LPS, TLR4 and infectious disease diversity View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-01

AUTHORS

Samuel I. Miller, Robert K. Ernst, Martin W. Bader

ABSTRACT

Key PointsA central question in infectious disease research is how the complex interplay between host and pathogen determines the outcome of infection. This article discusses a mechanism by which variability in innate immune receptors (such as Toll-like receptors, TLRs) and their bacterial ligands (such as LPS) could explain why individual members of a host population exhibit variable disease outcome.Susceptibility to bacterial infection varies greatly in different members of a host population. For example, polymorphisms in innate immune genes in Drosophila have been identified and are linked to disease susceptibility. In addition, bacterial type III effectors of the plant pathogen Pseudomonas syringae show great variability in recognition by plant innate immunity.In humans, polymorphisms in TLRs have been shown to be associated with a variety of diseases.Lipid A is the sole portion of LPS recognized by TLR4. Lipid A is not a single molecule, but shows great diversity among different bacteria. Many lipid A structural differences are environmentally regulated by bacterial signal transduction systems, such as PhoP–PhoQ, which is highly conserved among human, plant and insect pathogens.Many regulated lipid A modifications are required for bacterial virulence. For example, lipid A modifications promote virulence in a variety of pathogens including Salmonella enterica serovar Typhimurium, Legionella pneumophilia, Bordetella bronchiseptica, the insect pathogen Photorhabdus luminescens and the plant pathogen Erwinia carotovora. In many cases, lipid A modifications promote bacterial resistance to killing by antimicrobial peptides.Different lipid A structures exhibit differential recognition by TLR4. Recognition of lipid A is in part determined by extracellular variable domains in TLR4 and MD2. There is evidence for positive selection in these domains across different species, which supports the hypothesis that variability in innate immune recognition determines infectious disease outcome.Lipid A structures are associated with human disease. Pseudomonas aeruginosa isolated from cystic fibrosis patients exhibit lipid A structures that are not found in environmental isolates.When grown at 37°C, Yersinia pestis, the causative agent of plague, is not recognized by human TLR4 but is recognized by mouse TLR4. A general principle of highly virulent Gram-negative pathogens is that recognition of lipid A may be reduced. This property of Y. pestis is not present in Yersinia pseudotuberculosis, from which Y. pestis evolved, and mighty indicate co-evolution of lipid A structure with alteration in host range (insects) and increasing human virulence.Innate immune stimulants and modifiers derived from lipid A may have important utility in the future to protect against infectious diseases. More... »

PAGES

36-46

References to SciGraph publications

  • 2000-06. TLR4 mutations are associated with endotoxin hyporesponsiveness in humans in NATURE GENETICS
  • 2003-06-06. An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid in NATURE IMMUNOLOGY
  • 2000-12. A Toll-like receptor recognizes bacterial DNA in NATURE
  • 1997-07. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity in NATURE
  • 2003-09. Defensins: antimicrobial peptides of innate immunity in NATURE REVIEWS IMMUNOLOGY
  • 2004-04-01. A coding mutation within the first exon of the human MD-2 gene results in decreased lipopolysaccharide-induced signaling in GENES & IMMUNITY
  • 2000-04-27. Phylogenetic variation and polymorphism at the Toll-like receptor 4 locus (TLR4) in GENOME BIOLOGY
  • 2001-04. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5 in NATURE
  • 2002-03-25. Human Toll-like receptor 4 recognizes host-specific LPS modifications in NATURE IMMUNOLOGY
  • 2001-09-04. Toll-like receptors control activation of adaptive immune responses in NATURE IMMUNOLOGY
  • 2003-11-16. Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility in NATURE IMMUNOLOGY
  • 2001-11-01. Toll-like receptors and innate immunity in NATURE REVIEWS IMMUNOLOGY
  • 2002-09. Association between the Asp299Gly Polymorphisms in the Toll-like Receptor 4 and Premature Births in the Finnish Population in PEDIATRIC RESEARCH
  • 2002-06-10. Essential role of MD-2 in LPS responsiveness and TLR4 distribution in NATURE IMMUNOLOGY
  • Journal

    TITLE

    Nature Reviews Microbiology

    ISSUE

    1

    VOLUME

    3

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nrmicro1068

    DOI

    http://dx.doi.org/10.1038/nrmicro1068

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1001582007

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/15608698


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1107", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Immunology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1108", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical Microbiology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Antigens, Surface", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bacterial Infections", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Carrier Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Disease Progression", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Disease Susceptibility", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Immunity, Innate", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Lipid A", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Lipopolysaccharide Receptors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Lipopolysaccharides", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Lymphocyte Antigen 96", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Membrane Glycoproteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Molecular Structure", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Receptors, Cell Surface", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Signal Transduction", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Species Specificity", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Toll-Like Receptor 4", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Toll-Like Receptors", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Genome Sciences, University of Washington Medical School, Washington, 98195, Seattle, USA", 
              "id": "http://www.grid.ac/institutes/grid.34477.33", 
              "name": [
                "Department of Medicine, University of Washington Medical School, Washington, 98195, Seattle, USA", 
                "Department of Microbiology, University of Washington Medical School, Washington, 98195, Seattle, USA", 
                "Department of Genome Sciences, University of Washington Medical School, Washington, 98195, Seattle, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Miller", 
            "givenName": "Samuel I.", 
            "id": "sg:person.014461474407.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014461474407.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Medicine, University of Washington Medical School, Washington, 98195, Seattle, USA", 
              "id": "http://www.grid.ac/institutes/grid.34477.33", 
              "name": [
                "Department of Medicine, University of Washington Medical School, Washington, 98195, Seattle, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ernst", 
            "givenName": "Robert K.", 
            "id": "sg:person.01105703045.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105703045.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Genome Sciences, University of Washington Medical School, Washington, 98195, Seattle, USA", 
              "id": "http://www.grid.ac/institutes/grid.34477.33", 
              "name": [
                "Department of Genome Sciences, University of Washington Medical School, Washington, 98195, Seattle, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bader", 
            "givenName": "Martin W.", 
            "id": "sg:person.01163101411.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163101411.55"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nri1180", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046714829", 
              "https://doi.org/10.1038/nri1180"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35047123", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001385025", 
              "https://doi.org/10.1038/35047123"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ni809", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024550134", 
              "https://doi.org/10.1038/ni809"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ni777", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041505052", 
              "https://doi.org/10.1038/ni777"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1203/00006450-200209000-00011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030507259", 
              "https://doi.org/10.1203/00006450-200209000-00011"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ni1011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038299302", 
              "https://doi.org/10.1038/ni1011"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.gene.6364068", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028779279", 
              "https://doi.org/10.1038/sj.gene.6364068"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/76048", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034294158", 
              "https://doi.org/10.1038/76048"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35074106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046017863", 
              "https://doi.org/10.1038/35074106"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ni945", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041685474", 
              "https://doi.org/10.1038/ni945"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2000-1-1-research002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000547968", 
              "https://doi.org/10.1186/gb-2000-1-1-research002"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ni712", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042187738", 
              "https://doi.org/10.1038/ni712"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35100529", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008398067", 
              "https://doi.org/10.1038/35100529"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/41131", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048300852", 
              "https://doi.org/10.1038/41131"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2005-01", 
        "datePublishedReg": "2005-01-01", 
        "description": "Key PointsA central question in infectious disease research is how the complex interplay between host and pathogen determines the outcome of infection. This article discusses a mechanism by which variability in innate immune receptors (such as Toll-like receptors, TLRs) and their bacterial ligands (such as LPS) could explain why individual members of a host population exhibit variable disease outcome.Susceptibility to bacterial infection varies greatly in different members of a host population. For example, polymorphisms in innate immune genes in Drosophila have been identified and are linked to disease susceptibility. In addition, bacterial type III effectors of the plant pathogen Pseudomonas syringae show great variability in recognition by plant innate immunity.In humans, polymorphisms in TLRs have been shown to be associated with a variety of diseases.Lipid A is the sole portion of LPS recognized by TLR4. Lipid A is not a single molecule, but shows great diversity among different bacteria. Many lipid A structural differences are environmentally regulated by bacterial signal transduction systems, such as PhoP\u2013PhoQ, which is highly conserved among human, plant and insect pathogens.Many regulated lipid A modifications are required for bacterial virulence. For example, lipid A modifications promote virulence in a variety of pathogens including Salmonella enterica serovar Typhimurium, Legionella pneumophilia, Bordetella bronchiseptica, the insect pathogen Photorhabdus luminescens and the plant pathogen Erwinia carotovora. In many cases, lipid A modifications promote bacterial resistance to killing by antimicrobial peptides.Different lipid A structures exhibit differential recognition by TLR4. Recognition of lipid A is in part determined by extracellular variable domains in TLR4 and MD2. There is evidence for positive selection in these domains across different species, which supports the hypothesis that variability in innate immune recognition determines infectious disease outcome.Lipid A structures are associated with human disease. Pseudomonas aeruginosa isolated from cystic fibrosis patients exhibit lipid A structures that are not found in environmental isolates.When grown at 37\u00b0C, Yersinia pestis, the causative agent of plague, is not recognized by human TLR4 but is recognized by mouse TLR4. A general principle of highly virulent Gram-negative pathogens is that recognition of lipid A may be reduced. This property of Y. pestis is not present in Yersinia pseudotuberculosis, from which Y. pestis evolved, and mighty indicate co-evolution of lipid A structure with alteration in host range (insects) and increasing human virulence.Innate immune stimulants and modifiers derived from lipid A may have important utility in the future to protect against infectious diseases.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/nrmicro1068", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1032854", 
            "issn": [
              "1740-1526", 
              "1740-1534"
            ], 
            "name": "Nature Reviews Microbiology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "3"
          }
        ], 
        "keywords": [
          "plant pathogen Pseudomonas syringae", 
          "bacterial signal transduction systems", 
          "plant pathogen Erwinia carotovora", 
          "bacterial type III effectors", 
          "insect pathogen Photorhabdus", 
          "pathogen Pseudomonas syringae", 
          "plant innate immunity", 
          "type III effectors", 
          "lipid A", 
          "Y. pestis", 
          "signal transduction system", 
          "innate immune genes", 
          "Salmonella enterica serovar Typhimurium", 
          "pathogen Photorhabdus", 
          "insect pathogens", 
          "variable disease outcomes", 
          "enterica serovar Typhimurium", 
          "Pseudomonas syringae", 
          "PhoP-PhoQ", 
          "positive selection", 
          "transduction system", 
          "bacterial virulence", 
          "immune genes", 
          "host range", 
          "Gram-negative pathogens", 
          "host populations", 
          "Erwinia carotovora", 
          "innate immune receptors", 
          "different species", 
          "mouse TLR4", 
          "variety of pathogens", 
          "human diseases", 
          "Yersinia pseudotuberculosis", 
          "immune receptors", 
          "human virulence", 
          "bacterial ligands", 
          "Yersinia pestis", 
          "different members", 
          "different bacteria", 
          "serovar Typhimurium", 
          "disease susceptibility", 
          "great diversity", 
          "disease diversity", 
          "virulence", 
          "antimicrobial peptides", 
          "innate immunity", 
          "differential recognition", 
          "pestis", 
          "environmental isolates", 
          "sole portion", 
          "pathogens", 
          "variety of diseases", 
          "human TLR4", 
          "infectious disease research", 
          "outcome of infection", 
          "diversity", 
          "different lipids", 
          "lipids", 
          "variable domains", 
          "causative agent", 
          "disease outcome", 
          "structural differences", 
          "Bordetella bronchiseptica", 
          "Pseudomonas aeruginosa", 
          "bacterial resistance", 
          "polymorphism", 
          "disease research", 
          "individual members", 
          "Drosophila", 
          "innate immune stimulant", 
          "complex interplay", 
          "single molecules", 
          "Photorhabdus", 
          "syringae", 
          "cystic fibrosis patients", 
          "infectious disease outcomes", 
          "genes", 
          "carotovora", 
          "bacterial infections", 
          "species", 
          "plants", 
          "domain", 
          "effectors", 
          "members", 
          "immune stimulants", 
          "pseudotuberculosis", 
          "bacteria", 
          "humans", 
          "modification", 
          "TLR4", 
          "host", 
          "fibrosis patients", 
          "infectious diseases", 
          "central question", 
          "Legionella pneumophilia", 
          "susceptibility", 
          "disease", 
          "typhimurium", 
          "isolates", 
          "great variability", 
          "variability", 
          "receptors", 
          "bronchiseptica", 
          "peptides", 
          "outcomes", 
          "LPS", 
          "aeruginosa", 
          "infection", 
          "variety", 
          "general principles", 
          "alterations", 
          "molecules", 
          "structure", 
          "mechanism", 
          "selection", 
          "population", 
          "TLR", 
          "plague", 
          "ligands", 
          "immunity", 
          "interplay", 
          "recognition", 
          "modifiers", 
          "hypothesis", 
          "MD2", 
          "patients", 
          "resistance", 
          "portion", 
          "stimulants", 
          "evidence", 
          "important utility", 
          "addition", 
          "agents", 
          "differences", 
          "part", 
          "cases", 
          "example", 
          "utility", 
          "range", 
          "system", 
          "future", 
          "questions", 
          "research", 
          "properties", 
          "article", 
          "principles"
        ], 
        "name": "LPS, TLR4 and infectious disease diversity", 
        "pagination": "36-46", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1001582007"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nrmicro1068"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "15608698"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nrmicro1068", 
          "https://app.dimensions.ai/details/publication/pub.1001582007"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:24", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_393.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/nrmicro1068"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nrmicro1068'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nrmicro1068'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nrmicro1068'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nrmicro1068'


     

    This table displays all metadata directly associated to this object as RDF triples.

    368 TRIPLES      21 PREDICATES      207 URIs      182 LITERALS      26 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nrmicro1068 schema:about N02c16694560c4c0198a82d4ed22203ee
    2 N24064c8311504a67bcdd945a441eabf5
    3 N29223e1919f34caf9903c18c1be736c9
    4 N363af238027e46edadb6c25de5ffe5aa
    5 N455a293ce9334600bed63bf0b33798c6
    6 N4a5e31ac8414421eb1a2548c98788841
    7 N5661f76c957d420da496e49fdc37d7e4
    8 N7734796ce21f49a18f86ab0535ee8226
    9 N87ea31e417114e66a1549995b55f14e5
    10 N885dfedae0b945e5bb105b90e6ec8efd
    11 N98299e0afa6d4aeebef3aaf14d96d6b5
    12 N98ba29ec8acf47aea91ef23e011d310e
    13 N9d3ebee7c3b84ee6b9b2dc8e3f190f6e
    14 Nbcce35a35a8444e38f7d1cf53312d499
    15 Nc0736e555e5c4e75ab9b6f419a6ad16f
    16 Nc1abbd9d890a4535a0a695c5d28b2562
    17 Nc54371290913498d9d86c430a8050b3e
    18 Ncf4c8bda7b6b42819cb06f4c73b5eb8c
    19 Nd90daacc16e541c5b011a17b66d2743c
    20 anzsrc-for:06
    21 anzsrc-for:0601
    22 anzsrc-for:11
    23 anzsrc-for:1107
    24 anzsrc-for:1108
    25 schema:author N21f9627dfddb431a9105eaffd1c3d9f0
    26 schema:citation sg:pub.10.1038/35047123
    27 sg:pub.10.1038/35074106
    28 sg:pub.10.1038/35100529
    29 sg:pub.10.1038/41131
    30 sg:pub.10.1038/76048
    31 sg:pub.10.1038/ni1011
    32 sg:pub.10.1038/ni712
    33 sg:pub.10.1038/ni777
    34 sg:pub.10.1038/ni809
    35 sg:pub.10.1038/ni945
    36 sg:pub.10.1038/nri1180
    37 sg:pub.10.1038/sj.gene.6364068
    38 sg:pub.10.1186/gb-2000-1-1-research002
    39 sg:pub.10.1203/00006450-200209000-00011
    40 schema:datePublished 2005-01
    41 schema:datePublishedReg 2005-01-01
    42 schema:description Key PointsA central question in infectious disease research is how the complex interplay between host and pathogen determines the outcome of infection. This article discusses a mechanism by which variability in innate immune receptors (such as Toll-like receptors, TLRs) and their bacterial ligands (such as LPS) could explain why individual members of a host population exhibit variable disease outcome.Susceptibility to bacterial infection varies greatly in different members of a host population. For example, polymorphisms in innate immune genes in Drosophila have been identified and are linked to disease susceptibility. In addition, bacterial type III effectors of the plant pathogen Pseudomonas syringae show great variability in recognition by plant innate immunity.In humans, polymorphisms in TLRs have been shown to be associated with a variety of diseases.Lipid A is the sole portion of LPS recognized by TLR4. Lipid A is not a single molecule, but shows great diversity among different bacteria. Many lipid A structural differences are environmentally regulated by bacterial signal transduction systems, such as PhoP–PhoQ, which is highly conserved among human, plant and insect pathogens.Many regulated lipid A modifications are required for bacterial virulence. For example, lipid A modifications promote virulence in a variety of pathogens including Salmonella enterica serovar Typhimurium, Legionella pneumophilia, Bordetella bronchiseptica, the insect pathogen Photorhabdus luminescens and the plant pathogen Erwinia carotovora. In many cases, lipid A modifications promote bacterial resistance to killing by antimicrobial peptides.Different lipid A structures exhibit differential recognition by TLR4. Recognition of lipid A is in part determined by extracellular variable domains in TLR4 and MD2. There is evidence for positive selection in these domains across different species, which supports the hypothesis that variability in innate immune recognition determines infectious disease outcome.Lipid A structures are associated with human disease. Pseudomonas aeruginosa isolated from cystic fibrosis patients exhibit lipid A structures that are not found in environmental isolates.When grown at 37°C, Yersinia pestis, the causative agent of plague, is not recognized by human TLR4 but is recognized by mouse TLR4. A general principle of highly virulent Gram-negative pathogens is that recognition of lipid A may be reduced. This property of Y. pestis is not present in Yersinia pseudotuberculosis, from which Y. pestis evolved, and mighty indicate co-evolution of lipid A structure with alteration in host range (insects) and increasing human virulence.Innate immune stimulants and modifiers derived from lipid A may have important utility in the future to protect against infectious diseases.
    43 schema:genre article
    44 schema:isAccessibleForFree false
    45 schema:isPartOf N8ce30f80837841f0b5dcf1dddeba0153
    46 Nc4d2c9e9dcb841e0b593f655bb80c464
    47 sg:journal.1032854
    48 schema:keywords Bordetella bronchiseptica
    49 Drosophila
    50 Erwinia carotovora
    51 Gram-negative pathogens
    52 LPS
    53 Legionella pneumophilia
    54 MD2
    55 PhoP-PhoQ
    56 Photorhabdus
    57 Pseudomonas aeruginosa
    58 Pseudomonas syringae
    59 Salmonella enterica serovar Typhimurium
    60 TLR
    61 TLR4
    62 Y. pestis
    63 Yersinia pestis
    64 Yersinia pseudotuberculosis
    65 addition
    66 aeruginosa
    67 agents
    68 alterations
    69 antimicrobial peptides
    70 article
    71 bacteria
    72 bacterial infections
    73 bacterial ligands
    74 bacterial resistance
    75 bacterial signal transduction systems
    76 bacterial type III effectors
    77 bacterial virulence
    78 bronchiseptica
    79 carotovora
    80 cases
    81 causative agent
    82 central question
    83 complex interplay
    84 cystic fibrosis patients
    85 differences
    86 different bacteria
    87 different lipids
    88 different members
    89 different species
    90 differential recognition
    91 disease
    92 disease diversity
    93 disease outcome
    94 disease research
    95 disease susceptibility
    96 diversity
    97 domain
    98 effectors
    99 enterica serovar Typhimurium
    100 environmental isolates
    101 evidence
    102 example
    103 fibrosis patients
    104 future
    105 general principles
    106 genes
    107 great diversity
    108 great variability
    109 host
    110 host populations
    111 host range
    112 human TLR4
    113 human diseases
    114 human virulence
    115 humans
    116 hypothesis
    117 immune genes
    118 immune receptors
    119 immune stimulants
    120 immunity
    121 important utility
    122 individual members
    123 infection
    124 infectious disease outcomes
    125 infectious disease research
    126 infectious diseases
    127 innate immune genes
    128 innate immune receptors
    129 innate immune stimulant
    130 innate immunity
    131 insect pathogen Photorhabdus
    132 insect pathogens
    133 interplay
    134 isolates
    135 ligands
    136 lipid A
    137 lipids
    138 mechanism
    139 members
    140 modification
    141 modifiers
    142 molecules
    143 mouse TLR4
    144 outcome of infection
    145 outcomes
    146 part
    147 pathogen Photorhabdus
    148 pathogen Pseudomonas syringae
    149 pathogens
    150 patients
    151 peptides
    152 pestis
    153 plague
    154 plant innate immunity
    155 plant pathogen Erwinia carotovora
    156 plant pathogen Pseudomonas syringae
    157 plants
    158 polymorphism
    159 population
    160 portion
    161 positive selection
    162 principles
    163 properties
    164 pseudotuberculosis
    165 questions
    166 range
    167 receptors
    168 recognition
    169 research
    170 resistance
    171 selection
    172 serovar Typhimurium
    173 signal transduction system
    174 single molecules
    175 sole portion
    176 species
    177 stimulants
    178 structural differences
    179 structure
    180 susceptibility
    181 syringae
    182 system
    183 transduction system
    184 type III effectors
    185 typhimurium
    186 utility
    187 variability
    188 variable disease outcomes
    189 variable domains
    190 variety
    191 variety of diseases
    192 variety of pathogens
    193 virulence
    194 schema:name LPS, TLR4 and infectious disease diversity
    195 schema:pagination 36-46
    196 schema:productId N708ed230b426479e8875760a80cf0aaa
    197 Na8727ad7259248b792a0830c06374cc9
    198 Nf40db1c7feb7469eac6a2221526dbcd7
    199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001582007
    200 https://doi.org/10.1038/nrmicro1068
    201 schema:sdDatePublished 2022-12-01T06:24
    202 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    203 schema:sdPublisher Nd1c4cef41deb43d891e1227d2c3ac1b9
    204 schema:url https://doi.org/10.1038/nrmicro1068
    205 sgo:license sg:explorer/license/
    206 sgo:sdDataset articles
    207 rdf:type schema:ScholarlyArticle
    208 N02c16694560c4c0198a82d4ed22203ee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    209 schema:name Toll-Like Receptor 4
    210 rdf:type schema:DefinedTerm
    211 N21f9627dfddb431a9105eaffd1c3d9f0 rdf:first sg:person.014461474407.03
    212 rdf:rest N3315ba5326174ebfbfc481b577cadd1c
    213 N24064c8311504a67bcdd945a441eabf5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    214 schema:name Molecular Structure
    215 rdf:type schema:DefinedTerm
    216 N29223e1919f34caf9903c18c1be736c9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    217 schema:name Immunity, Innate
    218 rdf:type schema:DefinedTerm
    219 N3315ba5326174ebfbfc481b577cadd1c rdf:first sg:person.01105703045.52
    220 rdf:rest N4d2ad49a7d4a476693cf65e7b8a8ffc3
    221 N363af238027e46edadb6c25de5ffe5aa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    222 schema:name Lymphocyte Antigen 96
    223 rdf:type schema:DefinedTerm
    224 N455a293ce9334600bed63bf0b33798c6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    225 schema:name Membrane Glycoproteins
    226 rdf:type schema:DefinedTerm
    227 N4a5e31ac8414421eb1a2548c98788841 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    228 schema:name Lipopolysaccharide Receptors
    229 rdf:type schema:DefinedTerm
    230 N4d2ad49a7d4a476693cf65e7b8a8ffc3 rdf:first sg:person.01163101411.55
    231 rdf:rest rdf:nil
    232 N5661f76c957d420da496e49fdc37d7e4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    233 schema:name Receptors, Cell Surface
    234 rdf:type schema:DefinedTerm
    235 N708ed230b426479e8875760a80cf0aaa schema:name dimensions_id
    236 schema:value pub.1001582007
    237 rdf:type schema:PropertyValue
    238 N7734796ce21f49a18f86ab0535ee8226 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    239 schema:name Disease Progression
    240 rdf:type schema:DefinedTerm
    241 N87ea31e417114e66a1549995b55f14e5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    242 schema:name Carrier Proteins
    243 rdf:type schema:DefinedTerm
    244 N885dfedae0b945e5bb105b90e6ec8efd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    245 schema:name Antigens, Surface
    246 rdf:type schema:DefinedTerm
    247 N8ce30f80837841f0b5dcf1dddeba0153 schema:volumeNumber 3
    248 rdf:type schema:PublicationVolume
    249 N98299e0afa6d4aeebef3aaf14d96d6b5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    250 schema:name Lipid A
    251 rdf:type schema:DefinedTerm
    252 N98ba29ec8acf47aea91ef23e011d310e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    253 schema:name Humans
    254 rdf:type schema:DefinedTerm
    255 N9d3ebee7c3b84ee6b9b2dc8e3f190f6e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    256 schema:name Disease Susceptibility
    257 rdf:type schema:DefinedTerm
    258 Na8727ad7259248b792a0830c06374cc9 schema:name pubmed_id
    259 schema:value 15608698
    260 rdf:type schema:PropertyValue
    261 Nbcce35a35a8444e38f7d1cf53312d499 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    262 schema:name Lipopolysaccharides
    263 rdf:type schema:DefinedTerm
    264 Nc0736e555e5c4e75ab9b6f419a6ad16f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    265 schema:name Species Specificity
    266 rdf:type schema:DefinedTerm
    267 Nc1abbd9d890a4535a0a695c5d28b2562 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    268 schema:name Signal Transduction
    269 rdf:type schema:DefinedTerm
    270 Nc4d2c9e9dcb841e0b593f655bb80c464 schema:issueNumber 1
    271 rdf:type schema:PublicationIssue
    272 Nc54371290913498d9d86c430a8050b3e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    273 schema:name Toll-Like Receptors
    274 rdf:type schema:DefinedTerm
    275 Ncf4c8bda7b6b42819cb06f4c73b5eb8c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    276 schema:name Animals
    277 rdf:type schema:DefinedTerm
    278 Nd1c4cef41deb43d891e1227d2c3ac1b9 schema:name Springer Nature - SN SciGraph project
    279 rdf:type schema:Organization
    280 Nd90daacc16e541c5b011a17b66d2743c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    281 schema:name Bacterial Infections
    282 rdf:type schema:DefinedTerm
    283 Nf40db1c7feb7469eac6a2221526dbcd7 schema:name doi
    284 schema:value 10.1038/nrmicro1068
    285 rdf:type schema:PropertyValue
    286 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    287 schema:name Biological Sciences
    288 rdf:type schema:DefinedTerm
    289 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    290 schema:name Biochemistry and Cell Biology
    291 rdf:type schema:DefinedTerm
    292 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    293 schema:name Medical and Health Sciences
    294 rdf:type schema:DefinedTerm
    295 anzsrc-for:1107 schema:inDefinedTermSet anzsrc-for:
    296 schema:name Immunology
    297 rdf:type schema:DefinedTerm
    298 anzsrc-for:1108 schema:inDefinedTermSet anzsrc-for:
    299 schema:name Medical Microbiology
    300 rdf:type schema:DefinedTerm
    301 sg:journal.1032854 schema:issn 1740-1526
    302 1740-1534
    303 schema:name Nature Reviews Microbiology
    304 schema:publisher Springer Nature
    305 rdf:type schema:Periodical
    306 sg:person.01105703045.52 schema:affiliation grid-institutes:grid.34477.33
    307 schema:familyName Ernst
    308 schema:givenName Robert K.
    309 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105703045.52
    310 rdf:type schema:Person
    311 sg:person.01163101411.55 schema:affiliation grid-institutes:grid.34477.33
    312 schema:familyName Bader
    313 schema:givenName Martin W.
    314 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163101411.55
    315 rdf:type schema:Person
    316 sg:person.014461474407.03 schema:affiliation grid-institutes:grid.34477.33
    317 schema:familyName Miller
    318 schema:givenName Samuel I.
    319 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014461474407.03
    320 rdf:type schema:Person
    321 sg:pub.10.1038/35047123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001385025
    322 https://doi.org/10.1038/35047123
    323 rdf:type schema:CreativeWork
    324 sg:pub.10.1038/35074106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046017863
    325 https://doi.org/10.1038/35074106
    326 rdf:type schema:CreativeWork
    327 sg:pub.10.1038/35100529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008398067
    328 https://doi.org/10.1038/35100529
    329 rdf:type schema:CreativeWork
    330 sg:pub.10.1038/41131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048300852
    331 https://doi.org/10.1038/41131
    332 rdf:type schema:CreativeWork
    333 sg:pub.10.1038/76048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034294158
    334 https://doi.org/10.1038/76048
    335 rdf:type schema:CreativeWork
    336 sg:pub.10.1038/ni1011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038299302
    337 https://doi.org/10.1038/ni1011
    338 rdf:type schema:CreativeWork
    339 sg:pub.10.1038/ni712 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042187738
    340 https://doi.org/10.1038/ni712
    341 rdf:type schema:CreativeWork
    342 sg:pub.10.1038/ni777 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041505052
    343 https://doi.org/10.1038/ni777
    344 rdf:type schema:CreativeWork
    345 sg:pub.10.1038/ni809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024550134
    346 https://doi.org/10.1038/ni809
    347 rdf:type schema:CreativeWork
    348 sg:pub.10.1038/ni945 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041685474
    349 https://doi.org/10.1038/ni945
    350 rdf:type schema:CreativeWork
    351 sg:pub.10.1038/nri1180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046714829
    352 https://doi.org/10.1038/nri1180
    353 rdf:type schema:CreativeWork
    354 sg:pub.10.1038/sj.gene.6364068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028779279
    355 https://doi.org/10.1038/sj.gene.6364068
    356 rdf:type schema:CreativeWork
    357 sg:pub.10.1186/gb-2000-1-1-research002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000547968
    358 https://doi.org/10.1186/gb-2000-1-1-research002
    359 rdf:type schema:CreativeWork
    360 sg:pub.10.1203/00006450-200209000-00011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030507259
    361 https://doi.org/10.1203/00006450-200209000-00011
    362 rdf:type schema:CreativeWork
    363 grid-institutes:grid.34477.33 schema:alternateName Department of Genome Sciences, University of Washington Medical School, Washington, 98195, Seattle, USA
    364 Department of Medicine, University of Washington Medical School, Washington, 98195, Seattle, USA
    365 schema:name Department of Genome Sciences, University of Washington Medical School, Washington, 98195, Seattle, USA
    366 Department of Medicine, University of Washington Medical School, Washington, 98195, Seattle, USA
    367 Department of Microbiology, University of Washington Medical School, Washington, 98195, Seattle, USA
    368 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...