Evolution of antifungal-drug resistance: mechanisms and pathogen fitness View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-06-10

AUTHORS

James B. Anderson

ABSTRACT

Key PointsLike other microorganisms, fungi exist in populations that are adaptable. Under the selection imposed by antifungal drugs, initially drug-sensitive fungal pathogens frequently evolve resistance.Although molecular mechanisms of resistance to antifungal drugs are well characterized, it is the evolutionary processes, the divergent mechanisms that arise by mutation and the impact on the fitness of the pathogen that determine the fate of resistance in fungal pathogen populations.In fungi, unlike bacteria, drug-resistance (and other) genes do not usually spread horizontally among widely divergent taxa. The prevailing pattern is that antifungal-drug resistance evolves repeatedly in isolated populations.The evidence for the evolution of resistance in real time comes from two different types of study: those that monitor fungal populations in patients undergoing antifungal drug therapy; and, in replicate, artificial cultures containing an antifungal drug.A crucial factor in the evolution of resistance to drugs is whether different resistance mechanisms that occur in combination result in increased fitness in the presence of a drug, compared with the same mechanisms when they occur in isolation.In the development of new antifungal drugs, the evolutionary potential for resistance can be predicted by subjecting known target genes to the Barlow–Hall procedure for mutagenic PCR and artificial recombination, and by allowing pathogen populations to evolve under artificial conditions designed to favour as many different mechanisms of resistance as possible.Possible avenues for managing antifungal drug resistance in the future include developing methods to channel fungal evolution so that the pathogen population becomes more vulnerable to existing drugs, and interfering with the ability of the fungal population to produce phenotypic variation, which might be subject to natural selection and therefore impede evolvability. More... »

PAGES

547-556

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nrmicro1179

DOI

http://dx.doi.org/10.1038/nrmicro1179

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000015575

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15953931


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1108", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Antifungal Agents", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biological Evolution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Candida albicans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drug Resistance, Fungal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Epistasis, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Forecasting", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fungi", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microbial Sensitivity Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mutation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Saccharomyces cerevisiae", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Virulence", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Botany, 3359 Mississauga Road North, University of Toronto, L5L 1C6, Mississauga, Ontario, Canada", 
          "id": "http://www.grid.ac/institutes/grid.17063.33", 
          "name": [
            "Department of Botany, 3359 Mississauga Road North, University of Toronto, L5L 1C6, Mississauga, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Anderson", 
        "givenName": "James B.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nrg1088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008567554", 
          "https://doi.org/10.1038/nrg1088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrmicro732", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007743476", 
          "https://doi.org/10.1038/nrmicro732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/302495a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030988657", 
          "https://doi.org/10.1038/302495a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrmicro888", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037521269", 
          "https://doi.org/10.1038/nrmicro888"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-06-10", 
    "datePublishedReg": "2005-06-10", 
    "description": "Key PointsLike other microorganisms, fungi exist in populations that are adaptable. Under the selection imposed by antifungal drugs, initially drug-sensitive fungal pathogens frequently evolve resistance.Although molecular mechanisms of resistance to antifungal drugs are well characterized, it is the evolutionary processes, the divergent mechanisms that arise by mutation and the impact on the fitness of the pathogen that determine the fate of resistance in fungal pathogen populations.In fungi, unlike bacteria, drug-resistance (and other) genes do not usually spread horizontally among widely divergent taxa. The prevailing pattern is that antifungal-drug resistance evolves repeatedly in isolated populations.The evidence for the evolution of resistance in real time comes from two different types of study: those that monitor fungal populations in patients undergoing antifungal drug therapy; and, in replicate, artificial cultures containing an antifungal drug.A crucial factor in the evolution of resistance to drugs is whether different resistance mechanisms that occur in combination result in increased fitness in the presence of a drug, compared with the same mechanisms when they occur in isolation.In the development of new antifungal drugs, the evolutionary potential for resistance can be predicted by subjecting known target genes to the Barlow\u2013Hall procedure for mutagenic PCR and artificial recombination, and by allowing pathogen populations to evolve under artificial conditions designed to favour as many different mechanisms of resistance as possible.Possible avenues for managing antifungal drug resistance in the future include developing methods to channel fungal evolution so that the pathogen population becomes more vulnerable to existing drugs, and interfering with the ability of the fungal population to produce phenotypic variation, which might be subject to natural selection and therefore impede evolvability.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/nrmicro1179", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1032854", 
        "issn": [
          "1740-1526", 
          "1740-1534"
        ], 
        "name": "Nature Reviews Microbiology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "keywords": [
      "evolution of resistance", 
      "pathogen populations", 
      "antifungal drug resistance", 
      "fungal populations", 
      "fungal pathogen populations", 
      "fungal evolution", 
      "divergent taxa", 
      "evolutionary potential", 
      "pathogen fitness", 
      "phenotypic variation", 
      "natural selection", 
      "drug resistance genes", 
      "different resistance mechanisms", 
      "target genes", 
      "fungal pathogens", 
      "artificial recombination", 
      "resistance evolves", 
      "mutagenic PCR", 
      "evolutionary processes", 
      "molecular mechanisms", 
      "antifungal drugs", 
      "divergent mechanisms", 
      "new antifungal drugs", 
      "artificial conditions", 
      "resistance mechanisms", 
      "artificial culture", 
      "genes", 
      "fitness", 
      "fungi", 
      "drug resistance", 
      "pathogens", 
      "different mechanisms", 
      "taxa", 
      "evolution", 
      "evolvability", 
      "mechanism", 
      "population", 
      "same mechanism", 
      "mutations", 
      "microorganisms", 
      "bacteria", 
      "resistance", 
      "recombination", 
      "selection", 
      "fate", 
      "PCR", 
      "isolation", 
      "possible avenues", 
      "crucial factor", 
      "culture", 
      "avenues", 
      "variation", 
      "patterns", 
      "ability", 
      "drugs", 
      "development", 
      "presence", 
      "evidence", 
      "factors", 
      "potential", 
      "antifungal drug therapy", 
      "different types", 
      "types", 
      "evolves", 
      "combination results", 
      "process", 
      "conditions", 
      "study", 
      "impact", 
      "results", 
      "future", 
      "real time", 
      "time", 
      "drug therapy", 
      "therapy", 
      "method", 
      "procedure", 
      "patients"
    ], 
    "name": "Evolution of antifungal-drug resistance: mechanisms and pathogen fitness", 
    "pagination": "547-556", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000015575"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nrmicro1179"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15953931"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nrmicro1179", 
      "https://app.dimensions.ai/details/publication/pub.1000015575"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T16:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_394.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/nrmicro1179"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nrmicro1179'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nrmicro1179'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nrmicro1179'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nrmicro1179'


 

This table displays all metadata directly associated to this object as RDF triples.

214 TRIPLES      21 PREDICATES      122 URIs      107 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nrmicro1179 schema:about N104e08a3dfd7417e97d8bd42cd32798d
2 N5a6c5674904a40faa8161470975bbcfb
3 N7d3d5fb489404e17bf945f866bb870fa
4 N81cbbc9617844f5685b010aab25b2528
5 N8bf373f044b44c60aa8bb140225e3b48
6 Na9127a3212dc45ffbfe9062cd85a8de3
7 Nb828ff66133249e1865494fb18883a87
8 Ne26671a9224340cb924ef91cd604f709
9 Ne6cbee6aa06b46278a0a3aa1eca58705
10 Neb380fd985124cc4b5d3bcc1fff8ec47
11 Nf82894ba645043e09ecd1c44d9da40f8
12 Nf85fe6833d3c404e8ea64cceba8e14d5
13 anzsrc-for:06
14 anzsrc-for:0604
15 anzsrc-for:0605
16 anzsrc-for:11
17 anzsrc-for:1108
18 schema:author N92f0ae8bef7848b4a9487e3cb69d7711
19 schema:citation sg:pub.10.1038/302495a0
20 sg:pub.10.1038/nrg1088
21 sg:pub.10.1038/nrmicro732
22 sg:pub.10.1038/nrmicro888
23 schema:datePublished 2005-06-10
24 schema:datePublishedReg 2005-06-10
25 schema:description Key PointsLike other microorganisms, fungi exist in populations that are adaptable. Under the selection imposed by antifungal drugs, initially drug-sensitive fungal pathogens frequently evolve resistance.Although molecular mechanisms of resistance to antifungal drugs are well characterized, it is the evolutionary processes, the divergent mechanisms that arise by mutation and the impact on the fitness of the pathogen that determine the fate of resistance in fungal pathogen populations.In fungi, unlike bacteria, drug-resistance (and other) genes do not usually spread horizontally among widely divergent taxa. The prevailing pattern is that antifungal-drug resistance evolves repeatedly in isolated populations.The evidence for the evolution of resistance in real time comes from two different types of study: those that monitor fungal populations in patients undergoing antifungal drug therapy; and, in replicate, artificial cultures containing an antifungal drug.A crucial factor in the evolution of resistance to drugs is whether different resistance mechanisms that occur in combination result in increased fitness in the presence of a drug, compared with the same mechanisms when they occur in isolation.In the development of new antifungal drugs, the evolutionary potential for resistance can be predicted by subjecting known target genes to the Barlow–Hall procedure for mutagenic PCR and artificial recombination, and by allowing pathogen populations to evolve under artificial conditions designed to favour as many different mechanisms of resistance as possible.Possible avenues for managing antifungal drug resistance in the future include developing methods to channel fungal evolution so that the pathogen population becomes more vulnerable to existing drugs, and interfering with the ability of the fungal population to produce phenotypic variation, which might be subject to natural selection and therefore impede evolvability.
26 schema:genre article
27 schema:isAccessibleForFree false
28 schema:isPartOf N75df3a3aca09462eb7998e56d17a6916
29 Nc2ed2395d25e4416b8fbd790accfd553
30 sg:journal.1032854
31 schema:keywords PCR
32 ability
33 antifungal drug resistance
34 antifungal drug therapy
35 antifungal drugs
36 artificial conditions
37 artificial culture
38 artificial recombination
39 avenues
40 bacteria
41 combination results
42 conditions
43 crucial factor
44 culture
45 development
46 different mechanisms
47 different resistance mechanisms
48 different types
49 divergent mechanisms
50 divergent taxa
51 drug resistance
52 drug resistance genes
53 drug therapy
54 drugs
55 evidence
56 evolution
57 evolution of resistance
58 evolutionary potential
59 evolutionary processes
60 evolvability
61 evolves
62 factors
63 fate
64 fitness
65 fungal evolution
66 fungal pathogen populations
67 fungal pathogens
68 fungal populations
69 fungi
70 future
71 genes
72 impact
73 isolation
74 mechanism
75 method
76 microorganisms
77 molecular mechanisms
78 mutagenic PCR
79 mutations
80 natural selection
81 new antifungal drugs
82 pathogen fitness
83 pathogen populations
84 pathogens
85 patients
86 patterns
87 phenotypic variation
88 population
89 possible avenues
90 potential
91 presence
92 procedure
93 process
94 real time
95 recombination
96 resistance
97 resistance evolves
98 resistance mechanisms
99 results
100 same mechanism
101 selection
102 study
103 target genes
104 taxa
105 therapy
106 time
107 types
108 variation
109 schema:name Evolution of antifungal-drug resistance: mechanisms and pathogen fitness
110 schema:pagination 547-556
111 schema:productId N6d7d1ae00fbc4b16899ab11585a85ec7
112 N8e12184fd9b8448ca1a0239e2c05940a
113 Nf85e1ca6ffb14fd78c090d0ba25923c0
114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000015575
115 https://doi.org/10.1038/nrmicro1179
116 schema:sdDatePublished 2022-08-04T16:54
117 schema:sdLicense https://scigraph.springernature.com/explorer/license/
118 schema:sdPublisher N18403fdb33a24591abdc2184eacc4f78
119 schema:url https://doi.org/10.1038/nrmicro1179
120 sgo:license sg:explorer/license/
121 sgo:sdDataset articles
122 rdf:type schema:ScholarlyArticle
123 N104e08a3dfd7417e97d8bd42cd32798d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Drug Resistance, Fungal
125 rdf:type schema:DefinedTerm
126 N18403fdb33a24591abdc2184eacc4f78 schema:name Springer Nature - SN SciGraph project
127 rdf:type schema:Organization
128 N5a6c5674904a40faa8161470975bbcfb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Humans
130 rdf:type schema:DefinedTerm
131 N6d7d1ae00fbc4b16899ab11585a85ec7 schema:name doi
132 schema:value 10.1038/nrmicro1179
133 rdf:type schema:PropertyValue
134 N75df3a3aca09462eb7998e56d17a6916 schema:volumeNumber 3
135 rdf:type schema:PublicationVolume
136 N7ae5132f0bf84ee7bf0478635e310693 schema:affiliation grid-institutes:grid.17063.33
137 schema:familyName Anderson
138 schema:givenName James B.
139 rdf:type schema:Person
140 N7d3d5fb489404e17bf945f866bb870fa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Forecasting
142 rdf:type schema:DefinedTerm
143 N81cbbc9617844f5685b010aab25b2528 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Epistasis, Genetic
145 rdf:type schema:DefinedTerm
146 N8bf373f044b44c60aa8bb140225e3b48 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Candida albicans
148 rdf:type schema:DefinedTerm
149 N8e12184fd9b8448ca1a0239e2c05940a schema:name pubmed_id
150 schema:value 15953931
151 rdf:type schema:PropertyValue
152 N92f0ae8bef7848b4a9487e3cb69d7711 rdf:first N7ae5132f0bf84ee7bf0478635e310693
153 rdf:rest rdf:nil
154 Na9127a3212dc45ffbfe9062cd85a8de3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Saccharomyces cerevisiae
156 rdf:type schema:DefinedTerm
157 Nb828ff66133249e1865494fb18883a87 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Fungi
159 rdf:type schema:DefinedTerm
160 Nc2ed2395d25e4416b8fbd790accfd553 schema:issueNumber 7
161 rdf:type schema:PublicationIssue
162 Ne26671a9224340cb924ef91cd604f709 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Virulence
164 rdf:type schema:DefinedTerm
165 Ne6cbee6aa06b46278a0a3aa1eca58705 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Microbial Sensitivity Tests
167 rdf:type schema:DefinedTerm
168 Neb380fd985124cc4b5d3bcc1fff8ec47 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Biological Evolution
170 rdf:type schema:DefinedTerm
171 Nf82894ba645043e09ecd1c44d9da40f8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Mutation
173 rdf:type schema:DefinedTerm
174 Nf85e1ca6ffb14fd78c090d0ba25923c0 schema:name dimensions_id
175 schema:value pub.1000015575
176 rdf:type schema:PropertyValue
177 Nf85fe6833d3c404e8ea64cceba8e14d5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name Antifungal Agents
179 rdf:type schema:DefinedTerm
180 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
181 schema:name Biological Sciences
182 rdf:type schema:DefinedTerm
183 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
184 schema:name Genetics
185 rdf:type schema:DefinedTerm
186 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
187 schema:name Microbiology
188 rdf:type schema:DefinedTerm
189 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
190 schema:name Medical and Health Sciences
191 rdf:type schema:DefinedTerm
192 anzsrc-for:1108 schema:inDefinedTermSet anzsrc-for:
193 schema:name Medical Microbiology
194 rdf:type schema:DefinedTerm
195 sg:journal.1032854 schema:issn 1740-1526
196 1740-1534
197 schema:name Nature Reviews Microbiology
198 schema:publisher Springer Nature
199 rdf:type schema:Periodical
200 sg:pub.10.1038/302495a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030988657
201 https://doi.org/10.1038/302495a0
202 rdf:type schema:CreativeWork
203 sg:pub.10.1038/nrg1088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008567554
204 https://doi.org/10.1038/nrg1088
205 rdf:type schema:CreativeWork
206 sg:pub.10.1038/nrmicro732 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007743476
207 https://doi.org/10.1038/nrmicro732
208 rdf:type schema:CreativeWork
209 sg:pub.10.1038/nrmicro888 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037521269
210 https://doi.org/10.1038/nrmicro888
211 rdf:type schema:CreativeWork
212 grid-institutes:grid.17063.33 schema:alternateName Department of Botany, 3359 Mississauga Road North, University of Toronto, L5L 1C6, Mississauga, Ontario, Canada
213 schema:name Department of Botany, 3359 Mississauga Road North, University of Toronto, L5L 1C6, Mississauga, Ontario, Canada
214 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...