Ontology type: schema:ScholarlyArticle
2005-06-10
AUTHORSJames B. Anderson
ABSTRACTKey PointsLike other microorganisms, fungi exist in populations that are adaptable. Under the selection imposed by antifungal drugs, initially drug-sensitive fungal pathogens frequently evolve resistance.Although molecular mechanisms of resistance to antifungal drugs are well characterized, it is the evolutionary processes, the divergent mechanisms that arise by mutation and the impact on the fitness of the pathogen that determine the fate of resistance in fungal pathogen populations.In fungi, unlike bacteria, drug-resistance (and other) genes do not usually spread horizontally among widely divergent taxa. The prevailing pattern is that antifungal-drug resistance evolves repeatedly in isolated populations.The evidence for the evolution of resistance in real time comes from two different types of study: those that monitor fungal populations in patients undergoing antifungal drug therapy; and, in replicate, artificial cultures containing an antifungal drug.A crucial factor in the evolution of resistance to drugs is whether different resistance mechanisms that occur in combination result in increased fitness in the presence of a drug, compared with the same mechanisms when they occur in isolation.In the development of new antifungal drugs, the evolutionary potential for resistance can be predicted by subjecting known target genes to the Barlow–Hall procedure for mutagenic PCR and artificial recombination, and by allowing pathogen populations to evolve under artificial conditions designed to favour as many different mechanisms of resistance as possible.Possible avenues for managing antifungal drug resistance in the future include developing methods to channel fungal evolution so that the pathogen population becomes more vulnerable to existing drugs, and interfering with the ability of the fungal population to produce phenotypic variation, which might be subject to natural selection and therefore impede evolvability. More... »
PAGES547-556
http://scigraph.springernature.com/pub.10.1038/nrmicro1179
DOIhttp://dx.doi.org/10.1038/nrmicro1179
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1000015575
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/15953931
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biological Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Medical and Health Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Genetics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Microbiology",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1108",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Medical Microbiology",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Antifungal Agents",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Biological Evolution",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Candida albicans",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Drug Resistance, Fungal",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Epistasis, Genetic",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Forecasting",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Fungi",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Humans",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Microbial Sensitivity Tests",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Mutation",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Saccharomyces cerevisiae",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Virulence",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Botany, 3359 Mississauga Road North, University of Toronto, L5L 1C6, Mississauga, Ontario, Canada",
"id": "http://www.grid.ac/institutes/grid.17063.33",
"name": [
"Department of Botany, 3359 Mississauga Road North, University of Toronto, L5L 1C6, Mississauga, Ontario, Canada"
],
"type": "Organization"
},
"familyName": "Anderson",
"givenName": "James B.",
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1038/nrg1088",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1008567554",
"https://doi.org/10.1038/nrg1088"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nrmicro732",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007743476",
"https://doi.org/10.1038/nrmicro732"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/302495a0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030988657",
"https://doi.org/10.1038/302495a0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nrmicro888",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037521269",
"https://doi.org/10.1038/nrmicro888"
],
"type": "CreativeWork"
}
],
"datePublished": "2005-06-10",
"datePublishedReg": "2005-06-10",
"description": "Key PointsLike other microorganisms, fungi exist in populations that are adaptable. Under the selection imposed by antifungal drugs, initially drug-sensitive fungal pathogens frequently evolve resistance.Although molecular mechanisms of resistance to antifungal drugs are well characterized, it is the evolutionary processes, the divergent mechanisms that arise by mutation and the impact on the fitness of the pathogen that determine the fate of resistance in fungal pathogen populations.In fungi, unlike bacteria, drug-resistance (and other) genes do not usually spread horizontally among widely divergent taxa. The prevailing pattern is that antifungal-drug resistance evolves repeatedly in isolated populations.The evidence for the evolution of resistance in real time comes from two different types of study: those that monitor fungal populations in patients undergoing antifungal drug therapy; and, in replicate, artificial cultures containing an antifungal drug.A crucial factor in the evolution of resistance to drugs is whether different resistance mechanisms that occur in combination result in increased fitness in the presence of a drug, compared with the same mechanisms when they occur in isolation.In the development of new antifungal drugs, the evolutionary potential for resistance can be predicted by subjecting known target genes to the Barlow\u2013Hall procedure for mutagenic PCR and artificial recombination, and by allowing pathogen populations to evolve under artificial conditions designed to favour as many different mechanisms of resistance as possible.Possible avenues for managing antifungal drug resistance in the future include developing methods to channel fungal evolution so that the pathogen population becomes more vulnerable to existing drugs, and interfering with the ability of the fungal population to produce phenotypic variation, which might be subject to natural selection and therefore impede evolvability.",
"genre": "article",
"id": "sg:pub.10.1038/nrmicro1179",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1032854",
"issn": [
"1740-1526",
"1740-1534"
],
"name": "Nature Reviews Microbiology",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "7",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "3"
}
],
"keywords": [
"evolution of resistance",
"pathogen populations",
"antifungal drug resistance",
"fungal populations",
"fungal pathogen populations",
"fungal evolution",
"divergent taxa",
"evolutionary potential",
"pathogen fitness",
"phenotypic variation",
"natural selection",
"drug resistance genes",
"different resistance mechanisms",
"target genes",
"fungal pathogens",
"artificial recombination",
"resistance evolves",
"mutagenic PCR",
"evolutionary processes",
"molecular mechanisms",
"antifungal drugs",
"divergent mechanisms",
"new antifungal drugs",
"artificial conditions",
"resistance mechanisms",
"artificial culture",
"genes",
"fitness",
"fungi",
"drug resistance",
"pathogens",
"different mechanisms",
"taxa",
"evolution",
"evolvability",
"mechanism",
"population",
"same mechanism",
"mutations",
"microorganisms",
"bacteria",
"resistance",
"recombination",
"selection",
"fate",
"PCR",
"isolation",
"possible avenues",
"crucial factor",
"culture",
"avenues",
"variation",
"patterns",
"ability",
"drugs",
"development",
"presence",
"evidence",
"factors",
"potential",
"antifungal drug therapy",
"different types",
"types",
"evolves",
"combination results",
"process",
"conditions",
"study",
"impact",
"results",
"future",
"real time",
"time",
"drug therapy",
"therapy",
"method",
"procedure",
"patients"
],
"name": "Evolution of antifungal-drug resistance: mechanisms and pathogen fitness",
"pagination": "547-556",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1000015575"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1038/nrmicro1179"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"15953931"
]
}
],
"sameAs": [
"https://doi.org/10.1038/nrmicro1179",
"https://app.dimensions.ai/details/publication/pub.1000015575"
],
"sdDataset": "articles",
"sdDatePublished": "2022-08-04T16:54",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_394.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1038/nrmicro1179"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nrmicro1179'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nrmicro1179'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nrmicro1179'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nrmicro1179'
This table displays all metadata directly associated to this object as RDF triples.
214 TRIPLES
21 PREDICATES
122 URIs
107 LITERALS
19 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1038/nrmicro1179 | schema:about | N15b67ed6525340dbaecd6b42c8d55bb7 |
2 | ″ | ″ | N1633a48fc0944259be63d2a793414682 |
3 | ″ | ″ | N2a95da141b364e4abd286e66d0a69eaa |
4 | ″ | ″ | N338c1237dec34e64af1f332e5b54be82 |
5 | ″ | ″ | N482499417de04beb9c6539b35a0458fe |
6 | ″ | ″ | N6af6c1bf9a85429c909299a201d58268 |
7 | ″ | ″ | N808a8cce1a18418bb0d2518ab9080ea3 |
8 | ″ | ″ | N946ba55bb3934168a23ef3fc1aa081e2 |
9 | ″ | ″ | Nb171b854a75443d9909d6785b9a8b8db |
10 | ″ | ″ | Ndd52a25c383c4be480a9440bed1a05ff |
11 | ″ | ″ | Ne551024f30f04befb3aeefa829edc0f9 |
12 | ″ | ″ | Nef8e1d425499419f8549633119ccf1aa |
13 | ″ | ″ | anzsrc-for:06 |
14 | ″ | ″ | anzsrc-for:0604 |
15 | ″ | ″ | anzsrc-for:0605 |
16 | ″ | ″ | anzsrc-for:11 |
17 | ″ | ″ | anzsrc-for:1108 |
18 | ″ | schema:author | Nd48ca1e6a9d7498c8288614cc2404757 |
19 | ″ | schema:citation | sg:pub.10.1038/302495a0 |
20 | ″ | ″ | sg:pub.10.1038/nrg1088 |
21 | ″ | ″ | sg:pub.10.1038/nrmicro732 |
22 | ″ | ″ | sg:pub.10.1038/nrmicro888 |
23 | ″ | schema:datePublished | 2005-06-10 |
24 | ″ | schema:datePublishedReg | 2005-06-10 |
25 | ″ | schema:description | Key PointsLike other microorganisms, fungi exist in populations that are adaptable. Under the selection imposed by antifungal drugs, initially drug-sensitive fungal pathogens frequently evolve resistance.Although molecular mechanisms of resistance to antifungal drugs are well characterized, it is the evolutionary processes, the divergent mechanisms that arise by mutation and the impact on the fitness of the pathogen that determine the fate of resistance in fungal pathogen populations.In fungi, unlike bacteria, drug-resistance (and other) genes do not usually spread horizontally among widely divergent taxa. The prevailing pattern is that antifungal-drug resistance evolves repeatedly in isolated populations.The evidence for the evolution of resistance in real time comes from two different types of study: those that monitor fungal populations in patients undergoing antifungal drug therapy; and, in replicate, artificial cultures containing an antifungal drug.A crucial factor in the evolution of resistance to drugs is whether different resistance mechanisms that occur in combination result in increased fitness in the presence of a drug, compared with the same mechanisms when they occur in isolation.In the development of new antifungal drugs, the evolutionary potential for resistance can be predicted by subjecting known target genes to the Barlow–Hall procedure for mutagenic PCR and artificial recombination, and by allowing pathogen populations to evolve under artificial conditions designed to favour as many different mechanisms of resistance as possible.Possible avenues for managing antifungal drug resistance in the future include developing methods to channel fungal evolution so that the pathogen population becomes more vulnerable to existing drugs, and interfering with the ability of the fungal population to produce phenotypic variation, which might be subject to natural selection and therefore impede evolvability. |
26 | ″ | schema:genre | article |
27 | ″ | schema:isAccessibleForFree | false |
28 | ″ | schema:isPartOf | N8d3ed80f24ce4793a5d0b2d90b431db5 |
29 | ″ | ″ | Necc7ae5e41f9418e9330fb1047210c8b |
30 | ″ | ″ | sg:journal.1032854 |
31 | ″ | schema:keywords | PCR |
32 | ″ | ″ | ability |
33 | ″ | ″ | antifungal drug resistance |
34 | ″ | ″ | antifungal drug therapy |
35 | ″ | ″ | antifungal drugs |
36 | ″ | ″ | artificial conditions |
37 | ″ | ″ | artificial culture |
38 | ″ | ″ | artificial recombination |
39 | ″ | ″ | avenues |
40 | ″ | ″ | bacteria |
41 | ″ | ″ | combination results |
42 | ″ | ″ | conditions |
43 | ″ | ″ | crucial factor |
44 | ″ | ″ | culture |
45 | ″ | ″ | development |
46 | ″ | ″ | different mechanisms |
47 | ″ | ″ | different resistance mechanisms |
48 | ″ | ″ | different types |
49 | ″ | ″ | divergent mechanisms |
50 | ″ | ″ | divergent taxa |
51 | ″ | ″ | drug resistance |
52 | ″ | ″ | drug resistance genes |
53 | ″ | ″ | drug therapy |
54 | ″ | ″ | drugs |
55 | ″ | ″ | evidence |
56 | ″ | ″ | evolution |
57 | ″ | ″ | evolution of resistance |
58 | ″ | ″ | evolutionary potential |
59 | ″ | ″ | evolutionary processes |
60 | ″ | ″ | evolvability |
61 | ″ | ″ | evolves |
62 | ″ | ″ | factors |
63 | ″ | ″ | fate |
64 | ″ | ″ | fitness |
65 | ″ | ″ | fungal evolution |
66 | ″ | ″ | fungal pathogen populations |
67 | ″ | ″ | fungal pathogens |
68 | ″ | ″ | fungal populations |
69 | ″ | ″ | fungi |
70 | ″ | ″ | future |
71 | ″ | ″ | genes |
72 | ″ | ″ | impact |
73 | ″ | ″ | isolation |
74 | ″ | ″ | mechanism |
75 | ″ | ″ | method |
76 | ″ | ″ | microorganisms |
77 | ″ | ″ | molecular mechanisms |
78 | ″ | ″ | mutagenic PCR |
79 | ″ | ″ | mutations |
80 | ″ | ″ | natural selection |
81 | ″ | ″ | new antifungal drugs |
82 | ″ | ″ | pathogen fitness |
83 | ″ | ″ | pathogen populations |
84 | ″ | ″ | pathogens |
85 | ″ | ″ | patients |
86 | ″ | ″ | patterns |
87 | ″ | ″ | phenotypic variation |
88 | ″ | ″ | population |
89 | ″ | ″ | possible avenues |
90 | ″ | ″ | potential |
91 | ″ | ″ | presence |
92 | ″ | ″ | procedure |
93 | ″ | ″ | process |
94 | ″ | ″ | real time |
95 | ″ | ″ | recombination |
96 | ″ | ″ | resistance |
97 | ″ | ″ | resistance evolves |
98 | ″ | ″ | resistance mechanisms |
99 | ″ | ″ | results |
100 | ″ | ″ | same mechanism |
101 | ″ | ″ | selection |
102 | ″ | ″ | study |
103 | ″ | ″ | target genes |
104 | ″ | ″ | taxa |
105 | ″ | ″ | therapy |
106 | ″ | ″ | time |
107 | ″ | ″ | types |
108 | ″ | ″ | variation |
109 | ″ | schema:name | Evolution of antifungal-drug resistance: mechanisms and pathogen fitness |
110 | ″ | schema:pagination | 547-556 |
111 | ″ | schema:productId | N00b99019a8f94183870fcd2aa02e8daa |
112 | ″ | ″ | Nbdc04daa00bc4f97aaf37382a7ad8c28 |
113 | ″ | ″ | Nbea3001a2b9d49e08b3f4532b97c6855 |
114 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1000015575 |
115 | ″ | ″ | https://doi.org/10.1038/nrmicro1179 |
116 | ″ | schema:sdDatePublished | 2022-08-04T16:54 |
117 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
118 | ″ | schema:sdPublisher | N61aaa4ef96c747f7a6d6c0053ab3a6c8 |
119 | ″ | schema:url | https://doi.org/10.1038/nrmicro1179 |
120 | ″ | sgo:license | sg:explorer/license/ |
121 | ″ | sgo:sdDataset | articles |
122 | ″ | rdf:type | schema:ScholarlyArticle |
123 | N00b99019a8f94183870fcd2aa02e8daa | schema:name | dimensions_id |
124 | ″ | schema:value | pub.1000015575 |
125 | ″ | rdf:type | schema:PropertyValue |
126 | N15b67ed6525340dbaecd6b42c8d55bb7 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
127 | ″ | schema:name | Forecasting |
128 | ″ | rdf:type | schema:DefinedTerm |
129 | N1633a48fc0944259be63d2a793414682 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
130 | ″ | schema:name | Candida albicans |
131 | ″ | rdf:type | schema:DefinedTerm |
132 | N2a95da141b364e4abd286e66d0a69eaa | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
133 | ″ | schema:name | Epistasis, Genetic |
134 | ″ | rdf:type | schema:DefinedTerm |
135 | N338c1237dec34e64af1f332e5b54be82 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
136 | ″ | schema:name | Fungi |
137 | ″ | rdf:type | schema:DefinedTerm |
138 | N482499417de04beb9c6539b35a0458fe | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
139 | ″ | schema:name | Drug Resistance, Fungal |
140 | ″ | rdf:type | schema:DefinedTerm |
141 | N61aaa4ef96c747f7a6d6c0053ab3a6c8 | schema:name | Springer Nature - SN SciGraph project |
142 | ″ | rdf:type | schema:Organization |
143 | N6af6c1bf9a85429c909299a201d58268 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
144 | ″ | schema:name | Antifungal Agents |
145 | ″ | rdf:type | schema:DefinedTerm |
146 | N7996e9de3db445a9a698f33179897abb | schema:affiliation | grid-institutes:grid.17063.33 |
147 | ″ | schema:familyName | Anderson |
148 | ″ | schema:givenName | James B. |
149 | ″ | rdf:type | schema:Person |
150 | N808a8cce1a18418bb0d2518ab9080ea3 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
151 | ″ | schema:name | Microbial Sensitivity Tests |
152 | ″ | rdf:type | schema:DefinedTerm |
153 | N8d3ed80f24ce4793a5d0b2d90b431db5 | schema:issueNumber | 7 |
154 | ″ | rdf:type | schema:PublicationIssue |
155 | N946ba55bb3934168a23ef3fc1aa081e2 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
156 | ″ | schema:name | Humans |
157 | ″ | rdf:type | schema:DefinedTerm |
158 | Nb171b854a75443d9909d6785b9a8b8db | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
159 | ″ | schema:name | Biological Evolution |
160 | ″ | rdf:type | schema:DefinedTerm |
161 | Nbdc04daa00bc4f97aaf37382a7ad8c28 | schema:name | doi |
162 | ″ | schema:value | 10.1038/nrmicro1179 |
163 | ″ | rdf:type | schema:PropertyValue |
164 | Nbea3001a2b9d49e08b3f4532b97c6855 | schema:name | pubmed_id |
165 | ″ | schema:value | 15953931 |
166 | ″ | rdf:type | schema:PropertyValue |
167 | Nd48ca1e6a9d7498c8288614cc2404757 | rdf:first | N7996e9de3db445a9a698f33179897abb |
168 | ″ | rdf:rest | rdf:nil |
169 | Ndd52a25c383c4be480a9440bed1a05ff | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
170 | ″ | schema:name | Virulence |
171 | ″ | rdf:type | schema:DefinedTerm |
172 | Ne551024f30f04befb3aeefa829edc0f9 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
173 | ″ | schema:name | Mutation |
174 | ″ | rdf:type | schema:DefinedTerm |
175 | Necc7ae5e41f9418e9330fb1047210c8b | schema:volumeNumber | 3 |
176 | ″ | rdf:type | schema:PublicationVolume |
177 | Nef8e1d425499419f8549633119ccf1aa | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
178 | ″ | schema:name | Saccharomyces cerevisiae |
179 | ″ | rdf:type | schema:DefinedTerm |
180 | anzsrc-for:06 | schema:inDefinedTermSet | anzsrc-for: |
181 | ″ | schema:name | Biological Sciences |
182 | ″ | rdf:type | schema:DefinedTerm |
183 | anzsrc-for:0604 | schema:inDefinedTermSet | anzsrc-for: |
184 | ″ | schema:name | Genetics |
185 | ″ | rdf:type | schema:DefinedTerm |
186 | anzsrc-for:0605 | schema:inDefinedTermSet | anzsrc-for: |
187 | ″ | schema:name | Microbiology |
188 | ″ | rdf:type | schema:DefinedTerm |
189 | anzsrc-for:11 | schema:inDefinedTermSet | anzsrc-for: |
190 | ″ | schema:name | Medical and Health Sciences |
191 | ″ | rdf:type | schema:DefinedTerm |
192 | anzsrc-for:1108 | schema:inDefinedTermSet | anzsrc-for: |
193 | ″ | schema:name | Medical Microbiology |
194 | ″ | rdf:type | schema:DefinedTerm |
195 | sg:journal.1032854 | schema:issn | 1740-1526 |
196 | ″ | ″ | 1740-1534 |
197 | ″ | schema:name | Nature Reviews Microbiology |
198 | ″ | schema:publisher | Springer Nature |
199 | ″ | rdf:type | schema:Periodical |
200 | sg:pub.10.1038/302495a0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1030988657 |
201 | ″ | ″ | https://doi.org/10.1038/302495a0 |
202 | ″ | rdf:type | schema:CreativeWork |
203 | sg:pub.10.1038/nrg1088 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1008567554 |
204 | ″ | ″ | https://doi.org/10.1038/nrg1088 |
205 | ″ | rdf:type | schema:CreativeWork |
206 | sg:pub.10.1038/nrmicro732 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1007743476 |
207 | ″ | ″ | https://doi.org/10.1038/nrmicro732 |
208 | ″ | rdf:type | schema:CreativeWork |
209 | sg:pub.10.1038/nrmicro888 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1037521269 |
210 | ″ | ″ | https://doi.org/10.1038/nrmicro888 |
211 | ″ | rdf:type | schema:CreativeWork |
212 | grid-institutes:grid.17063.33 | schema:alternateName | Department of Botany, 3359 Mississauga Road North, University of Toronto, L5L 1C6, Mississauga, Ontario, Canada |
213 | ″ | schema:name | Department of Botany, 3359 Mississauga Road North, University of Toronto, L5L 1C6, Mississauga, Ontario, Canada |
214 | ″ | rdf:type | schema:Organization |