Escherichia coli acid resistance: tales of an amateur acidophile View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2004-11

AUTHORS

John W. Foster

ABSTRACT

Key PointsThere are four known acid-resistance systems present in pathogenic and non-pathogenic strains of Escherichia coli.The two most effective systems involve the decarboxylation of glutamate or arginine, a process that consumes an intracellular proton.In combination with cognate amino acid antiporters, the amino-acid-dependent systems increase intracellular pH and reverse transmembrane potential. Cl−/H+ antiporters are also important in this process.Genetic regulation of the glutamate-dependent acid-resistance system involves a complex regulatory network of at least 10 proteins that mediate induction of gadE, the direct activator of the glutamate decarboxylase and antiporter genes.Glutamate-dependent acid resistance seems to be important for the survival of E. coli O157:H7 in the bovine gastrointestinal tract. More... »

PAGES

898-907

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nrmicro1021

DOI

http://dx.doi.org/10.1038/nrmicro1021

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024287184

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15494746


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Acids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adaptation, Physiological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Antiporters", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Arginine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chlorides", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Escherichia coli", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Regulation, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glutamic Acid", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hydrogen-Ion Concentration", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ion Transport", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Membrane Potentials", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proton-Motive Force", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Microbiology and Immunology, University of South Alabama College of Medicine, 36695, Mobile, Alabama, USA", 
          "id": "http://www.grid.ac/institutes/grid.267153.4", 
          "name": [
            "Department of Microbiology and Immunology, University of South Alabama College of Medicine, 36695, Mobile, Alabama, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Foster", 
        "givenName": "John W.", 
        "id": "sg:person.01075347112.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075347112.34"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature01000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031494380", 
          "https://doi.org/10.1038/nature01000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043308338", 
          "https://doi.org/10.1038/nature02314"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-11", 
    "datePublishedReg": "2004-11-01", 
    "description": "Key PointsThere are four known acid-resistance systems present in pathogenic and non-pathogenic strains of Escherichia coli.The two most effective systems involve the decarboxylation of glutamate or arginine, a process that consumes an intracellular proton.In combination with cognate amino acid antiporters, the amino-acid-dependent systems increase intracellular pH and reverse transmembrane potential. Cl\u2212/H+ antiporters are also important in this process.Genetic regulation of the glutamate-dependent acid-resistance system involves a complex regulatory network of at least 10 proteins that mediate induction of gadE, the direct activator of the glutamate decarboxylase and antiporter genes.Glutamate-dependent acid resistance seems to be important for the survival of E. coli O157:H7 in the bovine gastrointestinal tract.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/nrmicro1021", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1032854", 
        "issn": [
          "1740-1526", 
          "1740-1534"
        ], 
        "name": "Nature Reviews Microbiology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "keywords": [
      "acid resistance system", 
      "glutamate-dependent acid resistance system", 
      "glutamate-dependent acid resistance", 
      "complex regulatory network", 
      "amino acid antiporter", 
      "decarboxylation of glutamate", 
      "antiporter gene", 
      "regulatory networks", 
      "genetic regulation", 
      "non-pathogenic strains", 
      "bovine gastrointestinal tract", 
      "intracellular protons", 
      "direct activator", 
      "Escherichia coli", 
      "transmembrane potential", 
      "antiporter", 
      "Key PointsThere", 
      "intracellular pH", 
      "glutamate decarboxylase", 
      "acid resistance", 
      "E. coli O157", 
      "genes", 
      "coli O157", 
      "protein", 
      "coli", 
      "activator", 
      "regulation", 
      "dependent system", 
      "decarboxylase", 
      "GadE", 
      "arginine", 
      "induction", 
      "strains", 
      "glutamate", 
      "decarboxylation", 
      "O157", 
      "survival", 
      "gastrointestinal tract", 
      "resistance", 
      "process", 
      "potential", 
      "pH", 
      "system", 
      "tract", 
      "combination", 
      "effective system", 
      "protons", 
      "network", 
      "tale", 
      "amateurs"
    ], 
    "name": "Escherichia coli acid resistance: tales of an amateur acidophile", 
    "pagination": "898-907", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024287184"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nrmicro1021"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15494746"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nrmicro1021", 
      "https://app.dimensions.ai/details/publication/pub.1024287184"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T16:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_389.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/nrmicro1021"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nrmicro1021'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nrmicro1021'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nrmicro1021'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nrmicro1021'


 

This table displays all metadata directly associated to this object as RDF triples.

167 TRIPLES      21 PREDICATES      90 URIs      80 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nrmicro1021 schema:about N11cb0b7172574574893b7a8dc184c597
2 N134f81e6109e490ba10cfe4d2ebdeb70
3 N186fc2d83d00463c87e1175118f83c3a
4 N32f2aae31dc64156bfd248eab971f316
5 Nb42d60a2133841858d48c927bbd94eb1
6 Nc10f91139824455ba3f783d8846b9b2c
7 Nc5a42d04cd0844a9b02fb805f0a10b3e
8 Nc88f060073df4289a0f725445a97861e
9 Nead4b3bed0284e8489897d71991bcb14
10 Neead2f614a794674a7e99310a5808075
11 Neebc69a885a5449188580c972c370bea
12 Nfa2e1edacfcc46fdbf67cdc385f36b5e
13 anzsrc-for:06
14 anzsrc-for:0604
15 schema:author N2203263da3fb4f5c8c3fd014875acba8
16 schema:citation sg:pub.10.1038/nature01000
17 sg:pub.10.1038/nature02314
18 schema:datePublished 2004-11
19 schema:datePublishedReg 2004-11-01
20 schema:description Key PointsThere are four known acid-resistance systems present in pathogenic and non-pathogenic strains of Escherichia coli.The two most effective systems involve the decarboxylation of glutamate or arginine, a process that consumes an intracellular proton.In combination with cognate amino acid antiporters, the amino-acid-dependent systems increase intracellular pH and reverse transmembrane potential. Cl−/H+ antiporters are also important in this process.Genetic regulation of the glutamate-dependent acid-resistance system involves a complex regulatory network of at least 10 proteins that mediate induction of gadE, the direct activator of the glutamate decarboxylase and antiporter genes.Glutamate-dependent acid resistance seems to be important for the survival of E. coli O157:H7 in the bovine gastrointestinal tract.
21 schema:genre article
22 schema:isAccessibleForFree false
23 schema:isPartOf N701ced60bdc542378f35d0ccbd6de946
24 N8c51000248fc43569b68cfdc61343a35
25 sg:journal.1032854
26 schema:keywords E. coli O157
27 Escherichia coli
28 GadE
29 Key PointsThere
30 O157
31 acid resistance
32 acid resistance system
33 activator
34 amateurs
35 amino acid antiporter
36 antiporter
37 antiporter gene
38 arginine
39 bovine gastrointestinal tract
40 coli
41 coli O157
42 combination
43 complex regulatory network
44 decarboxylase
45 decarboxylation
46 decarboxylation of glutamate
47 dependent system
48 direct activator
49 effective system
50 gastrointestinal tract
51 genes
52 genetic regulation
53 glutamate
54 glutamate decarboxylase
55 glutamate-dependent acid resistance
56 glutamate-dependent acid resistance system
57 induction
58 intracellular pH
59 intracellular protons
60 network
61 non-pathogenic strains
62 pH
63 potential
64 process
65 protein
66 protons
67 regulation
68 regulatory networks
69 resistance
70 strains
71 survival
72 system
73 tale
74 tract
75 transmembrane potential
76 schema:name Escherichia coli acid resistance: tales of an amateur acidophile
77 schema:pagination 898-907
78 schema:productId N1a1dbf37f7464cddb4a6ada220308afe
79 N2590edd67f7146e49487754218e143ef
80 N4d42937c24814bb5aed460f861a6b140
81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024287184
82 https://doi.org/10.1038/nrmicro1021
83 schema:sdDatePublished 2022-08-04T16:54
84 schema:sdLicense https://scigraph.springernature.com/explorer/license/
85 schema:sdPublisher N40c5bc3caad24cd7a2f21cdaaacda88a
86 schema:url https://doi.org/10.1038/nrmicro1021
87 sgo:license sg:explorer/license/
88 sgo:sdDataset articles
89 rdf:type schema:ScholarlyArticle
90 N11cb0b7172574574893b7a8dc184c597 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Ion Transport
92 rdf:type schema:DefinedTerm
93 N134f81e6109e490ba10cfe4d2ebdeb70 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Antiporters
95 rdf:type schema:DefinedTerm
96 N186fc2d83d00463c87e1175118f83c3a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Escherichia coli
98 rdf:type schema:DefinedTerm
99 N1a1dbf37f7464cddb4a6ada220308afe schema:name dimensions_id
100 schema:value pub.1024287184
101 rdf:type schema:PropertyValue
102 N2203263da3fb4f5c8c3fd014875acba8 rdf:first sg:person.01075347112.34
103 rdf:rest rdf:nil
104 N2590edd67f7146e49487754218e143ef schema:name doi
105 schema:value 10.1038/nrmicro1021
106 rdf:type schema:PropertyValue
107 N32f2aae31dc64156bfd248eab971f316 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Hydrogen-Ion Concentration
109 rdf:type schema:DefinedTerm
110 N40c5bc3caad24cd7a2f21cdaaacda88a schema:name Springer Nature - SN SciGraph project
111 rdf:type schema:Organization
112 N4d42937c24814bb5aed460f861a6b140 schema:name pubmed_id
113 schema:value 15494746
114 rdf:type schema:PropertyValue
115 N701ced60bdc542378f35d0ccbd6de946 schema:volumeNumber 2
116 rdf:type schema:PublicationVolume
117 N8c51000248fc43569b68cfdc61343a35 schema:issueNumber 11
118 rdf:type schema:PublicationIssue
119 Nb42d60a2133841858d48c927bbd94eb1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Membrane Potentials
121 rdf:type schema:DefinedTerm
122 Nc10f91139824455ba3f783d8846b9b2c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Acids
124 rdf:type schema:DefinedTerm
125 Nc5a42d04cd0844a9b02fb805f0a10b3e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Gene Expression Regulation, Bacterial
127 rdf:type schema:DefinedTerm
128 Nc88f060073df4289a0f725445a97861e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Arginine
130 rdf:type schema:DefinedTerm
131 Nead4b3bed0284e8489897d71991bcb14 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Proton-Motive Force
133 rdf:type schema:DefinedTerm
134 Neead2f614a794674a7e99310a5808075 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Adaptation, Physiological
136 rdf:type schema:DefinedTerm
137 Neebc69a885a5449188580c972c370bea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Glutamic Acid
139 rdf:type schema:DefinedTerm
140 Nfa2e1edacfcc46fdbf67cdc385f36b5e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Chlorides
142 rdf:type schema:DefinedTerm
143 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
144 schema:name Biological Sciences
145 rdf:type schema:DefinedTerm
146 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
147 schema:name Genetics
148 rdf:type schema:DefinedTerm
149 sg:journal.1032854 schema:issn 1740-1526
150 1740-1534
151 schema:name Nature Reviews Microbiology
152 schema:publisher Springer Nature
153 rdf:type schema:Periodical
154 sg:person.01075347112.34 schema:affiliation grid-institutes:grid.267153.4
155 schema:familyName Foster
156 schema:givenName John W.
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075347112.34
158 rdf:type schema:Person
159 sg:pub.10.1038/nature01000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031494380
160 https://doi.org/10.1038/nature01000
161 rdf:type schema:CreativeWork
162 sg:pub.10.1038/nature02314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043308338
163 https://doi.org/10.1038/nature02314
164 rdf:type schema:CreativeWork
165 grid-institutes:grid.267153.4 schema:alternateName Department of Microbiology and Immunology, University of South Alabama College of Medicine, 36695, Mobile, Alabama, USA
166 schema:name Department of Microbiology and Immunology, University of South Alabama College of Medicine, 36695, Mobile, Alabama, USA
167 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...