:type schema:PropertyValue
164 Nbea3001a2b9d49e08b3f4532b97c6855 schema:name pubmed_id
165 schema:value 15953931
166 rdf:type schema:PropertyValue
167 Nd48ca1e6a9d7498c8288614cc2404757 rdf:first N7996e9de3db445a9a698f33179897abb
168 rdf:rest rdf:nil
169 Ndd52a25c383c4be480a9440bed1a05ff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Virulence
171 rdf:type schema:DefinedTerm
172 Ne551024f30f04befb3aeefa829edc0f9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Mutation
174 rdf:type schema:DefinedTerm
175 Necc7ae5e41f9418e9330fb1047210c8b schema:volumeNumber 3
176 rdf:type schema:PublicationVolume
177 Nef8e1d425499419f8549633119ccf1aa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name Saccharomyces cerevisiae
179 rdf:type schema:DefinedTerm
180 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
181 schema:name Biological Sciences
182 rdf:type schema:DefinedTerm
183 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
184 schema:name Genetics
185 rdf:type schema:DefinedTerm
186 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
187 schema:name Microbiology
188 rdf:type schema:DefinedTerm
189 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
190 schema:name Medical and Health Sciences
191 rdf:type schema:DefinedTerm
192 anzsrc-for:1108 schema:inDefinedTermSet anzsrc-for:
193 schema:name Medical Microbiology
194 rdf:type schema:DefinedTerm
195 sg:journal.1032854 schema:issn 1740-1526
196 1740-1534
197 schema:name Nature Reviews Microbiology
198 schema:publisher Springer Nature
199 rdf:type schema:Periodical
200 sg:pub.10.1038/302495a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030988657
201 https://doi.org/10.1038/302495a0
202 rdf:type schema:CreativeWork
203 sg:pub.10.1038/nrg1088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008567554
204 https://doi.org/10.1038/nrg1088
205 rdf:type schema:CreativeWork
206 sg:pub.10.1038/nrmicro732 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007743476
207 https://doi.org/10.1038/nrmicro732
208 rdf:type schema:CreativeWork
209 sg:pub.10.1038/nrmicro888 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037521269
210 https://doi.org/10.1038/nrmicro888
211 rdf:type schema:CreativeWork
212 grid-institutes:grid.17063.33 schema:alternateName Department of Botany, 3359 Mississauga Road North, University of Toronto, L5L 1C6, Mississauga, Ontario, Canada
213 schema:name Department of Botany, 3359 Mississauga Road North, University of Toronto, L5L 1C6, Mississauga, Ontario, Canada
214 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...