Targeting microbial biofilms: current and prospective therapeutic strategies View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-09-25

AUTHORS

Hyun Koo, Raymond N. Allan, Robert P. Howlin, Paul Stoodley, Luanne Hall-Stoodley

ABSTRACT

Key PointsBiofilms harbour complex structural and biological attributes, such as the presence of an extracellular polymeric matrix, physical and chemical heterogeneity and drug tolerance, which provide remarkable therapeutic challenges.Biofilm drug tolerance is a consequence of complex physicochemical and biological properties with multiple microbial genetic and molecular factors, often involving polymicrobial interactions.The challenges to existing antimicrobial or monotherapeutic approaches by the multifactorial nature of biofilm development, combined with drug tolerance, requires robust effective multitargeted or combinatorial therapies.Combinatorial strategies are needed to eliminate existing biofilms by targeting vital structural and functional traits of biofilms, such as the EPS matrix and dormant cells, as well as approaches exploiting host–pathogen interactions.Promising technologies based on 'smart release' or 'on-demand activation' of bioactive agents when triggered by biofilm-derived cues can degrade the matrix and kill resident bacteria, and have the potential to eradicate the pathogenic niche with precision and minimal cytotoxicity to surrounding tissues.Validation of proof-of-concept studies using clinically relevant animal models, as well as clinical trials, are needed for rigorous evaluation. More... »

PAGES

740-755

References to SciGraph publications

  • 2015-12-30. The biogeography of polymicrobial infection in NATURE REVIEWS MICROBIOLOGY
  • 2015-11-02. Chronic lung infection by Pseudomonas aeruginosa biofilm is cured by L-Methionine in combination with antibiotic therapy in SCIENTIFIC REPORTS
  • 2016-02-09. Gaseous nitric oxide to treat antibiotic resistant bacterial and fungal lung infections in patients with cystic fibrosis: a phase I clinical study in INFECTION
  • 2016-04-15. Distinguishing between resistance, tolerance and persistence to antibiotic treatment in NATURE REVIEWS MICROBIOLOGY
  • 2015-02-26. An engineered micropattern to reduce bacterial colonization, platelet adhesion and fibrin sheath formation for improved biocompatibility of central venous catheters in CLINICAL AND TRANSLATIONAL MEDICINE
  • 2014-09-24. Persister Cells in Biofilm Associated Infections in BIOFILM-BASED HEALTHCARE-ASSOCIATED INFECTIONS
  • 2014-03-05. Biofilm Matrix-Degrading Enzymes in MICROBIAL BIOFILMS
  • 2009-10-25. Small-molecule inhibitors target Escherichia coli amyloid biogenesis and biofilm formation in NATURE CHEMICAL BIOLOGY
  • 2011-11-28. Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal in NATURE REVIEWS MICROBIOLOGY
  • 2016-08-11. Biofilms: an emergent form of bacterial life in NATURE REVIEWS MICROBIOLOGY
  • 2016-09-12. Combating multidrug-resistant Gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers in NATURE MICROBIOLOGY
  • 2004-02. Bacterial biofilms: from the Natural environment to infectious diseases in NATURE REVIEWS MICROBIOLOGY
  • 2008-05-12. Paul Ehrlich's magic bullet concept: 100 years of progress in NATURE REVIEWS CANCER
  • 2011-06-29. Biofilms can be dispersed by focusing the immune system on a common family of bacterial nucleoid-associated proteins in MUCOSAL IMMUNOLOGY
  • 2016-08-11. Quorum sensing signal–response systems in Gram-negative bacteria in NATURE REVIEWS MICROBIOLOGY
  • 2016-06-20. Bio-inspired strategies for designing antifouling biomaterials in BIOMATERIALS RESEARCH
  • 2016-04-28. Triple-acting Lytic Enzyme Treatment of Drug-Resistant and Intracellular Staphylococcus aureus in SCIENTIFIC REPORTS
  • 2010-05. Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization in NATURE
  • 2017-06-14. Selective depletion of uropathogenic E. coli from the gut by a FimH antagonist in NATURE
  • 2010-08-02. The biofilm matrix in NATURE REVIEWS MICROBIOLOGY
  • 2013-05-13. Antimicrobial activity of metals: mechanisms, molecular targets and applications in NATURE REVIEWS MICROBIOLOGY
  • 2013-11-13. Activated ClpP kills persisters and eradicates a chronic biofilm infection in NATURE
  • 2011-09-25. STING is a direct innate immune sensor of cyclic di-GMP in NATURE
  • 2015-04-16. Living in the matrix: assembly and control of Vibrio cholerae biofilms in NATURE REVIEWS MICROBIOLOGY
  • 2016-05-06. Aptamer–nanoparticle complexes as powerful diagnostic and therapeutic tools in EXPERIMENTAL & MOLECULAR MEDICINE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nrmicro.2017.99

    DOI

    http://dx.doi.org/10.1038/nrmicro.2017.99

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1091911684

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/28944770


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Microbiology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Anti-Bacterial Agents", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bacteria", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bacterial Physiological Phenomena", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biofilms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Drug Resistance, Bacterial", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, Biofilm Research Laboratories, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, 19104-6030, Pennsylvania, USA", 
              "id": "http://www.grid.ac/institutes/grid.25879.31", 
              "name": [
                "Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, Biofilm Research Laboratories, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, 19104-6030, Pennsylvania, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Koo", 
            "givenName": "Hyun", 
            "id": "sg:person.0763273530.89", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763273530.89"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Southampton NIHR Wellcome Trust Clinical Research Facility, University Hospital Southampton NHS Foundation Trust, SO16 6YD, Southampton, UK", 
              "id": "http://www.grid.ac/institutes/grid.430506.4", 
              "name": [
                "Clinical and Experimental Sciences, Faculty of Medicine and Institute for Life Sciences, University of Southampton, SO17 1BJ, Southampton, UK", 
                "Southampton NIHR Wellcome Trust Clinical Research Facility, University Hospital Southampton NHS Foundation Trust, SO16 6YD, Southampton, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Allan", 
            "givenName": "Raymond N.", 
            "id": "sg:person.0613556304.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0613556304.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Southampton NIHR Respiratory Biomedical Research Unit, University Hospital Southampton NHS Foundation Trust, SO16 6YD, Southampton, UK", 
              "id": "http://www.grid.ac/institutes/grid.430506.4", 
              "name": [
                "Centre for Biological Sciences, University of Southampton, SO17 1BJ, Southampton, UK", 
                "Southampton NIHR Respiratory Biomedical Research Unit, University Hospital Southampton NHS Foundation Trust, SO16 6YD, Southampton, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Howlin", 
            "givenName": "Robert P.", 
            "id": "sg:person.01071733672.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01071733672.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Centre for Advanced Tribology at Southampton (nCATS), Faculty of Engineering and the Environment, University of Southampton, SO17 1BJ, UK", 
              "id": "http://www.grid.ac/institutes/grid.5491.9", 
              "name": [
                "Department of Microbial Infection and Immunity, Centre for Microbial Interface Biology, The Ohio State University, 43210, Columbus, Ohio, USA", 
                "Departments of Orthopaedics and Microbiology, The Ohio State University, 43210, Columbus, Ohio, USA", 
                "National Centre for Advanced Tribology at Southampton (nCATS), Faculty of Engineering and the Environment, University of Southampton, SO17 1BJ, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Stoodley", 
            "givenName": "Paul", 
            "id": "sg:person.01316722264.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316722264.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Microbial Infection and Immunity, Centre for Microbial Interface Biology, The Ohio State University, 43210, Columbus, Ohio, USA", 
              "id": "http://www.grid.ac/institutes/grid.261331.4", 
              "name": [
                "Southampton NIHR Respiratory Biomedical Research Unit, University Hospital Southampton NHS Foundation Trust, SO16 6YD, Southampton, UK", 
                "Department of Microbial Infection and Immunity, Centre for Microbial Interface Biology, The Ohio State University, 43210, Columbus, Ohio, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hall-Stoodley", 
            "givenName": "Luanne", 
            "id": "sg:person.0607041661.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607041661.06"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nrmicro3433", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050230101", 
              "https://doi.org/10.1038/nrmicro3433"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro3028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050020783", 
              "https://doi.org/10.1038/nrmicro3028"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmicrobiol.2016.162", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039494406", 
              "https://doi.org/10.1038/nmicrobiol.2016.162"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrc2394", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020214087", 
              "https://doi.org/10.1038/nrc2394"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro.2016.94", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021095240", 
              "https://doi.org/10.1038/nrmicro.2016.94"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro2415", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006291616", 
              "https://doi.org/10.1038/nrmicro2415"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12790", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018195007", 
              "https://doi.org/10.1038/nature12790"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40169-015-0050-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038057703", 
              "https://doi.org/10.1186/s40169-015-0050-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro821", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039651347", 
              "https://doi.org/10.1038/nrmicro821"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro.2015.8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008187952", 
              "https://doi.org/10.1038/nrmicro.2015.8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature22972", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086024118", 
              "https://doi.org/10.1038/nature22972"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep16043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043428661", 
              "https://doi.org/10.1038/srep16043"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro.2016.89", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039509723", 
              "https://doi.org/10.1038/nrmicro.2016.89"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4939-0467-9_14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014030572", 
              "https://doi.org/10.1007/978-1-4939-0467-9_14"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro2695", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049344936", 
              "https://doi.org/10.1038/nrmicro2695"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro.2016.34", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015496667", 
              "https://doi.org/10.1038/nrmicro.2016.34"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/emm.2016.44", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001290174", 
              "https://doi.org/10.1038/emm.2016.44"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep25063", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025404478", 
              "https://doi.org/10.1038/srep25063"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40824-016-0064-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053545602", 
              "https://doi.org/10.1186/s40824-016-0064-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature10429", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012079432", 
              "https://doi.org/10.1038/nature10429"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchembio.242", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040156662", 
              "https://doi.org/10.1038/nchembio.242"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-09782-4_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011499771", 
              "https://doi.org/10.1007/978-3-319-09782-4_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/mi.2011.27", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039149822", 
              "https://doi.org/10.1038/mi.2011.27"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09074", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030799512", 
              "https://doi.org/10.1038/nature09074"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s15010-016-0879-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011716496", 
              "https://doi.org/10.1007/s15010-016-0879-x"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-09-25", 
        "datePublishedReg": "2017-09-25", 
        "description": "Key PointsBiofilms harbour complex structural and biological attributes, such as the presence of an extracellular polymeric matrix, physical and chemical heterogeneity and drug tolerance, which provide remarkable therapeutic challenges.Biofilm drug tolerance is a consequence of complex physicochemical and biological properties with multiple microbial genetic and molecular factors, often involving polymicrobial interactions.The challenges to existing antimicrobial or monotherapeutic approaches by the multifactorial nature of biofilm development, combined with drug tolerance, requires robust effective multitargeted or combinatorial therapies.Combinatorial strategies are needed to eliminate existing biofilms by targeting vital structural and functional traits of biofilms, such as the EPS matrix and dormant cells, as well as approaches exploiting host\u2013pathogen interactions.Promising technologies based on 'smart release' or 'on-demand activation' of bioactive agents when triggered by biofilm-derived cues can degrade the matrix and kill resident bacteria, and have the potential to eradicate the pathogenic niche with precision and minimal cytotoxicity to surrounding tissues.Validation of proof-of-concept studies using clinically relevant animal models, as well as clinical trials, are needed for rigorous evaluation.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/nrmicro.2017.99", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.6500481", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.4102178", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2787211", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7083392", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2491172", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1032854", 
            "issn": [
              "1740-1526", 
              "1740-1534"
            ], 
            "name": "Nature Reviews Microbiology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "12", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "15"
          }
        ], 
        "keywords": [
          "biofilm drug tolerance", 
          "host-pathogen interactions", 
          "extracellular polymeric matrix", 
          "Key PointsBiofilms", 
          "functional traits", 
          "pathogenic niche", 
          "drug tolerance", 
          "microbial biofilms", 
          "biofilm development", 
          "EPS matrix", 
          "dormant cells", 
          "polymicrobial interactions", 
          "resident bacteria", 
          "biological attributes", 
          "molecular factors", 
          "prospective therapeutic strategy", 
          "biofilms", 
          "tolerance", 
          "combinatorial strategies", 
          "validation of proofs", 
          "biological properties", 
          "combinatorial therapy", 
          "therapeutic strategies", 
          "minimal cytotoxicity", 
          "niche", 
          "traits", 
          "bacteria", 
          "interaction", 
          "cells", 
          "activation", 
          "animal models", 
          "relevant animal models", 
          "bioactive agents", 
          "cues", 
          "multifactorial nature", 
          "tissue", 
          "cytotoxicity", 
          "heterogeneity", 
          "release", 
          "strategies", 
          "matrix", 
          "consequences", 
          "development", 
          "presence", 
          "factors", 
          "potential", 
          "concept study", 
          "agents", 
          "demand activation", 
          "study", 
          "approach", 
          "chemical heterogeneity", 
          "nature", 
          "attributes", 
          "challenges", 
          "monotherapeutic approaches", 
          "validation", 
          "smart release", 
          "model", 
          "properties", 
          "technology", 
          "therapy", 
          "proof", 
          "rigorous evaluation", 
          "therapeutic challenge", 
          "clinical trials", 
          "polymeric matrix", 
          "promising technology", 
          "evaluation", 
          "trials", 
          "precision"
        ], 
        "name": "Targeting microbial biofilms: current and prospective therapeutic strategies", 
        "pagination": "740-755", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1091911684"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nrmicro.2017.99"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "28944770"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nrmicro.2017.99", 
          "https://app.dimensions.ai/details/publication/pub.1091911684"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:33", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_730.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/nrmicro.2017.99"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nrmicro.2017.99'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nrmicro.2017.99'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nrmicro.2017.99'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nrmicro.2017.99'


     

    This table displays all metadata directly associated to this object as RDF triples.

    307 TRIPLES      22 PREDICATES      127 URIs      94 LITERALS      12 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nrmicro.2017.99 schema:about N2fa71e3e6b634a4a825840db6aef4a6f
    2 N3d8e59b138074c509730c5f52b7eb82a
    3 N810cf048ff3e465e83308b70affcd77f
    4 N9d08be50ea534e77b2a6f49d9fcc67cb
    5 Ndac1841a170c45e39eb384ea043e56f5
    6 anzsrc-for:06
    7 anzsrc-for:0605
    8 schema:author N946cb7b772dd43649352f58cec8e1579
    9 schema:citation sg:pub.10.1007/978-1-4939-0467-9_14
    10 sg:pub.10.1007/978-3-319-09782-4_1
    11 sg:pub.10.1007/s15010-016-0879-x
    12 sg:pub.10.1038/emm.2016.44
    13 sg:pub.10.1038/mi.2011.27
    14 sg:pub.10.1038/nature09074
    15 sg:pub.10.1038/nature10429
    16 sg:pub.10.1038/nature12790
    17 sg:pub.10.1038/nature22972
    18 sg:pub.10.1038/nchembio.242
    19 sg:pub.10.1038/nmicrobiol.2016.162
    20 sg:pub.10.1038/nrc2394
    21 sg:pub.10.1038/nrmicro.2015.8
    22 sg:pub.10.1038/nrmicro.2016.34
    23 sg:pub.10.1038/nrmicro.2016.89
    24 sg:pub.10.1038/nrmicro.2016.94
    25 sg:pub.10.1038/nrmicro2415
    26 sg:pub.10.1038/nrmicro2695
    27 sg:pub.10.1038/nrmicro3028
    28 sg:pub.10.1038/nrmicro3433
    29 sg:pub.10.1038/nrmicro821
    30 sg:pub.10.1038/srep16043
    31 sg:pub.10.1038/srep25063
    32 sg:pub.10.1186/s40169-015-0050-9
    33 sg:pub.10.1186/s40824-016-0064-4
    34 schema:datePublished 2017-09-25
    35 schema:datePublishedReg 2017-09-25
    36 schema:description Key PointsBiofilms harbour complex structural and biological attributes, such as the presence of an extracellular polymeric matrix, physical and chemical heterogeneity and drug tolerance, which provide remarkable therapeutic challenges.Biofilm drug tolerance is a consequence of complex physicochemical and biological properties with multiple microbial genetic and molecular factors, often involving polymicrobial interactions.The challenges to existing antimicrobial or monotherapeutic approaches by the multifactorial nature of biofilm development, combined with drug tolerance, requires robust effective multitargeted or combinatorial therapies.Combinatorial strategies are needed to eliminate existing biofilms by targeting vital structural and functional traits of biofilms, such as the EPS matrix and dormant cells, as well as approaches exploiting host–pathogen interactions.Promising technologies based on 'smart release' or 'on-demand activation' of bioactive agents when triggered by biofilm-derived cues can degrade the matrix and kill resident bacteria, and have the potential to eradicate the pathogenic niche with precision and minimal cytotoxicity to surrounding tissues.Validation of proof-of-concept studies using clinically relevant animal models, as well as clinical trials, are needed for rigorous evaluation.
    37 schema:genre article
    38 schema:inLanguage en
    39 schema:isAccessibleForFree true
    40 schema:isPartOf N02ba0f0f884c463e87e956a8d0e2203d
    41 Ncb459a94d3464666b8de7f832ed985bf
    42 sg:journal.1032854
    43 schema:keywords EPS matrix
    44 Key PointsBiofilms
    45 activation
    46 agents
    47 animal models
    48 approach
    49 attributes
    50 bacteria
    51 bioactive agents
    52 biofilm development
    53 biofilm drug tolerance
    54 biofilms
    55 biological attributes
    56 biological properties
    57 cells
    58 challenges
    59 chemical heterogeneity
    60 clinical trials
    61 combinatorial strategies
    62 combinatorial therapy
    63 concept study
    64 consequences
    65 cues
    66 cytotoxicity
    67 demand activation
    68 development
    69 dormant cells
    70 drug tolerance
    71 evaluation
    72 extracellular polymeric matrix
    73 factors
    74 functional traits
    75 heterogeneity
    76 host-pathogen interactions
    77 interaction
    78 matrix
    79 microbial biofilms
    80 minimal cytotoxicity
    81 model
    82 molecular factors
    83 monotherapeutic approaches
    84 multifactorial nature
    85 nature
    86 niche
    87 pathogenic niche
    88 polymeric matrix
    89 polymicrobial interactions
    90 potential
    91 precision
    92 presence
    93 promising technology
    94 proof
    95 properties
    96 prospective therapeutic strategy
    97 release
    98 relevant animal models
    99 resident bacteria
    100 rigorous evaluation
    101 smart release
    102 strategies
    103 study
    104 technology
    105 therapeutic challenge
    106 therapeutic strategies
    107 therapy
    108 tissue
    109 tolerance
    110 traits
    111 trials
    112 validation
    113 validation of proofs
    114 schema:name Targeting microbial biofilms: current and prospective therapeutic strategies
    115 schema:pagination 740-755
    116 schema:productId Nba6378a521d34e8ca98cec037fafc92d
    117 Nd8d361c4ea2048c7a100bd321fe733c9
    118 Neb1a9fd1f6c24c9984ac203e2104eae9
    119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091911684
    120 https://doi.org/10.1038/nrmicro.2017.99
    121 schema:sdDatePublished 2022-05-20T07:33
    122 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    123 schema:sdPublisher N305b1b42094f4e75b3a787ce8bbb2c74
    124 schema:url https://doi.org/10.1038/nrmicro.2017.99
    125 sgo:license sg:explorer/license/
    126 sgo:sdDataset articles
    127 rdf:type schema:ScholarlyArticle
    128 N02ba0f0f884c463e87e956a8d0e2203d schema:issueNumber 12
    129 rdf:type schema:PublicationIssue
    130 N247b63296c10402990300abc42a05e6c rdf:first sg:person.0613556304.41
    131 rdf:rest N511396e0aa7548a2ad5d1156230b5c03
    132 N2fa71e3e6b634a4a825840db6aef4a6f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    133 schema:name Bacterial Physiological Phenomena
    134 rdf:type schema:DefinedTerm
    135 N305b1b42094f4e75b3a787ce8bbb2c74 schema:name Springer Nature - SN SciGraph project
    136 rdf:type schema:Organization
    137 N3be85443076549bf8463d120878a8aff rdf:first sg:person.01316722264.07
    138 rdf:rest N922ddf34beb5436fb70cfaf259f2d96a
    139 N3d8e59b138074c509730c5f52b7eb82a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    140 schema:name Drug Resistance, Bacterial
    141 rdf:type schema:DefinedTerm
    142 N511396e0aa7548a2ad5d1156230b5c03 rdf:first sg:person.01071733672.00
    143 rdf:rest N3be85443076549bf8463d120878a8aff
    144 N810cf048ff3e465e83308b70affcd77f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    145 schema:name Biofilms
    146 rdf:type schema:DefinedTerm
    147 N922ddf34beb5436fb70cfaf259f2d96a rdf:first sg:person.0607041661.06
    148 rdf:rest rdf:nil
    149 N946cb7b772dd43649352f58cec8e1579 rdf:first sg:person.0763273530.89
    150 rdf:rest N247b63296c10402990300abc42a05e6c
    151 N9d08be50ea534e77b2a6f49d9fcc67cb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    152 schema:name Bacteria
    153 rdf:type schema:DefinedTerm
    154 Nba6378a521d34e8ca98cec037fafc92d schema:name pubmed_id
    155 schema:value 28944770
    156 rdf:type schema:PropertyValue
    157 Ncb459a94d3464666b8de7f832ed985bf schema:volumeNumber 15
    158 rdf:type schema:PublicationVolume
    159 Nd8d361c4ea2048c7a100bd321fe733c9 schema:name dimensions_id
    160 schema:value pub.1091911684
    161 rdf:type schema:PropertyValue
    162 Ndac1841a170c45e39eb384ea043e56f5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    163 schema:name Anti-Bacterial Agents
    164 rdf:type schema:DefinedTerm
    165 Neb1a9fd1f6c24c9984ac203e2104eae9 schema:name doi
    166 schema:value 10.1038/nrmicro.2017.99
    167 rdf:type schema:PropertyValue
    168 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    169 schema:name Biological Sciences
    170 rdf:type schema:DefinedTerm
    171 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
    172 schema:name Microbiology
    173 rdf:type schema:DefinedTerm
    174 sg:grant.2491172 http://pending.schema.org/fundedItem sg:pub.10.1038/nrmicro.2017.99
    175 rdf:type schema:MonetaryGrant
    176 sg:grant.2787211 http://pending.schema.org/fundedItem sg:pub.10.1038/nrmicro.2017.99
    177 rdf:type schema:MonetaryGrant
    178 sg:grant.4102178 http://pending.schema.org/fundedItem sg:pub.10.1038/nrmicro.2017.99
    179 rdf:type schema:MonetaryGrant
    180 sg:grant.6500481 http://pending.schema.org/fundedItem sg:pub.10.1038/nrmicro.2017.99
    181 rdf:type schema:MonetaryGrant
    182 sg:grant.7083392 http://pending.schema.org/fundedItem sg:pub.10.1038/nrmicro.2017.99
    183 rdf:type schema:MonetaryGrant
    184 sg:journal.1032854 schema:issn 1740-1526
    185 1740-1534
    186 schema:name Nature Reviews Microbiology
    187 schema:publisher Springer Nature
    188 rdf:type schema:Periodical
    189 sg:person.01071733672.00 schema:affiliation grid-institutes:grid.430506.4
    190 schema:familyName Howlin
    191 schema:givenName Robert P.
    192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01071733672.00
    193 rdf:type schema:Person
    194 sg:person.01316722264.07 schema:affiliation grid-institutes:grid.5491.9
    195 schema:familyName Stoodley
    196 schema:givenName Paul
    197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316722264.07
    198 rdf:type schema:Person
    199 sg:person.0607041661.06 schema:affiliation grid-institutes:grid.261331.4
    200 schema:familyName Hall-Stoodley
    201 schema:givenName Luanne
    202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607041661.06
    203 rdf:type schema:Person
    204 sg:person.0613556304.41 schema:affiliation grid-institutes:grid.430506.4
    205 schema:familyName Allan
    206 schema:givenName Raymond N.
    207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0613556304.41
    208 rdf:type schema:Person
    209 sg:person.0763273530.89 schema:affiliation grid-institutes:grid.25879.31
    210 schema:familyName Koo
    211 schema:givenName Hyun
    212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763273530.89
    213 rdf:type schema:Person
    214 sg:pub.10.1007/978-1-4939-0467-9_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014030572
    215 https://doi.org/10.1007/978-1-4939-0467-9_14
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1007/978-3-319-09782-4_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011499771
    218 https://doi.org/10.1007/978-3-319-09782-4_1
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1007/s15010-016-0879-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1011716496
    221 https://doi.org/10.1007/s15010-016-0879-x
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1038/emm.2016.44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001290174
    224 https://doi.org/10.1038/emm.2016.44
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1038/mi.2011.27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039149822
    227 https://doi.org/10.1038/mi.2011.27
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1038/nature09074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030799512
    230 https://doi.org/10.1038/nature09074
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1038/nature10429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012079432
    233 https://doi.org/10.1038/nature10429
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1038/nature12790 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018195007
    236 https://doi.org/10.1038/nature12790
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1038/nature22972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086024118
    239 https://doi.org/10.1038/nature22972
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1038/nchembio.242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040156662
    242 https://doi.org/10.1038/nchembio.242
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1038/nmicrobiol.2016.162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039494406
    245 https://doi.org/10.1038/nmicrobiol.2016.162
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1038/nrc2394 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020214087
    248 https://doi.org/10.1038/nrc2394
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1038/nrmicro.2015.8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008187952
    251 https://doi.org/10.1038/nrmicro.2015.8
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1038/nrmicro.2016.34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015496667
    254 https://doi.org/10.1038/nrmicro.2016.34
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1038/nrmicro.2016.89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039509723
    257 https://doi.org/10.1038/nrmicro.2016.89
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1038/nrmicro.2016.94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021095240
    260 https://doi.org/10.1038/nrmicro.2016.94
    261 rdf:type schema:CreativeWork
    262 sg:pub.10.1038/nrmicro2415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006291616
    263 https://doi.org/10.1038/nrmicro2415
    264 rdf:type schema:CreativeWork
    265 sg:pub.10.1038/nrmicro2695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049344936
    266 https://doi.org/10.1038/nrmicro2695
    267 rdf:type schema:CreativeWork
    268 sg:pub.10.1038/nrmicro3028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050020783
    269 https://doi.org/10.1038/nrmicro3028
    270 rdf:type schema:CreativeWork
    271 sg:pub.10.1038/nrmicro3433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050230101
    272 https://doi.org/10.1038/nrmicro3433
    273 rdf:type schema:CreativeWork
    274 sg:pub.10.1038/nrmicro821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039651347
    275 https://doi.org/10.1038/nrmicro821
    276 rdf:type schema:CreativeWork
    277 sg:pub.10.1038/srep16043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043428661
    278 https://doi.org/10.1038/srep16043
    279 rdf:type schema:CreativeWork
    280 sg:pub.10.1038/srep25063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025404478
    281 https://doi.org/10.1038/srep25063
    282 rdf:type schema:CreativeWork
    283 sg:pub.10.1186/s40169-015-0050-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038057703
    284 https://doi.org/10.1186/s40169-015-0050-9
    285 rdf:type schema:CreativeWork
    286 sg:pub.10.1186/s40824-016-0064-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053545602
    287 https://doi.org/10.1186/s40824-016-0064-4
    288 rdf:type schema:CreativeWork
    289 grid-institutes:grid.25879.31 schema:alternateName Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, Biofilm Research Laboratories, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, 19104-6030, Pennsylvania, USA
    290 schema:name Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, Biofilm Research Laboratories, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, 19104-6030, Pennsylvania, USA
    291 rdf:type schema:Organization
    292 grid-institutes:grid.261331.4 schema:alternateName Department of Microbial Infection and Immunity, Centre for Microbial Interface Biology, The Ohio State University, 43210, Columbus, Ohio, USA
    293 schema:name Department of Microbial Infection and Immunity, Centre for Microbial Interface Biology, The Ohio State University, 43210, Columbus, Ohio, USA
    294 Southampton NIHR Respiratory Biomedical Research Unit, University Hospital Southampton NHS Foundation Trust, SO16 6YD, Southampton, UK
    295 rdf:type schema:Organization
    296 grid-institutes:grid.430506.4 schema:alternateName Southampton NIHR Respiratory Biomedical Research Unit, University Hospital Southampton NHS Foundation Trust, SO16 6YD, Southampton, UK
    297 Southampton NIHR Wellcome Trust Clinical Research Facility, University Hospital Southampton NHS Foundation Trust, SO16 6YD, Southampton, UK
    298 schema:name Centre for Biological Sciences, University of Southampton, SO17 1BJ, Southampton, UK
    299 Clinical and Experimental Sciences, Faculty of Medicine and Institute for Life Sciences, University of Southampton, SO17 1BJ, Southampton, UK
    300 Southampton NIHR Respiratory Biomedical Research Unit, University Hospital Southampton NHS Foundation Trust, SO16 6YD, Southampton, UK
    301 Southampton NIHR Wellcome Trust Clinical Research Facility, University Hospital Southampton NHS Foundation Trust, SO16 6YD, Southampton, UK
    302 rdf:type schema:Organization
    303 grid-institutes:grid.5491.9 schema:alternateName National Centre for Advanced Tribology at Southampton (nCATS), Faculty of Engineering and the Environment, University of Southampton, SO17 1BJ, UK
    304 schema:name Department of Microbial Infection and Immunity, Centre for Microbial Interface Biology, The Ohio State University, 43210, Columbus, Ohio, USA
    305 Departments of Orthopaedics and Microbiology, The Ohio State University, 43210, Columbus, Ohio, USA
    306 National Centre for Advanced Tribology at Southampton (nCATS), Faculty of Engineering and the Environment, University of Southampton, SO17 1BJ, UK
    307 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...