Specificity and nonspecificity in RNA–protein interactions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-08-19

AUTHORS

Eckhard Jankowsky, Michael E. Harris

ABSTRACT

Key PointsMammalian cells encode tens of thousands of RNA species and more than 1,000 proteins that interact with them. Many of these proteins can bind to multiple RNAs, and any given RNA can interact with many proteins, giving rise to highly complex networks of cellular RNA–protein interactions.New approaches based on high-throughput sequencing technologies have been developed to quantitatively measure the interaction of proteins simultaneously with large numbers of RNAs.These approaches have revealed that specificity in RNA–protein interactions represents a continuum from low-affinity to high-affinity RNA substrate variants. This continuum is quantitatively described by affinity distributions and comprehensive binding models.Affinity distributions for RNA-binding proteins (RBPs) that are considered specific RNA binders do not differ fundamentally from affinity distributions for nonspecific RBPs, indicating that even the latter have inherent binding specificity. However, physiological targets of specific proteins fall into the high-affinity range of the affinity distribution, whereas physiological targets of nonspecific proteins do not.The biological specificity of RBPs is affected by RNA structure, other proteins, RNA and protein concentrations, and the kinetics of reactions that precede or follow the RNA–protein binding steps.Mechanisms have evolved to amplify or compensate for inherent specificities of RNA-binding domains. These include changes in the size of the RNA-binding site of proteins, the combination of multiple RNA-binding domains in a single RBP and the coordinated binding of multiple RBPs. More... »

PAGES

533-544

References to SciGraph publications

  • 2011-06-26. Direct measurement of DNA affinity landscapes on a high-throughput sequencing instrument in NATURE BIOTECHNOLOGY
  • 2005-08-02. Building specificity with nonspecific RNA-binding proteins in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 2014-09-05. Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells in NATURE
  • 2008-05-29. A practical guide to single-molecule FRET in NATURE METHODS
  • 2014-01-29. Landscape and variation of RNA secondary structure across the human transcriptome in NATURE
  • 2013-11-24. In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features in NATURE
  • 2013-10-09. DNMT1-interacting RNAs block gene specific DNA methylation in NATURE
  • 2014-10-01. The structure, function and evolution of proteins that bind DNA and RNA in NATURE REVIEWS MOLECULAR CELL BIOLOGY
  • 2013-03-12. How cells get the message: dynamic assembly and function of mRNA–protein complexes in NATURE REVIEWS GENETICS
  • 1999-09. Structure of the trp RNA-binding attenuation protein, TRAP, bound to RNA in NATURE
  • 2014-01-27. Methods for comprehensive experimental identification of RNA-protein interactions in GENOME BIOLOGY
  • 2013-11-28. Single-cell genomics reveal low recombination frequencies in freshwater bacteria of the SAR11 clade in GENOME BIOLOGY
  • 2012-04-29. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq in NATURE
  • 2014-09-07. Structural basis for the assembly of the Sxl–Unr translation regulatory complex in NATURE
  • 2014-01-15. The multilayered complexity of ceRNA crosstalk and competition in NATURE
  • 2014-06-29. A protein-RNA specificity code enables targeted activation of an endogenous human transcript in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 2004-02. The enzymes and control of eukaryotic mRNA turnover in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 2012-12-09. Global Analysis of Yeast mRNPs in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 2011-06-07. Quantitative analysis demonstrates most transcription factors require only simple models of specificity in NATURE BIOTECHNOLOGY
  • 2012-06-05. A mechanistic overview of translation initiation in eukaryotes in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 2013-09-22. Hidden specificity in an apparently non-specific RNA-binding protein in NATURE
  • 2007-06. RNA-binding proteins: modular design for efficient function in NATURE REVIEWS MOLECULAR CELL BIOLOGY
  • 2010-07-04. iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 2012-08-24. RNA recognition by double-stranded RNA binding domains: a matter of shape and sequence in CELLULAR AND MOLECULAR LIFE SCIENCES
  • 2014-04-13. Quantitative analysis of RNA-protein interactions on a massively parallel array for mapping biophysical and evolutionary landscapes in NATURE BIOTECHNOLOGY
  • 2013-07-10. A compendium of RNA-binding motifs for decoding gene regulation in NATURE
  • 2014-04-29. Protein-specific prediction of mRNA binding using RNA sequences, binding motifs and predicted secondary structures in BMC BIOINFORMATICS
  • 2007-07-31. Translation matters: protein synthesis defects in inherited disease in NATURE REVIEWS GENETICS
  • 2011. Construction, Structure and Dynamics of Post-Transcriptional Regulatory Network Directed by RNA-Binding Proteins in RNA INFRASTRUCTURE AND NETWORKS
  • 2010-01. RNA processing and its regulation: global insights into biological networks in NATURE REVIEWS GENETICS
  • 2014-01-22. GraphProt: modeling binding preferences of RNA-binding proteins in GENOME BIOLOGY
  • 2013-08-23. Learning the language of post-transcriptional gene regulation in GENOME BIOLOGY
  • 2014-05-08. Comprehensive Analysis of RNA-Protein Interactions by High Throughput Sequencing-RNA Affinity Profiling in NATURE METHODS
  • 2010-09-28. Determining the specificity of protein–DNA interactions in NATURE REVIEWS GENETICS
  • 2013-12-15. Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo in NATURE
  • 2013-11-17. Crystal structures of the Lsm complex bound to the 3′ end sequence of U6 small nuclear RNA in NATURE
  • 2013-04-02. Modeling the specificity of protein-DNA interactions in QUANTITATIVE BIOLOGY
  • 2012-01. Engineering RNA Endonucleases with Customized Sequence Specificities in NATURE COMMUNICATIONS
  • 2009-06-28. Rapid and systematic analysis of the RNA recognition specificities of RNA-binding proteins in NATURE BIOTECHNOLOGY
  • 2014-11-04. A census of human RNA-binding proteins in NATURE REVIEWS GENETICS
  • 2014-07-06. Structure of an Rrp6-RNA exosome complex bound to polyA RNA in NATURE
  • 2008-11-02. HITS-CLIP yields genome-wide insights into brain alternative RNA processing in NATURE
  • 2010-01-27. Expansion of the eukaryotic proteome by alternative splicing in NATURE
  • 2011-10-28. Characterizing RNA dynamics at atomic resolution using solution-state NMR spectroscopy in NATURE METHODS
  • 2014-02-20. A survey of motif finding Web tools for detecting binding site motifs in ChIP-Seq data in BIOLOGY DIRECT
  • 2012-01-18. Protein–RNA interactions: new genomic technologies and perspectives in NATURE REVIEWS GENETICS
  • 2013-03-24. Regulation of splicing by SR proteins and SR protein-specific kinases in CHROMOSOMA
  • 2014-08-13. Evolutionary Conservation and Expression of Human RNA-Binding Proteins and Their Role in Human Genetic Disease in SYSTEMS BIOLOGY OF RNA BINDING PROTEINS
  • 2014-05-18. Core structure of the U6 snRNP at 1.7 Å resolution in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nrm4032

    DOI

    http://dx.doi.org/10.1038/nrm4032

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1044475251

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/26285679


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Base Sequence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Kinetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Molecular", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nucleic Acid Conformation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Protein Binding", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Protein Conformation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "RNA", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "RNA-Binding Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Thermodynamics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Physics, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, 44106, Cleveland, Ohio, USA", 
              "id": "http://www.grid.ac/institutes/grid.67105.35", 
              "name": [
                "Center for RNA Molecular Biology, Case Western Reserve University, 10900 Euclid Avenue, 44106, Cleveland, Ohio, USA", 
                "Department of Biochemistry, Case Western Reserve University, 10900 Euclid Avenue, 44106, Cleveland, Ohio, USA", 
                "Department of Physics, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, 44106, Cleveland, Ohio, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jankowsky", 
            "givenName": "Eckhard", 
            "id": "sg:person.01367224716.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367224716.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biochemistry, Case Western Reserve University, 10900 Euclid Avenue, 44106, Cleveland, Ohio, USA", 
              "id": "http://www.grid.ac/institutes/grid.67105.35", 
              "name": [
                "Department of Biochemistry, Case Western Reserve University, 10900 Euclid Avenue, 44106, Cleveland, Ohio, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Harris", 
            "givenName": "Michael E.", 
            "id": "sg:person.01244764110.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244764110.16"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nrm2178", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039155948", 
              "https://doi.org/10.1038/nrm2178"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12986", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025529308", 
              "https://doi.org/10.1038/nature12986"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4614-0332-6_7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029956614", 
              "https://doi.org/10.1007/978-1-4614-0332-6_7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12543", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028183238", 
              "https://doi.org/10.1038/nature12543"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1745-6150-9-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038515664", 
              "https://doi.org/10.1186/1745-6150-9-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2013-14-11-r130", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005888147", 
              "https://doi.org/10.1186/gb-2013-14-11-r130"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg3813", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010713434", 
              "https://doi.org/10.1038/nrg3813"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07488", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010813801", 
              "https://doi.org/10.1038/nature07488"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.1882", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024723783", 
              "https://doi.org/10.1038/nbt.1882"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2014-15-1-r17", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031344865", 
              "https://doi.org/10.1186/gb-2014-15-1-r17"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2845", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000885038", 
              "https://doi.org/10.1038/nrg2845"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12946", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015445930", 
              "https://doi.org/10.1038/nature12946"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb4152", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001534471", 
              "https://doi.org/10.1186/gb4152"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms2154", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029030941", 
              "https://doi.org/10.1038/ncomms2154"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nsmb.2303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018565479", 
              "https://doi.org/10.1038/nsmb.2303"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg3434", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021256737", 
              "https://doi.org/10.1038/nrg3434"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.1550", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016306836", 
              "https://doi.org/10.1038/nbt.1550"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrm3884", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038327941", 
              "https://doi.org/10.1038/nrm3884"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nsmb.2847", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017425945", 
              "https://doi.org/10.1038/nsmb.2847"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2970", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030378404", 
              "https://doi.org/10.1038/nmeth.2970"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature13693", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020103662", 
              "https://doi.org/10.1038/nature13693"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature13406", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009936440", 
              "https://doi.org/10.1038/nature13406"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature13802", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025486054", 
              "https://doi.org/10.1038/nature13802"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2013-14-8-130", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1078780499", 
              "https://doi.org/10.1186/gb-2013-14-8-130"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2673", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011271761", 
              "https://doi.org/10.1038/nrg2673"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00018-012-1119-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033308354", 
              "https://doi.org/10.1007/s00018-012-1119-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nsmb.2832", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001881112", 
              "https://doi.org/10.1038/nsmb.2832"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40484-013-0012-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007297212", 
              "https://doi.org/10.1007/s40484-013-0012-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040794705", 
              "https://doi.org/10.1038/nature11112"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4939-1221-6_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041100260", 
              "https://doi.org/10.1007/978-1-4939-1221-6_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.1893", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009372658", 
              "https://doi.org/10.1038/nbt.1893"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12756", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023750524", 
              "https://doi.org/10.1038/nature12756"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1735", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042047490", 
              "https://doi.org/10.1038/nmeth.1735"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08909", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051543253", 
              "https://doi.org/10.1038/nature08909"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00412-013-0407-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046268653", 
              "https://doi.org/10.1007/s00412-013-0407-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nsmb724", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000531480", 
              "https://doi.org/10.1038/nsmb724"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg3141", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006905298", 
              "https://doi.org/10.1038/nrg3141"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nsmb961", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005488911", 
              "https://doi.org/10.1038/nsmb961"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2880", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031761158", 
              "https://doi.org/10.1038/nbt.2880"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2142", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003445704", 
              "https://doi.org/10.1038/nrg2142"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12894", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031549764", 
              "https://doi.org/10.1038/nature12894"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nsmb.1838", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009634080", 
              "https://doi.org/10.1038/nsmb.1838"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-15-123", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007162385", 
              "https://doi.org/10.1186/1471-2105-15-123"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1208", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016660697", 
              "https://doi.org/10.1038/nmeth.1208"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/45730", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030574098", 
              "https://doi.org/10.1038/45730"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nsmb.2468", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012905495", 
              "https://doi.org/10.1038/nsmb.2468"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12311", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035545506", 
              "https://doi.org/10.1038/nature12311"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12598", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038595944", 
              "https://doi.org/10.1038/nature12598"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12803", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051135580", 
              "https://doi.org/10.1038/nature12803"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-08-19", 
        "datePublishedReg": "2015-08-19", 
        "description": "Key PointsMammalian cells encode tens of thousands of RNA species and more than 1,000 proteins that interact with them. Many of these proteins can bind to multiple RNAs, and any given RNA can interact with many proteins, giving rise to highly complex networks of cellular RNA\u2013protein interactions.New approaches based on high-throughput sequencing technologies have been developed to quantitatively measure the interaction of proteins simultaneously with large numbers of RNAs.These approaches have revealed that specificity in RNA\u2013protein interactions represents a continuum from low-affinity to high-affinity RNA substrate variants. This continuum is quantitatively described by affinity distributions and comprehensive binding models.Affinity distributions for RNA-binding proteins (RBPs) that are considered specific RNA binders do not differ fundamentally from affinity distributions for nonspecific RBPs, indicating that even the latter have inherent binding specificity. However, physiological targets of specific proteins fall into the high-affinity range of the affinity distribution, whereas physiological targets of nonspecific proteins do not.The biological specificity of RBPs is affected by RNA structure, other proteins, RNA and protein concentrations, and the kinetics of reactions that precede or follow the RNA\u2013protein binding steps.Mechanisms have evolved to amplify or compensate for inherent specificities of RNA-binding domains. These include changes in the size of the RNA-binding site of proteins, the combination of multiple RNA-binding domains in a single RBP and the coordinated binding of multiple RBPs.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/nrm4032", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.5053649", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2515529", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2521073", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1023609", 
            "issn": [
              "1471-0072", 
              "1471-0080"
            ], 
            "name": "Nature Reviews Molecular Cell Biology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "9", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "16"
          }
        ], 
        "keywords": [
          "RNA-protein interactions", 
          "cellular RNA-protein interactions", 
          "physiological targets", 
          "multiple RNA-binding domains", 
          "high-throughput sequencing technology", 
          "RNA-binding domain", 
          "inherent binding specificity", 
          "interaction of proteins", 
          "multiple RBPs", 
          "sites of proteins", 
          "RNA species", 
          "coordinated binding", 
          "multiple RNAs", 
          "substrate variants", 
          "high-affinity range", 
          "single RBP", 
          "sequencing technologies", 
          "RNA structure", 
          "specific proteins", 
          "RNA binders", 
          "binding specificity", 
          "RBP", 
          "RNA", 
          "biological specificity", 
          "protein", 
          "binding step", 
          "nonspecific proteins", 
          "inherent specificity", 
          "protein concentration", 
          "complex networks", 
          "specificity", 
          "domain", 
          "species", 
          "tens of thousands", 
          "interaction", 
          "target", 
          "binding", 
          "large number", 
          "cells", 
          "variants", 
          "sites", 
          "mechanism", 
          "distribution", 
          "thousands", 
          "structure", 
          "changes", 
          "step", 
          "number", 
          "size", 
          "combination", 
          "concentration", 
          "kinetics", 
          "approach", 
          "affinity distribution", 
          "rise", 
          "range", 
          "continuum", 
          "new approach", 
          "tens", 
          "network", 
          "reaction", 
          "nonspecificity", 
          "binding model", 
          "model", 
          "technology", 
          "binder", 
          "kinetics of reactions", 
          "Key PointsMammalian cells", 
          "PointsMammalian cells", 
          "high-affinity RNA substrate variants", 
          "RNA substrate variants", 
          "comprehensive binding models", 
          "specific RNA binders", 
          "nonspecific RBPs", 
          "RNA\u2013protein binding steps"
        ], 
        "name": "Specificity and nonspecificity in RNA\u2013protein interactions", 
        "pagination": "533-544", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1044475251"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nrm4032"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "26285679"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nrm4032", 
          "https://app.dimensions.ai/details/publication/pub.1044475251"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:39", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_682.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/nrm4032"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nrm4032'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nrm4032'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nrm4032'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nrm4032'


     

    This table displays all metadata directly associated to this object as RDF triples.

    393 TRIPLES      22 PREDICATES      161 URIs      104 LITERALS      18 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nrm4032 schema:about N154878b06bc04e528c131ce80478564d
    2 N4ddf7b3da3a3433286ad7b12d92c6ec2
    3 N743c8115feb3427390b79b73b0753db9
    4 N87dc9b4cc34e4089a819fc18d9b1a740
    5 N87fec78973144f8597b9c49be66114e8
    6 N8ea1c1e21bfa401688d22efa7e8d082c
    7 Nbfaf0c1661b54e7c8fa40b784e30efa1
    8 Nbff4a5705a614099b8a40e3f4af0d8de
    9 Nc1b7660210b24573a2883890d7f9314c
    10 Ne886adf770bf4c398ebedc48cc524e87
    11 Nf598c4623e154fac94262a2209aea3dd
    12 anzsrc-for:06
    13 anzsrc-for:0601
    14 schema:author N4d55717390824ea3a064e40e050b1838
    15 schema:citation sg:pub.10.1007/978-1-4614-0332-6_7
    16 sg:pub.10.1007/978-1-4939-1221-6_1
    17 sg:pub.10.1007/s00018-012-1119-x
    18 sg:pub.10.1007/s00412-013-0407-z
    19 sg:pub.10.1007/s40484-013-0012-4
    20 sg:pub.10.1038/45730
    21 sg:pub.10.1038/nature07488
    22 sg:pub.10.1038/nature08909
    23 sg:pub.10.1038/nature11112
    24 sg:pub.10.1038/nature12311
    25 sg:pub.10.1038/nature12543
    26 sg:pub.10.1038/nature12598
    27 sg:pub.10.1038/nature12756
    28 sg:pub.10.1038/nature12803
    29 sg:pub.10.1038/nature12894
    30 sg:pub.10.1038/nature12946
    31 sg:pub.10.1038/nature12986
    32 sg:pub.10.1038/nature13406
    33 sg:pub.10.1038/nature13693
    34 sg:pub.10.1038/nature13802
    35 sg:pub.10.1038/nbt.1550
    36 sg:pub.10.1038/nbt.1882
    37 sg:pub.10.1038/nbt.1893
    38 sg:pub.10.1038/nbt.2880
    39 sg:pub.10.1038/ncomms2154
    40 sg:pub.10.1038/nmeth.1208
    41 sg:pub.10.1038/nmeth.1735
    42 sg:pub.10.1038/nmeth.2970
    43 sg:pub.10.1038/nrg2142
    44 sg:pub.10.1038/nrg2673
    45 sg:pub.10.1038/nrg2845
    46 sg:pub.10.1038/nrg3141
    47 sg:pub.10.1038/nrg3434
    48 sg:pub.10.1038/nrg3813
    49 sg:pub.10.1038/nrm2178
    50 sg:pub.10.1038/nrm3884
    51 sg:pub.10.1038/nsmb.1838
    52 sg:pub.10.1038/nsmb.2303
    53 sg:pub.10.1038/nsmb.2468
    54 sg:pub.10.1038/nsmb.2832
    55 sg:pub.10.1038/nsmb.2847
    56 sg:pub.10.1038/nsmb724
    57 sg:pub.10.1038/nsmb961
    58 sg:pub.10.1186/1471-2105-15-123
    59 sg:pub.10.1186/1745-6150-9-4
    60 sg:pub.10.1186/gb-2013-14-11-r130
    61 sg:pub.10.1186/gb-2013-14-8-130
    62 sg:pub.10.1186/gb-2014-15-1-r17
    63 sg:pub.10.1186/gb4152
    64 schema:datePublished 2015-08-19
    65 schema:datePublishedReg 2015-08-19
    66 schema:description Key PointsMammalian cells encode tens of thousands of RNA species and more than 1,000 proteins that interact with them. Many of these proteins can bind to multiple RNAs, and any given RNA can interact with many proteins, giving rise to highly complex networks of cellular RNA–protein interactions.New approaches based on high-throughput sequencing technologies have been developed to quantitatively measure the interaction of proteins simultaneously with large numbers of RNAs.These approaches have revealed that specificity in RNA–protein interactions represents a continuum from low-affinity to high-affinity RNA substrate variants. This continuum is quantitatively described by affinity distributions and comprehensive binding models.Affinity distributions for RNA-binding proteins (RBPs) that are considered specific RNA binders do not differ fundamentally from affinity distributions for nonspecific RBPs, indicating that even the latter have inherent binding specificity. However, physiological targets of specific proteins fall into the high-affinity range of the affinity distribution, whereas physiological targets of nonspecific proteins do not.The biological specificity of RBPs is affected by RNA structure, other proteins, RNA and protein concentrations, and the kinetics of reactions that precede or follow the RNA–protein binding steps.Mechanisms have evolved to amplify or compensate for inherent specificities of RNA-binding domains. These include changes in the size of the RNA-binding site of proteins, the combination of multiple RNA-binding domains in a single RBP and the coordinated binding of multiple RBPs.
    67 schema:genre article
    68 schema:inLanguage en
    69 schema:isAccessibleForFree true
    70 schema:isPartOf N962c68e7c6e1440f810d35d379855f39
    71 Naebd3d34f73f4fee872d733bc7dde8b0
    72 sg:journal.1023609
    73 schema:keywords Key PointsMammalian cells
    74 PointsMammalian cells
    75 RBP
    76 RNA
    77 RNA binders
    78 RNA species
    79 RNA structure
    80 RNA substrate variants
    81 RNA-binding domain
    82 RNA-protein interactions
    83 RNA–protein binding steps
    84 affinity distribution
    85 approach
    86 binder
    87 binding
    88 binding model
    89 binding specificity
    90 binding step
    91 biological specificity
    92 cells
    93 cellular RNA-protein interactions
    94 changes
    95 combination
    96 complex networks
    97 comprehensive binding models
    98 concentration
    99 continuum
    100 coordinated binding
    101 distribution
    102 domain
    103 high-affinity RNA substrate variants
    104 high-affinity range
    105 high-throughput sequencing technology
    106 inherent binding specificity
    107 inherent specificity
    108 interaction
    109 interaction of proteins
    110 kinetics
    111 kinetics of reactions
    112 large number
    113 mechanism
    114 model
    115 multiple RBPs
    116 multiple RNA-binding domains
    117 multiple RNAs
    118 network
    119 new approach
    120 nonspecific RBPs
    121 nonspecific proteins
    122 nonspecificity
    123 number
    124 physiological targets
    125 protein
    126 protein concentration
    127 range
    128 reaction
    129 rise
    130 sequencing technologies
    131 single RBP
    132 sites
    133 sites of proteins
    134 size
    135 species
    136 specific RNA binders
    137 specific proteins
    138 specificity
    139 step
    140 structure
    141 substrate variants
    142 target
    143 technology
    144 tens
    145 tens of thousands
    146 thousands
    147 variants
    148 schema:name Specificity and nonspecificity in RNA–protein interactions
    149 schema:pagination 533-544
    150 schema:productId Nd1b514b74add4f68823d807972932557
    151 Nd3b1bba4dd534aaba97e6fbaec172dae
    152 Nd58988b4d0814cbc95adc393e7d127e8
    153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044475251
    154 https://doi.org/10.1038/nrm4032
    155 schema:sdDatePublished 2022-01-01T18:39
    156 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    157 schema:sdPublisher N770b63b9b54f486198356c773548525d
    158 schema:url https://doi.org/10.1038/nrm4032
    159 sgo:license sg:explorer/license/
    160 sgo:sdDataset articles
    161 rdf:type schema:ScholarlyArticle
    162 N154878b06bc04e528c131ce80478564d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    163 schema:name Thermodynamics
    164 rdf:type schema:DefinedTerm
    165 N4d55717390824ea3a064e40e050b1838 rdf:first sg:person.01367224716.02
    166 rdf:rest Nc4f297095b044cdcaefbf0a12a272821
    167 N4ddf7b3da3a3433286ad7b12d92c6ec2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    168 schema:name Models, Molecular
    169 rdf:type schema:DefinedTerm
    170 N743c8115feb3427390b79b73b0753db9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    171 schema:name Humans
    172 rdf:type schema:DefinedTerm
    173 N770b63b9b54f486198356c773548525d schema:name Springer Nature - SN SciGraph project
    174 rdf:type schema:Organization
    175 N87dc9b4cc34e4089a819fc18d9b1a740 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    176 schema:name Animals
    177 rdf:type schema:DefinedTerm
    178 N87fec78973144f8597b9c49be66114e8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    179 schema:name Kinetics
    180 rdf:type schema:DefinedTerm
    181 N8ea1c1e21bfa401688d22efa7e8d082c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    182 schema:name Base Sequence
    183 rdf:type schema:DefinedTerm
    184 N962c68e7c6e1440f810d35d379855f39 schema:volumeNumber 16
    185 rdf:type schema:PublicationVolume
    186 Naebd3d34f73f4fee872d733bc7dde8b0 schema:issueNumber 9
    187 rdf:type schema:PublicationIssue
    188 Nbfaf0c1661b54e7c8fa40b784e30efa1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    189 schema:name Nucleic Acid Conformation
    190 rdf:type schema:DefinedTerm
    191 Nbff4a5705a614099b8a40e3f4af0d8de schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    192 schema:name Protein Binding
    193 rdf:type schema:DefinedTerm
    194 Nc1b7660210b24573a2883890d7f9314c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    195 schema:name Protein Conformation
    196 rdf:type schema:DefinedTerm
    197 Nc4f297095b044cdcaefbf0a12a272821 rdf:first sg:person.01244764110.16
    198 rdf:rest rdf:nil
    199 Nd1b514b74add4f68823d807972932557 schema:name dimensions_id
    200 schema:value pub.1044475251
    201 rdf:type schema:PropertyValue
    202 Nd3b1bba4dd534aaba97e6fbaec172dae schema:name pubmed_id
    203 schema:value 26285679
    204 rdf:type schema:PropertyValue
    205 Nd58988b4d0814cbc95adc393e7d127e8 schema:name doi
    206 schema:value 10.1038/nrm4032
    207 rdf:type schema:PropertyValue
    208 Ne886adf770bf4c398ebedc48cc524e87 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    209 schema:name RNA-Binding Proteins
    210 rdf:type schema:DefinedTerm
    211 Nf598c4623e154fac94262a2209aea3dd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    212 schema:name RNA
    213 rdf:type schema:DefinedTerm
    214 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    215 schema:name Biological Sciences
    216 rdf:type schema:DefinedTerm
    217 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    218 schema:name Biochemistry and Cell Biology
    219 rdf:type schema:DefinedTerm
    220 sg:grant.2515529 http://pending.schema.org/fundedItem sg:pub.10.1038/nrm4032
    221 rdf:type schema:MonetaryGrant
    222 sg:grant.2521073 http://pending.schema.org/fundedItem sg:pub.10.1038/nrm4032
    223 rdf:type schema:MonetaryGrant
    224 sg:grant.5053649 http://pending.schema.org/fundedItem sg:pub.10.1038/nrm4032
    225 rdf:type schema:MonetaryGrant
    226 sg:journal.1023609 schema:issn 1471-0072
    227 1471-0080
    228 schema:name Nature Reviews Molecular Cell Biology
    229 schema:publisher Springer Nature
    230 rdf:type schema:Periodical
    231 sg:person.01244764110.16 schema:affiliation grid-institutes:grid.67105.35
    232 schema:familyName Harris
    233 schema:givenName Michael E.
    234 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244764110.16
    235 rdf:type schema:Person
    236 sg:person.01367224716.02 schema:affiliation grid-institutes:grid.67105.35
    237 schema:familyName Jankowsky
    238 schema:givenName Eckhard
    239 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367224716.02
    240 rdf:type schema:Person
    241 sg:pub.10.1007/978-1-4614-0332-6_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029956614
    242 https://doi.org/10.1007/978-1-4614-0332-6_7
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1007/978-1-4939-1221-6_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041100260
    245 https://doi.org/10.1007/978-1-4939-1221-6_1
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1007/s00018-012-1119-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1033308354
    248 https://doi.org/10.1007/s00018-012-1119-x
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1007/s00412-013-0407-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1046268653
    251 https://doi.org/10.1007/s00412-013-0407-z
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1007/s40484-013-0012-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007297212
    254 https://doi.org/10.1007/s40484-013-0012-4
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1038/45730 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030574098
    257 https://doi.org/10.1038/45730
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1038/nature07488 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010813801
    260 https://doi.org/10.1038/nature07488
    261 rdf:type schema:CreativeWork
    262 sg:pub.10.1038/nature08909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051543253
    263 https://doi.org/10.1038/nature08909
    264 rdf:type schema:CreativeWork
    265 sg:pub.10.1038/nature11112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040794705
    266 https://doi.org/10.1038/nature11112
    267 rdf:type schema:CreativeWork
    268 sg:pub.10.1038/nature12311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035545506
    269 https://doi.org/10.1038/nature12311
    270 rdf:type schema:CreativeWork
    271 sg:pub.10.1038/nature12543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028183238
    272 https://doi.org/10.1038/nature12543
    273 rdf:type schema:CreativeWork
    274 sg:pub.10.1038/nature12598 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038595944
    275 https://doi.org/10.1038/nature12598
    276 rdf:type schema:CreativeWork
    277 sg:pub.10.1038/nature12756 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023750524
    278 https://doi.org/10.1038/nature12756
    279 rdf:type schema:CreativeWork
    280 sg:pub.10.1038/nature12803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051135580
    281 https://doi.org/10.1038/nature12803
    282 rdf:type schema:CreativeWork
    283 sg:pub.10.1038/nature12894 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031549764
    284 https://doi.org/10.1038/nature12894
    285 rdf:type schema:CreativeWork
    286 sg:pub.10.1038/nature12946 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015445930
    287 https://doi.org/10.1038/nature12946
    288 rdf:type schema:CreativeWork
    289 sg:pub.10.1038/nature12986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025529308
    290 https://doi.org/10.1038/nature12986
    291 rdf:type schema:CreativeWork
    292 sg:pub.10.1038/nature13406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009936440
    293 https://doi.org/10.1038/nature13406
    294 rdf:type schema:CreativeWork
    295 sg:pub.10.1038/nature13693 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020103662
    296 https://doi.org/10.1038/nature13693
    297 rdf:type schema:CreativeWork
    298 sg:pub.10.1038/nature13802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025486054
    299 https://doi.org/10.1038/nature13802
    300 rdf:type schema:CreativeWork
    301 sg:pub.10.1038/nbt.1550 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016306836
    302 https://doi.org/10.1038/nbt.1550
    303 rdf:type schema:CreativeWork
    304 sg:pub.10.1038/nbt.1882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024723783
    305 https://doi.org/10.1038/nbt.1882
    306 rdf:type schema:CreativeWork
    307 sg:pub.10.1038/nbt.1893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009372658
    308 https://doi.org/10.1038/nbt.1893
    309 rdf:type schema:CreativeWork
    310 sg:pub.10.1038/nbt.2880 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031761158
    311 https://doi.org/10.1038/nbt.2880
    312 rdf:type schema:CreativeWork
    313 sg:pub.10.1038/ncomms2154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029030941
    314 https://doi.org/10.1038/ncomms2154
    315 rdf:type schema:CreativeWork
    316 sg:pub.10.1038/nmeth.1208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016660697
    317 https://doi.org/10.1038/nmeth.1208
    318 rdf:type schema:CreativeWork
    319 sg:pub.10.1038/nmeth.1735 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042047490
    320 https://doi.org/10.1038/nmeth.1735
    321 rdf:type schema:CreativeWork
    322 sg:pub.10.1038/nmeth.2970 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030378404
    323 https://doi.org/10.1038/nmeth.2970
    324 rdf:type schema:CreativeWork
    325 sg:pub.10.1038/nrg2142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003445704
    326 https://doi.org/10.1038/nrg2142
    327 rdf:type schema:CreativeWork
    328 sg:pub.10.1038/nrg2673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011271761
    329 https://doi.org/10.1038/nrg2673
    330 rdf:type schema:CreativeWork
    331 sg:pub.10.1038/nrg2845 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000885038
    332 https://doi.org/10.1038/nrg2845
    333 rdf:type schema:CreativeWork
    334 sg:pub.10.1038/nrg3141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006905298
    335 https://doi.org/10.1038/nrg3141
    336 rdf:type schema:CreativeWork
    337 sg:pub.10.1038/nrg3434 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021256737
    338 https://doi.org/10.1038/nrg3434
    339 rdf:type schema:CreativeWork
    340 sg:pub.10.1038/nrg3813 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010713434
    341 https://doi.org/10.1038/nrg3813
    342 rdf:type schema:CreativeWork
    343 sg:pub.10.1038/nrm2178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039155948
    344 https://doi.org/10.1038/nrm2178
    345 rdf:type schema:CreativeWork
    346 sg:pub.10.1038/nrm3884 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038327941
    347 https://doi.org/10.1038/nrm3884
    348 rdf:type schema:CreativeWork
    349 sg:pub.10.1038/nsmb.1838 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009634080
    350 https://doi.org/10.1038/nsmb.1838
    351 rdf:type schema:CreativeWork
    352 sg:pub.10.1038/nsmb.2303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018565479
    353 https://doi.org/10.1038/nsmb.2303
    354 rdf:type schema:CreativeWork
    355 sg:pub.10.1038/nsmb.2468 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012905495
    356 https://doi.org/10.1038/nsmb.2468
    357 rdf:type schema:CreativeWork
    358 sg:pub.10.1038/nsmb.2832 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001881112
    359 https://doi.org/10.1038/nsmb.2832
    360 rdf:type schema:CreativeWork
    361 sg:pub.10.1038/nsmb.2847 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017425945
    362 https://doi.org/10.1038/nsmb.2847
    363 rdf:type schema:CreativeWork
    364 sg:pub.10.1038/nsmb724 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000531480
    365 https://doi.org/10.1038/nsmb724
    366 rdf:type schema:CreativeWork
    367 sg:pub.10.1038/nsmb961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005488911
    368 https://doi.org/10.1038/nsmb961
    369 rdf:type schema:CreativeWork
    370 sg:pub.10.1186/1471-2105-15-123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007162385
    371 https://doi.org/10.1186/1471-2105-15-123
    372 rdf:type schema:CreativeWork
    373 sg:pub.10.1186/1745-6150-9-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038515664
    374 https://doi.org/10.1186/1745-6150-9-4
    375 rdf:type schema:CreativeWork
    376 sg:pub.10.1186/gb-2013-14-11-r130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005888147
    377 https://doi.org/10.1186/gb-2013-14-11-r130
    378 rdf:type schema:CreativeWork
    379 sg:pub.10.1186/gb-2013-14-8-130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078780499
    380 https://doi.org/10.1186/gb-2013-14-8-130
    381 rdf:type schema:CreativeWork
    382 sg:pub.10.1186/gb-2014-15-1-r17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031344865
    383 https://doi.org/10.1186/gb-2014-15-1-r17
    384 rdf:type schema:CreativeWork
    385 sg:pub.10.1186/gb4152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001534471
    386 https://doi.org/10.1186/gb4152
    387 rdf:type schema:CreativeWork
    388 grid-institutes:grid.67105.35 schema:alternateName Department of Biochemistry, Case Western Reserve University, 10900 Euclid Avenue, 44106, Cleveland, Ohio, USA
    389 Department of Physics, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, 44106, Cleveland, Ohio, USA
    390 schema:name Center for RNA Molecular Biology, Case Western Reserve University, 10900 Euclid Avenue, 44106, Cleveland, Ohio, USA
    391 Department of Biochemistry, Case Western Reserve University, 10900 Euclid Avenue, 44106, Cleveland, Ohio, USA
    392 Department of Physics, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, 44106, Cleveland, Ohio, USA
    393 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...