Escherichia coli acid resistance: tales of an amateur acidophile View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2004-11

AUTHORS

John W. Foster

ABSTRACT

Key PointsThere are four known acid-resistance systems present in pathogenic and non-pathogenic strains of Escherichia coli.The two most effective systems involve the decarboxylation of glutamate or arginine, a process that consumes an intracellular proton.In combination with cognate amino acid antiporters, the amino-acid-dependent systems increase intracellular pH and reverse transmembrane potential. Cl−/H+ antiporters are also important in this process.Genetic regulation of the glutamate-dependent acid-resistance system involves a complex regulatory network of at least 10 proteins that mediate induction of gadE, the direct activator of the glutamate decarboxylase and antiporter genes.Glutamate-dependent acid resistance seems to be important for the survival of E. coli O157:H7 in the bovine gastrointestinal tract. More... »

PAGES

898-907

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nrmicro1021

DOI

http://dx.doi.org/10.1038/nrmicro1021

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024287184

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15494746


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Acids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adaptation, Physiological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Antiporters", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Arginine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chlorides", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Escherichia coli", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Regulation, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glutamic Acid", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hydrogen-Ion Concentration", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ion Transport", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Membrane Potentials", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proton-Motive Force", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Microbiology and Immunology, University of South Alabama College of Medicine, 36695, Mobile, Alabama, USA", 
          "id": "http://www.grid.ac/institutes/grid.267153.4", 
          "name": [
            "Department of Microbiology and Immunology, University of South Alabama College of Medicine, 36695, Mobile, Alabama, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Foster", 
        "givenName": "John W.", 
        "id": "sg:person.01075347112.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075347112.34"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature01000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031494380", 
          "https://doi.org/10.1038/nature01000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043308338", 
          "https://doi.org/10.1038/nature02314"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-11", 
    "datePublishedReg": "2004-11-01", 
    "description": "Key PointsThere are four known acid-resistance systems present in pathogenic and non-pathogenic strains of Escherichia coli.The two most effective systems involve the decarboxylation of glutamate or arginine, a process that consumes an intracellular proton.In combination with cognate amino acid antiporters, the amino-acid-dependent systems increase intracellular pH and reverse transmembrane potential. Cl\u2212/H+ antiporters are also important in this process.Genetic regulation of the glutamate-dependent acid-resistance system involves a complex regulatory network of at least 10 proteins that mediate induction of gadE, the direct activator of the glutamate decarboxylase and antiporter genes.Glutamate-dependent acid resistance seems to be important for the survival of E. coli O157:H7 in the bovine gastrointestinal tract.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/nrmicro1021", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1032854", 
        "issn": [
          "1740-1526", 
          "1740-1534"
        ], 
        "name": "Nature Reviews Microbiology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "keywords": [
      "acid resistance system", 
      "glutamate-dependent acid resistance system", 
      "glutamate-dependent acid resistance", 
      "complex regulatory network", 
      "amino acid antiporter", 
      "decarboxylation of glutamate", 
      "antiporter gene", 
      "regulatory networks", 
      "genetic regulation", 
      "non-pathogenic strains", 
      "bovine gastrointestinal tract", 
      "intracellular protons", 
      "direct activator", 
      "Escherichia coli", 
      "transmembrane potential", 
      "antiporter", 
      "Key PointsThere", 
      "intracellular pH", 
      "glutamate decarboxylase", 
      "acid resistance", 
      "E. coli O157", 
      "genes", 
      "coli O157", 
      "protein", 
      "coli", 
      "activator", 
      "regulation", 
      "dependent system", 
      "decarboxylase", 
      "GadE", 
      "arginine", 
      "induction", 
      "strains", 
      "glutamate", 
      "decarboxylation", 
      "O157", 
      "survival", 
      "gastrointestinal tract", 
      "resistance", 
      "process", 
      "potential", 
      "pH", 
      "system", 
      "tract", 
      "combination", 
      "effective system", 
      "protons", 
      "network", 
      "tale", 
      "amateurs"
    ], 
    "name": "Escherichia coli acid resistance: tales of an amateur acidophile", 
    "pagination": "898-907", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024287184"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nrmicro1021"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15494746"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nrmicro1021", 
      "https://app.dimensions.ai/details/publication/pub.1024287184"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T16:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_389.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/nrmicro1021"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nrmicro1021'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nrmicro1021'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nrmicro1021'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nrmicro1021'


 

This table displays all metadata directly associated to this object as RDF triples.

167 TRIPLES      21 PREDICATES      90 URIs      80 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nrmicro1021 schema:about N16840e6dc715472c8203eea1797a073d
2 N18636896f19f4c7088445ca6af18fe04
3 N28553c79d6e342879c6a50a218761ee9
4 N2dac59b20afe4c088c1f9ef01ca82227
5 N3c3fc6f2db1b42c5afed5606115cd883
6 N5eaab0d083b244e9b000f5d071d98e3f
7 Na4b96d717999474d99c29cd346df5192
8 Na90993407b2b408ca52d6b8efab8264f
9 Nae52268de2e44264a1658b2b97ea701a
10 Ndd023634f19b4c2492cbe7ed18ea0999
11 Nf3852a351d3c4e63a0ea7e185e0b6048
12 Nf8036e3dd5e5479785100c5c930f8bba
13 anzsrc-for:06
14 anzsrc-for:0604
15 schema:author N2086509d652b4dc88bb139249606add4
16 schema:citation sg:pub.10.1038/nature01000
17 sg:pub.10.1038/nature02314
18 schema:datePublished 2004-11
19 schema:datePublishedReg 2004-11-01
20 schema:description Key PointsThere are four known acid-resistance systems present in pathogenic and non-pathogenic strains of Escherichia coli.The two most effective systems involve the decarboxylation of glutamate or arginine, a process that consumes an intracellular proton.In combination with cognate amino acid antiporters, the amino-acid-dependent systems increase intracellular pH and reverse transmembrane potential. Cl−/H+ antiporters are also important in this process.Genetic regulation of the glutamate-dependent acid-resistance system involves a complex regulatory network of at least 10 proteins that mediate induction of gadE, the direct activator of the glutamate decarboxylase and antiporter genes.Glutamate-dependent acid resistance seems to be important for the survival of E. coli O157:H7 in the bovine gastrointestinal tract.
21 schema:genre article
22 schema:isAccessibleForFree false
23 schema:isPartOf N1c3a1e72a9564089a7f35360a104f37c
24 N6a604c8a5006403494a6ed50136d425a
25 sg:journal.1032854
26 schema:keywords E. coli O157
27 Escherichia coli
28 GadE
29 Key PointsThere
30 O157
31 acid resistance
32 acid resistance system
33 activator
34 amateurs
35 amino acid antiporter
36 antiporter
37 antiporter gene
38 arginine
39 bovine gastrointestinal tract
40 coli
41 coli O157
42 combination
43 complex regulatory network
44 decarboxylase
45 decarboxylation
46 decarboxylation of glutamate
47 dependent system
48 direct activator
49 effective system
50 gastrointestinal tract
51 genes
52 genetic regulation
53 glutamate
54 glutamate decarboxylase
55 glutamate-dependent acid resistance
56 glutamate-dependent acid resistance system
57 induction
58 intracellular pH
59 intracellular protons
60 network
61 non-pathogenic strains
62 pH
63 potential
64 process
65 protein
66 protons
67 regulation
68 regulatory networks
69 resistance
70 strains
71 survival
72 system
73 tale
74 tract
75 transmembrane potential
76 schema:name Escherichia coli acid resistance: tales of an amateur acidophile
77 schema:pagination 898-907
78 schema:productId N0e9d949c67524496a683426bd4f94a0d
79 N19dff9914e6041feabd5c11734230a5d
80 N29dc9365a20549aeb5beff95fa4d4449
81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024287184
82 https://doi.org/10.1038/nrmicro1021
83 schema:sdDatePublished 2022-08-04T16:54
84 schema:sdLicense https://scigraph.springernature.com/explorer/license/
85 schema:sdPublisher N6f65a23639f64374b26335f33609372f
86 schema:url https://doi.org/10.1038/nrmicro1021
87 sgo:license sg:explorer/license/
88 sgo:sdDataset articles
89 rdf:type schema:ScholarlyArticle
90 N0e9d949c67524496a683426bd4f94a0d schema:name pubmed_id
91 schema:value 15494746
92 rdf:type schema:PropertyValue
93 N16840e6dc715472c8203eea1797a073d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Adaptation, Physiological
95 rdf:type schema:DefinedTerm
96 N18636896f19f4c7088445ca6af18fe04 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Acids
98 rdf:type schema:DefinedTerm
99 N19dff9914e6041feabd5c11734230a5d schema:name doi
100 schema:value 10.1038/nrmicro1021
101 rdf:type schema:PropertyValue
102 N1c3a1e72a9564089a7f35360a104f37c schema:volumeNumber 2
103 rdf:type schema:PublicationVolume
104 N2086509d652b4dc88bb139249606add4 rdf:first sg:person.01075347112.34
105 rdf:rest rdf:nil
106 N28553c79d6e342879c6a50a218761ee9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Gene Expression Regulation, Bacterial
108 rdf:type schema:DefinedTerm
109 N29dc9365a20549aeb5beff95fa4d4449 schema:name dimensions_id
110 schema:value pub.1024287184
111 rdf:type schema:PropertyValue
112 N2dac59b20afe4c088c1f9ef01ca82227 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Chlorides
114 rdf:type schema:DefinedTerm
115 N3c3fc6f2db1b42c5afed5606115cd883 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Escherichia coli
117 rdf:type schema:DefinedTerm
118 N5eaab0d083b244e9b000f5d071d98e3f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Membrane Potentials
120 rdf:type schema:DefinedTerm
121 N6a604c8a5006403494a6ed50136d425a schema:issueNumber 11
122 rdf:type schema:PublicationIssue
123 N6f65a23639f64374b26335f33609372f schema:name Springer Nature - SN SciGraph project
124 rdf:type schema:Organization
125 Na4b96d717999474d99c29cd346df5192 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Antiporters
127 rdf:type schema:DefinedTerm
128 Na90993407b2b408ca52d6b8efab8264f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Arginine
130 rdf:type schema:DefinedTerm
131 Nae52268de2e44264a1658b2b97ea701a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Ion Transport
133 rdf:type schema:DefinedTerm
134 Ndd023634f19b4c2492cbe7ed18ea0999 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Glutamic Acid
136 rdf:type schema:DefinedTerm
137 Nf3852a351d3c4e63a0ea7e185e0b6048 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Proton-Motive Force
139 rdf:type schema:DefinedTerm
140 Nf8036e3dd5e5479785100c5c930f8bba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Hydrogen-Ion Concentration
142 rdf:type schema:DefinedTerm
143 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
144 schema:name Biological Sciences
145 rdf:type schema:DefinedTerm
146 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
147 schema:name Genetics
148 rdf:type schema:DefinedTerm
149 sg:journal.1032854 schema:issn 1740-1526
150 1740-1534
151 schema:name Nature Reviews Microbiology
152 schema:publisher Springer Nature
153 rdf:type schema:Periodical
154 sg:person.01075347112.34 schema:affiliation grid-institutes:grid.267153.4
155 schema:familyName Foster
156 schema:givenName John W.
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075347112.34
158 rdf:type schema:Person
159 sg:pub.10.1038/nature01000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031494380
160 https://doi.org/10.1038/nature01000
161 rdf:type schema:CreativeWork
162 sg:pub.10.1038/nature02314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043308338
163 https://doi.org/10.1038/nature02314
164 rdf:type schema:CreativeWork
165 grid-institutes:grid.267153.4 schema:alternateName Department of Microbiology and Immunology, University of South Alabama College of Medicine, 36695, Mobile, Alabama, USA
166 schema:name Department of Microbiology and Immunology, University of South Alabama College of Medicine, 36695, Mobile, Alabama, USA
167 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...