LPS, TLR4 and infectious disease diversity View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-01

AUTHORS

Samuel I. Miller, Robert K. Ernst, Martin W. Bader

ABSTRACT

Key PointsA central question in infectious disease research is how the complex interplay between host and pathogen determines the outcome of infection. This article discusses a mechanism by which variability in innate immune receptors (such as Toll-like receptors, TLRs) and their bacterial ligands (such as LPS) could explain why individual members of a host population exhibit variable disease outcome.Susceptibility to bacterial infection varies greatly in different members of a host population. For example, polymorphisms in innate immune genes in Drosophila have been identified and are linked to disease susceptibility. In addition, bacterial type III effectors of the plant pathogen Pseudomonas syringae show great variability in recognition by plant innate immunity.In humans, polymorphisms in TLRs have been shown to be associated with a variety of diseases.Lipid A is the sole portion of LPS recognized by TLR4. Lipid A is not a single molecule, but shows great diversity among different bacteria. Many lipid A structural differences are environmentally regulated by bacterial signal transduction systems, such as PhoP–PhoQ, which is highly conserved among human, plant and insect pathogens.Many regulated lipid A modifications are required for bacterial virulence. For example, lipid A modifications promote virulence in a variety of pathogens including Salmonella enterica serovar Typhimurium, Legionella pneumophilia, Bordetella bronchiseptica, the insect pathogen Photorhabdus luminescens and the plant pathogen Erwinia carotovora. In many cases, lipid A modifications promote bacterial resistance to killing by antimicrobial peptides.Different lipid A structures exhibit differential recognition by TLR4. Recognition of lipid A is in part determined by extracellular variable domains in TLR4 and MD2. There is evidence for positive selection in these domains across different species, which supports the hypothesis that variability in innate immune recognition determines infectious disease outcome.Lipid A structures are associated with human disease. Pseudomonas aeruginosa isolated from cystic fibrosis patients exhibit lipid A structures that are not found in environmental isolates.When grown at 37°C, Yersinia pestis, the causative agent of plague, is not recognized by human TLR4 but is recognized by mouse TLR4. A general principle of highly virulent Gram-negative pathogens is that recognition of lipid A may be reduced. This property of Y. pestis is not present in Yersinia pseudotuberculosis, from which Y. pestis evolved, and mighty indicate co-evolution of lipid A structure with alteration in host range (insects) and increasing human virulence.Innate immune stimulants and modifiers derived from lipid A may have important utility in the future to protect against infectious diseases. More... »

PAGES

36-46

References to SciGraph publications

  • 2000-06. TLR4 mutations are associated with endotoxin hyporesponsiveness in humans in NATURE GENETICS
  • 2003-06-06. An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid in NATURE IMMUNOLOGY
  • 2000-12. A Toll-like receptor recognizes bacterial DNA in NATURE
  • 1997-07. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity in NATURE
  • 2003-09. Defensins: antimicrobial peptides of innate immunity in NATURE REVIEWS IMMUNOLOGY
  • 2004-04-01. A coding mutation within the first exon of the human MD-2 gene results in decreased lipopolysaccharide-induced signaling in GENES & IMMUNITY
  • 2000-04-27. Phylogenetic variation and polymorphism at the Toll-like receptor 4 locus (TLR4) in GENOME BIOLOGY
  • 2001-04. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5 in NATURE
  • 2002-03-25. Human Toll-like receptor 4 recognizes host-specific LPS modifications in NATURE IMMUNOLOGY
  • 2001-09-04. Toll-like receptors control activation of adaptive immune responses in NATURE IMMUNOLOGY
  • 2003-11-16. Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility in NATURE IMMUNOLOGY
  • 2001-11-01. Toll-like receptors and innate immunity in NATURE REVIEWS IMMUNOLOGY
  • 2002-09. Association between the Asp299Gly Polymorphisms in the Toll-like Receptor 4 and Premature Births in the Finnish Population in PEDIATRIC RESEARCH
  • 2002-06-10. Essential role of MD-2 in LPS responsiveness and TLR4 distribution in NATURE IMMUNOLOGY
  • Journal

    TITLE

    Nature Reviews Microbiology

    ISSUE

    1

    VOLUME

    3

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nrmicro1068

    DOI

    http://dx.doi.org/10.1038/nrmicro1068

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1001582007

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/15608698


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1107", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Immunology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1108", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical Microbiology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Antigens, Surface", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bacterial Infections", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Carrier Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Disease Progression", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Disease Susceptibility", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Immunity, Innate", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Lipid A", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Lipopolysaccharide Receptors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Lipopolysaccharides", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Lymphocyte Antigen 96", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Membrane Glycoproteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Molecular Structure", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Receptors, Cell Surface", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Signal Transduction", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Species Specificity", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Toll-Like Receptor 4", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Toll-Like Receptors", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Genome Sciences, University of Washington Medical School, Washington, 98195, Seattle, USA", 
              "id": "http://www.grid.ac/institutes/grid.34477.33", 
              "name": [
                "Department of Medicine, University of Washington Medical School, Washington, 98195, Seattle, USA", 
                "Department of Microbiology, University of Washington Medical School, Washington, 98195, Seattle, USA", 
                "Department of Genome Sciences, University of Washington Medical School, Washington, 98195, Seattle, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Miller", 
            "givenName": "Samuel I.", 
            "id": "sg:person.014461474407.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014461474407.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Medicine, University of Washington Medical School, Washington, 98195, Seattle, USA", 
              "id": "http://www.grid.ac/institutes/grid.34477.33", 
              "name": [
                "Department of Medicine, University of Washington Medical School, Washington, 98195, Seattle, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ernst", 
            "givenName": "Robert K.", 
            "id": "sg:person.01105703045.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105703045.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Genome Sciences, University of Washington Medical School, Washington, 98195, Seattle, USA", 
              "id": "http://www.grid.ac/institutes/grid.34477.33", 
              "name": [
                "Department of Genome Sciences, University of Washington Medical School, Washington, 98195, Seattle, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bader", 
            "givenName": "Martin W.", 
            "id": "sg:person.01163101411.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163101411.55"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/35047123", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001385025", 
              "https://doi.org/10.1038/35047123"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ni712", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042187738", 
              "https://doi.org/10.1038/ni712"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2000-1-1-research002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000547968", 
              "https://doi.org/10.1186/gb-2000-1-1-research002"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ni777", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041505052", 
              "https://doi.org/10.1038/ni777"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nri1180", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046714829", 
              "https://doi.org/10.1038/nri1180"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/41131", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048300852", 
              "https://doi.org/10.1038/41131"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ni1011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038299302", 
              "https://doi.org/10.1038/ni1011"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ni945", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041685474", 
              "https://doi.org/10.1038/ni945"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35100529", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008398067", 
              "https://doi.org/10.1038/35100529"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.gene.6364068", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028779279", 
              "https://doi.org/10.1038/sj.gene.6364068"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ni809", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024550134", 
              "https://doi.org/10.1038/ni809"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/76048", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034294158", 
              "https://doi.org/10.1038/76048"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1203/00006450-200209000-00011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030507259", 
              "https://doi.org/10.1203/00006450-200209000-00011"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35074106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046017863", 
              "https://doi.org/10.1038/35074106"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2005-01", 
        "datePublishedReg": "2005-01-01", 
        "description": "Key PointsA central question in infectious disease research is how the complex interplay between host and pathogen determines the outcome of infection. This article discusses a mechanism by which variability in innate immune receptors (such as Toll-like receptors, TLRs) and their bacterial ligands (such as LPS) could explain why individual members of a host population exhibit variable disease outcome.Susceptibility to bacterial infection varies greatly in different members of a host population. For example, polymorphisms in innate immune genes in Drosophila have been identified and are linked to disease susceptibility. In addition, bacterial type III effectors of the plant pathogen Pseudomonas syringae show great variability in recognition by plant innate immunity.In humans, polymorphisms in TLRs have been shown to be associated with a variety of diseases.Lipid A is the sole portion of LPS recognized by TLR4. Lipid A is not a single molecule, but shows great diversity among different bacteria. Many lipid A structural differences are environmentally regulated by bacterial signal transduction systems, such as PhoP\u2013PhoQ, which is highly conserved among human, plant and insect pathogens.Many regulated lipid A modifications are required for bacterial virulence. For example, lipid A modifications promote virulence in a variety of pathogens including Salmonella enterica serovar Typhimurium, Legionella pneumophilia, Bordetella bronchiseptica, the insect pathogen Photorhabdus luminescens and the plant pathogen Erwinia carotovora. In many cases, lipid A modifications promote bacterial resistance to killing by antimicrobial peptides.Different lipid A structures exhibit differential recognition by TLR4. Recognition of lipid A is in part determined by extracellular variable domains in TLR4 and MD2. There is evidence for positive selection in these domains across different species, which supports the hypothesis that variability in innate immune recognition determines infectious disease outcome.Lipid A structures are associated with human disease. Pseudomonas aeruginosa isolated from cystic fibrosis patients exhibit lipid A structures that are not found in environmental isolates.When grown at 37\u00b0C, Yersinia pestis, the causative agent of plague, is not recognized by human TLR4 but is recognized by mouse TLR4. A general principle of highly virulent Gram-negative pathogens is that recognition of lipid A may be reduced. This property of Y. pestis is not present in Yersinia pseudotuberculosis, from which Y. pestis evolved, and mighty indicate co-evolution of lipid A structure with alteration in host range (insects) and increasing human virulence.Innate immune stimulants and modifiers derived from lipid A may have important utility in the future to protect against infectious diseases.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/nrmicro1068", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1032854", 
            "issn": [
              "1740-1526", 
              "1740-1534"
            ], 
            "name": "Nature Reviews Microbiology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "3"
          }
        ], 
        "keywords": [
          "plant pathogen Pseudomonas syringae", 
          "bacterial signal transduction systems", 
          "plant pathogen Erwinia carotovora", 
          "bacterial type III effectors", 
          "insect pathogen Photorhabdus", 
          "pathogen Pseudomonas syringae", 
          "plant innate immunity", 
          "type III effectors", 
          "lipid A", 
          "Y. pestis", 
          "signal transduction system", 
          "innate immune genes", 
          "Salmonella enterica serovar Typhimurium", 
          "pathogen Photorhabdus", 
          "insect pathogens", 
          "variable disease outcomes", 
          "enterica serovar Typhimurium", 
          "Pseudomonas syringae", 
          "PhoP-PhoQ", 
          "positive selection", 
          "transduction system", 
          "bacterial virulence", 
          "immune genes", 
          "host range", 
          "Gram-negative pathogens", 
          "host populations", 
          "Erwinia carotovora", 
          "innate immune receptors", 
          "different species", 
          "mouse TLR4", 
          "variety of pathogens", 
          "human diseases", 
          "Yersinia pseudotuberculosis", 
          "immune receptors", 
          "human virulence", 
          "bacterial ligands", 
          "Yersinia pestis", 
          "different members", 
          "different bacteria", 
          "serovar Typhimurium", 
          "disease susceptibility", 
          "great diversity", 
          "disease diversity", 
          "virulence", 
          "antimicrobial peptides", 
          "innate immunity", 
          "differential recognition", 
          "pestis", 
          "environmental isolates", 
          "sole portion", 
          "pathogens", 
          "variety of diseases", 
          "human TLR4", 
          "infectious disease research", 
          "outcome of infection", 
          "diversity", 
          "different lipids", 
          "lipids", 
          "variable domains", 
          "causative agent", 
          "disease outcome", 
          "structural differences", 
          "Bordetella bronchiseptica", 
          "Pseudomonas aeruginosa", 
          "bacterial resistance", 
          "polymorphism", 
          "disease research", 
          "individual members", 
          "Drosophila", 
          "innate immune stimulant", 
          "complex interplay", 
          "single molecules", 
          "Photorhabdus", 
          "syringae", 
          "cystic fibrosis patients", 
          "infectious disease outcomes", 
          "genes", 
          "carotovora", 
          "bacterial infections", 
          "species", 
          "plants", 
          "domain", 
          "effectors", 
          "members", 
          "immune stimulants", 
          "pseudotuberculosis", 
          "bacteria", 
          "humans", 
          "modification", 
          "TLR4", 
          "host", 
          "fibrosis patients", 
          "infectious diseases", 
          "central question", 
          "Legionella pneumophilia", 
          "susceptibility", 
          "disease", 
          "typhimurium", 
          "isolates", 
          "great variability", 
          "variability", 
          "receptors", 
          "bronchiseptica", 
          "peptides", 
          "outcomes", 
          "LPS", 
          "aeruginosa", 
          "infection", 
          "variety", 
          "general principles", 
          "alterations", 
          "molecules", 
          "structure", 
          "mechanism", 
          "selection", 
          "population", 
          "TLR", 
          "plague", 
          "ligands", 
          "immunity", 
          "interplay", 
          "recognition", 
          "modifiers", 
          "hypothesis", 
          "MD2", 
          "patients", 
          "resistance", 
          "portion", 
          "stimulants", 
          "evidence", 
          "important utility", 
          "addition", 
          "agents", 
          "differences", 
          "part", 
          "cases", 
          "example", 
          "utility", 
          "range", 
          "system", 
          "future", 
          "questions", 
          "research", 
          "properties", 
          "article", 
          "principles"
        ], 
        "name": "LPS, TLR4 and infectious disease diversity", 
        "pagination": "36-46", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1001582007"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nrmicro1068"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "15608698"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nrmicro1068", 
          "https://app.dimensions.ai/details/publication/pub.1001582007"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T20:51", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_391.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/nrmicro1068"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nrmicro1068'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nrmicro1068'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nrmicro1068'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nrmicro1068'


     

    This table displays all metadata directly associated to this object as RDF triples.

    368 TRIPLES      21 PREDICATES      207 URIs      182 LITERALS      26 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nrmicro1068 schema:about N2d6605dc7b4c4c08a3eac2b952974ca9
    2 N33fcbf10fc89447e9dc02695ebf75227
    3 N36c9808803d942b3988b94c6286eb455
    4 N3c428921998e4f2da90b96d234b53abe
    5 N534e6ead4eb74fc3966a867444b95cde
    6 N5763a58db2e94c219a2f03d1ccdd3b46
    7 N63993d3cfa8d4054aa45711e8fec4347
    8 N7c65bbc8da5a46048964f61a38089b6a
    9 N7e3454746a77453598a451886a826803
    10 N7fdfa7ec5113431487362054b565d417
    11 N8b1f340fa6d7441d8cd58fdcb4d7c2ff
    12 N9fb305ab38b248a6bca3f353c09db411
    13 Nc1d6bdab27524e10901f20c35d215441
    14 Nc2ad5b09c3864e719bdd9c94e0340eb8
    15 Ncaacf6a0704b4b48921592bd218d1118
    16 Ndc697039696d4f80b1c3ac895e8734a5
    17 Ndf24cdfc5b844cae9296b87b00564bc9
    18 Ne09f146d7be04727acc6ee60dfcbf2a3
    19 Nea0c4c343d9c49b1b888e9c272bb7646
    20 anzsrc-for:06
    21 anzsrc-for:0601
    22 anzsrc-for:11
    23 anzsrc-for:1107
    24 anzsrc-for:1108
    25 schema:author Nf14245d9f41d472b9d2c7086900322ef
    26 schema:citation sg:pub.10.1038/35047123
    27 sg:pub.10.1038/35074106
    28 sg:pub.10.1038/35100529
    29 sg:pub.10.1038/41131
    30 sg:pub.10.1038/76048
    31 sg:pub.10.1038/ni1011
    32 sg:pub.10.1038/ni712
    33 sg:pub.10.1038/ni777
    34 sg:pub.10.1038/ni809
    35 sg:pub.10.1038/ni945
    36 sg:pub.10.1038/nri1180
    37 sg:pub.10.1038/sj.gene.6364068
    38 sg:pub.10.1186/gb-2000-1-1-research002
    39 sg:pub.10.1203/00006450-200209000-00011
    40 schema:datePublished 2005-01
    41 schema:datePublishedReg 2005-01-01
    42 schema:description Key PointsA central question in infectious disease research is how the complex interplay between host and pathogen determines the outcome of infection. This article discusses a mechanism by which variability in innate immune receptors (such as Toll-like receptors, TLRs) and their bacterial ligands (such as LPS) could explain why individual members of a host population exhibit variable disease outcome.Susceptibility to bacterial infection varies greatly in different members of a host population. For example, polymorphisms in innate immune genes in Drosophila have been identified and are linked to disease susceptibility. In addition, bacterial type III effectors of the plant pathogen Pseudomonas syringae show great variability in recognition by plant innate immunity.In humans, polymorphisms in TLRs have been shown to be associated with a variety of diseases.Lipid A is the sole portion of LPS recognized by TLR4. Lipid A is not a single molecule, but shows great diversity among different bacteria. Many lipid A structural differences are environmentally regulated by bacterial signal transduction systems, such as PhoP–PhoQ, which is highly conserved among human, plant and insect pathogens.Many regulated lipid A modifications are required for bacterial virulence. For example, lipid A modifications promote virulence in a variety of pathogens including Salmonella enterica serovar Typhimurium, Legionella pneumophilia, Bordetella bronchiseptica, the insect pathogen Photorhabdus luminescens and the plant pathogen Erwinia carotovora. In many cases, lipid A modifications promote bacterial resistance to killing by antimicrobial peptides.Different lipid A structures exhibit differential recognition by TLR4. Recognition of lipid A is in part determined by extracellular variable domains in TLR4 and MD2. There is evidence for positive selection in these domains across different species, which supports the hypothesis that variability in innate immune recognition determines infectious disease outcome.Lipid A structures are associated with human disease. Pseudomonas aeruginosa isolated from cystic fibrosis patients exhibit lipid A structures that are not found in environmental isolates.When grown at 37°C, Yersinia pestis, the causative agent of plague, is not recognized by human TLR4 but is recognized by mouse TLR4. A general principle of highly virulent Gram-negative pathogens is that recognition of lipid A may be reduced. This property of Y. pestis is not present in Yersinia pseudotuberculosis, from which Y. pestis evolved, and mighty indicate co-evolution of lipid A structure with alteration in host range (insects) and increasing human virulence.Innate immune stimulants and modifiers derived from lipid A may have important utility in the future to protect against infectious diseases.
    43 schema:genre article
    44 schema:isAccessibleForFree false
    45 schema:isPartOf N034f31ff9da545dd9a818391f676a43f
    46 N3d85e386df0643eaa323e61800edcd02
    47 sg:journal.1032854
    48 schema:keywords Bordetella bronchiseptica
    49 Drosophila
    50 Erwinia carotovora
    51 Gram-negative pathogens
    52 LPS
    53 Legionella pneumophilia
    54 MD2
    55 PhoP-PhoQ
    56 Photorhabdus
    57 Pseudomonas aeruginosa
    58 Pseudomonas syringae
    59 Salmonella enterica serovar Typhimurium
    60 TLR
    61 TLR4
    62 Y. pestis
    63 Yersinia pestis
    64 Yersinia pseudotuberculosis
    65 addition
    66 aeruginosa
    67 agents
    68 alterations
    69 antimicrobial peptides
    70 article
    71 bacteria
    72 bacterial infections
    73 bacterial ligands
    74 bacterial resistance
    75 bacterial signal transduction systems
    76 bacterial type III effectors
    77 bacterial virulence
    78 bronchiseptica
    79 carotovora
    80 cases
    81 causative agent
    82 central question
    83 complex interplay
    84 cystic fibrosis patients
    85 differences
    86 different bacteria
    87 different lipids
    88 different members
    89 different species
    90 differential recognition
    91 disease
    92 disease diversity
    93 disease outcome
    94 disease research
    95 disease susceptibility
    96 diversity
    97 domain
    98 effectors
    99 enterica serovar Typhimurium
    100 environmental isolates
    101 evidence
    102 example
    103 fibrosis patients
    104 future
    105 general principles
    106 genes
    107 great diversity
    108 great variability
    109 host
    110 host populations
    111 host range
    112 human TLR4
    113 human diseases
    114 human virulence
    115 humans
    116 hypothesis
    117 immune genes
    118 immune receptors
    119 immune stimulants
    120 immunity
    121 important utility
    122 individual members
    123 infection
    124 infectious disease outcomes
    125 infectious disease research
    126 infectious diseases
    127 innate immune genes
    128 innate immune receptors
    129 innate immune stimulant
    130 innate immunity
    131 insect pathogen Photorhabdus
    132 insect pathogens
    133 interplay
    134 isolates
    135 ligands
    136 lipid A
    137 lipids
    138 mechanism
    139 members
    140 modification
    141 modifiers
    142 molecules
    143 mouse TLR4
    144 outcome of infection
    145 outcomes
    146 part
    147 pathogen Photorhabdus
    148 pathogen Pseudomonas syringae
    149 pathogens
    150 patients
    151 peptides
    152 pestis
    153 plague
    154 plant innate immunity
    155 plant pathogen Erwinia carotovora
    156 plant pathogen Pseudomonas syringae
    157 plants
    158 polymorphism
    159 population
    160 portion
    161 positive selection
    162 principles
    163 properties
    164 pseudotuberculosis
    165 questions
    166 range
    167 receptors
    168 recognition
    169 research
    170 resistance
    171 selection
    172 serovar Typhimurium
    173 signal transduction system
    174 single molecules
    175 sole portion
    176 species
    177 stimulants
    178 structural differences
    179 structure
    180 susceptibility
    181 syringae
    182 system
    183 transduction system
    184 type III effectors
    185 typhimurium
    186 utility
    187 variability
    188 variable disease outcomes
    189 variable domains
    190 variety
    191 variety of diseases
    192 variety of pathogens
    193 virulence
    194 schema:name LPS, TLR4 and infectious disease diversity
    195 schema:pagination 36-46
    196 schema:productId N1aa93b1585404b1e9fbc46cd951fe594
    197 N9e366c8bbe664ac2838751c04c8f4941
    198 Na586d24e3e594020a763fcf0b00cd251
    199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001582007
    200 https://doi.org/10.1038/nrmicro1068
    201 schema:sdDatePublished 2022-11-24T20:51
    202 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    203 schema:sdPublisher N74691f780dad46d7871ea26e862b7045
    204 schema:url https://doi.org/10.1038/nrmicro1068
    205 sgo:license sg:explorer/license/
    206 sgo:sdDataset articles
    207 rdf:type schema:ScholarlyArticle
    208 N034f31ff9da545dd9a818391f676a43f schema:volumeNumber 3
    209 rdf:type schema:PublicationVolume
    210 N1aa93b1585404b1e9fbc46cd951fe594 schema:name dimensions_id
    211 schema:value pub.1001582007
    212 rdf:type schema:PropertyValue
    213 N2d6605dc7b4c4c08a3eac2b952974ca9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    214 schema:name Animals
    215 rdf:type schema:DefinedTerm
    216 N33fcbf10fc89447e9dc02695ebf75227 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    217 schema:name Antigens, Surface
    218 rdf:type schema:DefinedTerm
    219 N36c9808803d942b3988b94c6286eb455 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    220 schema:name Lipopolysaccharide Receptors
    221 rdf:type schema:DefinedTerm
    222 N3c428921998e4f2da90b96d234b53abe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    223 schema:name Disease Progression
    224 rdf:type schema:DefinedTerm
    225 N3d85e386df0643eaa323e61800edcd02 schema:issueNumber 1
    226 rdf:type schema:PublicationIssue
    227 N534e6ead4eb74fc3966a867444b95cde schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    228 schema:name Lipid A
    229 rdf:type schema:DefinedTerm
    230 N5763a58db2e94c219a2f03d1ccdd3b46 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    231 schema:name Immunity, Innate
    232 rdf:type schema:DefinedTerm
    233 N63993d3cfa8d4054aa45711e8fec4347 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    234 schema:name Lymphocyte Antigen 96
    235 rdf:type schema:DefinedTerm
    236 N74691f780dad46d7871ea26e862b7045 schema:name Springer Nature - SN SciGraph project
    237 rdf:type schema:Organization
    238 N789627e924d44be59ad8a3940aedd1ba rdf:first sg:person.01163101411.55
    239 rdf:rest rdf:nil
    240 N7c65bbc8da5a46048964f61a38089b6a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    241 schema:name Toll-Like Receptors
    242 rdf:type schema:DefinedTerm
    243 N7e3454746a77453598a451886a826803 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    244 schema:name Membrane Glycoproteins
    245 rdf:type schema:DefinedTerm
    246 N7fdfa7ec5113431487362054b565d417 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    247 schema:name Carrier Proteins
    248 rdf:type schema:DefinedTerm
    249 N8b1f340fa6d7441d8cd58fdcb4d7c2ff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    250 schema:name Disease Susceptibility
    251 rdf:type schema:DefinedTerm
    252 N9e366c8bbe664ac2838751c04c8f4941 schema:name doi
    253 schema:value 10.1038/nrmicro1068
    254 rdf:type schema:PropertyValue
    255 N9fb305ab38b248a6bca3f353c09db411 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    256 schema:name Molecular Structure
    257 rdf:type schema:DefinedTerm
    258 Na586d24e3e594020a763fcf0b00cd251 schema:name pubmed_id
    259 schema:value 15608698
    260 rdf:type schema:PropertyValue
    261 Nbf2fa578934d4bbb915728364bfb1fe8 rdf:first sg:person.01105703045.52
    262 rdf:rest N789627e924d44be59ad8a3940aedd1ba
    263 Nc1d6bdab27524e10901f20c35d215441 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    264 schema:name Toll-Like Receptor 4
    265 rdf:type schema:DefinedTerm
    266 Nc2ad5b09c3864e719bdd9c94e0340eb8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    267 schema:name Humans
    268 rdf:type schema:DefinedTerm
    269 Ncaacf6a0704b4b48921592bd218d1118 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    270 schema:name Receptors, Cell Surface
    271 rdf:type schema:DefinedTerm
    272 Ndc697039696d4f80b1c3ac895e8734a5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    273 schema:name Lipopolysaccharides
    274 rdf:type schema:DefinedTerm
    275 Ndf24cdfc5b844cae9296b87b00564bc9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    276 schema:name Signal Transduction
    277 rdf:type schema:DefinedTerm
    278 Ne09f146d7be04727acc6ee60dfcbf2a3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    279 schema:name Bacterial Infections
    280 rdf:type schema:DefinedTerm
    281 Nea0c4c343d9c49b1b888e9c272bb7646 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    282 schema:name Species Specificity
    283 rdf:type schema:DefinedTerm
    284 Nf14245d9f41d472b9d2c7086900322ef rdf:first sg:person.014461474407.03
    285 rdf:rest Nbf2fa578934d4bbb915728364bfb1fe8
    286 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    287 schema:name Biological Sciences
    288 rdf:type schema:DefinedTerm
    289 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    290 schema:name Biochemistry and Cell Biology
    291 rdf:type schema:DefinedTerm
    292 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    293 schema:name Medical and Health Sciences
    294 rdf:type schema:DefinedTerm
    295 anzsrc-for:1107 schema:inDefinedTermSet anzsrc-for:
    296 schema:name Immunology
    297 rdf:type schema:DefinedTerm
    298 anzsrc-for:1108 schema:inDefinedTermSet anzsrc-for:
    299 schema:name Medical Microbiology
    300 rdf:type schema:DefinedTerm
    301 sg:journal.1032854 schema:issn 1740-1526
    302 1740-1534
    303 schema:name Nature Reviews Microbiology
    304 schema:publisher Springer Nature
    305 rdf:type schema:Periodical
    306 sg:person.01105703045.52 schema:affiliation grid-institutes:grid.34477.33
    307 schema:familyName Ernst
    308 schema:givenName Robert K.
    309 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105703045.52
    310 rdf:type schema:Person
    311 sg:person.01163101411.55 schema:affiliation grid-institutes:grid.34477.33
    312 schema:familyName Bader
    313 schema:givenName Martin W.
    314 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163101411.55
    315 rdf:type schema:Person
    316 sg:person.014461474407.03 schema:affiliation grid-institutes:grid.34477.33
    317 schema:familyName Miller
    318 schema:givenName Samuel I.
    319 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014461474407.03
    320 rdf:type schema:Person
    321 sg:pub.10.1038/35047123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001385025
    322 https://doi.org/10.1038/35047123
    323 rdf:type schema:CreativeWork
    324 sg:pub.10.1038/35074106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046017863
    325 https://doi.org/10.1038/35074106
    326 rdf:type schema:CreativeWork
    327 sg:pub.10.1038/35100529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008398067
    328 https://doi.org/10.1038/35100529
    329 rdf:type schema:CreativeWork
    330 sg:pub.10.1038/41131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048300852
    331 https://doi.org/10.1038/41131
    332 rdf:type schema:CreativeWork
    333 sg:pub.10.1038/76048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034294158
    334 https://doi.org/10.1038/76048
    335 rdf:type schema:CreativeWork
    336 sg:pub.10.1038/ni1011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038299302
    337 https://doi.org/10.1038/ni1011
    338 rdf:type schema:CreativeWork
    339 sg:pub.10.1038/ni712 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042187738
    340 https://doi.org/10.1038/ni712
    341 rdf:type schema:CreativeWork
    342 sg:pub.10.1038/ni777 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041505052
    343 https://doi.org/10.1038/ni777
    344 rdf:type schema:CreativeWork
    345 sg:pub.10.1038/ni809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024550134
    346 https://doi.org/10.1038/ni809
    347 rdf:type schema:CreativeWork
    348 sg:pub.10.1038/ni945 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041685474
    349 https://doi.org/10.1038/ni945
    350 rdf:type schema:CreativeWork
    351 sg:pub.10.1038/nri1180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046714829
    352 https://doi.org/10.1038/nri1180
    353 rdf:type schema:CreativeWork
    354 sg:pub.10.1038/sj.gene.6364068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028779279
    355 https://doi.org/10.1038/sj.gene.6364068
    356 rdf:type schema:CreativeWork
    357 sg:pub.10.1186/gb-2000-1-1-research002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000547968
    358 https://doi.org/10.1186/gb-2000-1-1-research002
    359 rdf:type schema:CreativeWork
    360 sg:pub.10.1203/00006450-200209000-00011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030507259
    361 https://doi.org/10.1203/00006450-200209000-00011
    362 rdf:type schema:CreativeWork
    363 grid-institutes:grid.34477.33 schema:alternateName Department of Genome Sciences, University of Washington Medical School, Washington, 98195, Seattle, USA
    364 Department of Medicine, University of Washington Medical School, Washington, 98195, Seattle, USA
    365 schema:name Department of Genome Sciences, University of Washington Medical School, Washington, 98195, Seattle, USA
    366 Department of Medicine, University of Washington Medical School, Washington, 98195, Seattle, USA
    367 Department of Microbiology, University of Washington Medical School, Washington, 98195, Seattle, USA
    368 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...