Plant and animal stem cells: similar yet different View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-04-23

AUTHORS

Renze Heidstra, Sabrina Sabatini

ABSTRACT

Key PointsPlant stem cells, as in animals, are maintained in specialized microenvironments, which are known as stem cell niches, where local signals from organizer cells act to prevent stem cell differentiation. Interestingly, committed stem cell progeny in plants also provide versatile feedback signals to their stem cell progenitors, thus becoming an indispensable component of the niche.Plant stem cell niches are positioned within an organized group of dividing cells that are known as the meristem. In the model plant Arabidopsis thaliana, the shoot apical meristem and the root meristem are responsible for almost all the growth that occurs post-embryonically.Despite their similar organization, the RB protein is the only known protein involved in stem cell function that is conserved between the animal and plant kingdoms. Control of stem cell differentiation in plants involves a conserved module of peptide–receptor signalling that counteracts homeodomain transcription factor activity from the organizer cells.Both in plants and animals the position of a functional stem cell niche needs to be maintained within a dynamic structure. Also in plants, in which the position of a stem cell niche can be observed with cellular resolution from early embryonic stages onwards, several positional cues have been identified that involve crosstalk between hormone signalling, microRNAs and transcription factors.The root and shoot stem cell niche organizers not only control the activity of surrounding stem cells but also regulate differentiation of distant transit-amplifying cells that sustain coherent organ growth. As observed in several animal stem cell niches the plant organizers have the ability to replace (damaged) stem cells.The A. thaliana shoot organizing cells consist of a constantly changing pool of cells that are apically replenished by stem cell progeny, while shedding cells towards differentiation basally. The root organizing cells can act as long-term stem cells by replacing damaged stem cells, which ensures stem cell niche longevity. More... »

PAGES

301-312

References to SciGraph publications

  • 2009-06-07. A glycopeptide regulating stem cell fate in Arabidopsis thaliana in NATURE CHEMICAL BIOLOGY
  • 2005-01. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots in NATURE
  • 2012-08-08. CCS52A2/FZR1, a cell cycle regulator, is an essential factor for shoot apical meristem maintenance in Arabidopsis thaliana in BMC PLANT BIOLOGY
  • 1997-11. Short-range control of cell differentiation in the Arabidopsis root meristem in NATURE
  • 2003-05-13. Loss of CLE40, a protein functionally equivalent to the stem cell restricting signal CLV3, enhances root waving in Arabidopsis in DEVELOPMENT GENES AND EVOLUTION
  • 2010-07. Spatiotemporal regulation of cell-cycle genes by SHORTROOT links patterning and growth in NATURE
  • 2012-01-23. A family business: stem cell progeny join the niche to regulate homeostasis in NATURE REVIEWS MOLECULAR CELL BIOLOGY
  • 2010-11-28. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts in NATURE
  • 2006-08-09. The anaphase promoting complex/cyclosome: a machine designed to destroy in NATURE REVIEWS MOLECULAR CELL BIOLOGY
  • 2005-12. WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators in NATURE
  • 2010-06. Hormonal control of the shoot stem-cell niche in NATURE
  • 2010-02-28. Control of Arabidopsis apical–basal embryo polarity by antagonistic transcription factors in NATURE
  • 2007-11-04. Integrin-dependent anchoring of a stem-cell niche in NATURE CELL BIOLOGY
  • 2007-02. Direct control of shoot meristem activity by a cytokinin-activating enzyme in NATURE
  • 1996-01. A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis in NATURE
  • 2012-11-07. Imaging of Phenotypes, Gene Expression, and Protein Localization During Embryonic Root Formation in Arabidopsis in PLANT ORGANOGENESIS
  • 2000-12. Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis in NATURE
  • 2007-10. PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development in NATURE
  • 2009-05-17. Local auxin biosynthesis modulates gradient-directed planar polarity in Arabidopsis in NATURE CELL BIOLOGY
  • 2001-11. Stem cells find their niche in NATURE
  • 2001-04. Cell signalling at the shoot meristem in NATURE REVIEWS MOLECULAR CELL BIOLOGY
  • 2000-07. Clonal analysis of the Arabidopsis root confirms that position, not lineage, determines cell fate in PLANTA
  • 2012-01-15. A novel sensor to map auxin response and distribution at high spatio-temporal resolution in NATURE
  • 1995-11. Cell fate in the Arabidopsis root meristem determined by directional signalling in NATURE
  • 2013-10-23. Chromatin dynamics during cellular reprogramming in NATURE
  • 2014-01-08. A novel efficient feeder-free culture system for the derivation of human induced pluripotent stem cells in SCIENTIFIC REPORTS
  • 2003-11. Efflux-dependent auxin gradients establish the apical–basal axis of Arabidopsis in NATURE
  • 2013-11-20. Accession-specific modifiers act with ZWILLE/ARGONAUTE10 to maintain shoot meristem stem cells during embryogenesis in Arabidopsis in BMC GENOMICS
  • 2003-11. Regulation of phyllotaxis by polar auxin transport in NATURE
  • 2008-12-01. Centrosome misorientation reduces stem cell division during ageing in NATURE
  • 2001-09. Intercellular movement of the putative transcription factor SHR in root patterning in NATURE
  • 2013-12-11. Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration in NATURE REVIEWS MOLECULAR CELL BIOLOGY
  • 2010-09. Small RNAs are on the move in NATURE
  • 2007-05. Stem-cell niches: nursery rhymes across kingdoms in NATURE REVIEWS MOLECULAR CELL BIOLOGY
  • 2002-02-14. In situ localisation of cytokinins in the shoot apical meristem of Sinapis alba at floral transition in PLANTA
  • 2002-02. Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis in NATURE
  • 2007-04. Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nrm3790

    DOI

    http://dx.doi.org/10.1038/nrm3790

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1002651439

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/24755933


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0607", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Plant Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Arabidopsis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Arabidopsis Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Differentiation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Regulation, Developmental", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Regulation, Plant", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Meristem", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Plant Cells", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Pluripotent Stem Cells", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Regeneration", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Signal Transduction", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Stem Cell Niche", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Stem Cells", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Transcription Factors", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Plant Developmental Biology, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.4818.5", 
              "name": [
                "Plant Developmental Biology, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Heidstra", 
            "givenName": "Renze", 
            "id": "sg:person.01205022760.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205022760.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Dipartimento di Biologia e Biotecnologie, Laboratory of Functional Genomics and Proteomics of Model Systems, Universit\u00e0 di Roma La Sapienza, Via dei Sardi 70, 00185, Rome, Italy", 
              "id": "http://www.grid.ac/institutes/grid.7841.a", 
              "name": [
                "Dipartimento di Biologia e Biotecnologie, Laboratory of Functional Genomics and Proteomics of Model Systems, Universit\u00e0 di Roma La Sapienza, Via dei Sardi 70, 00185, Rome, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sabatini", 
            "givenName": "Sabrina", 
            "id": "sg:person.01071047465.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01071047465.61"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/ncb1879", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034092137", 
              "https://doi.org/10.1038/ncb1879"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/36856", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008439456", 
              "https://doi.org/10.1038/36856"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08843", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023017881", 
              "https://doi.org/10.1038/nature08843"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09637", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030684957", 
              "https://doi.org/10.1038/nature09637"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrm3272", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030000566", 
              "https://doi.org/10.1038/nrm3272"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35050091", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010276604", 
              "https://doi.org/10.1038/35050091"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrm3721", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051868900", 
              "https://doi.org/10.1038/nrm3721"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-62703-221-6_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037629665", 
              "https://doi.org/10.1007/978-1-62703-221-6_8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-14-809", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025987491", 
              "https://doi.org/10.1186/1471-2164-14-809"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrm2164", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043310293", 
              "https://doi.org/10.1038/nrm2164"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/379066a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009878323", 
              "https://doi.org/10.1038/379066a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09351", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041943326", 
              "https://doi.org/10.1038/nature09351"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncb1660", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035203713", 
              "https://doi.org/10.1038/ncb1660"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature10791", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018432027", 
              "https://doi.org/10.1038/nature10791"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03184", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018664180", 
              "https://doi.org/10.1038/nature03184"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00427-003-0329-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005865692", 
              "https://doi.org/10.1007/s00427-003-0329-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35102160", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021584545", 
              "https://doi.org/10.1038/35102160"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature05703", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005490341", 
              "https://doi.org/10.1038/nature05703"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12749", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007961933", 
              "https://doi.org/10.1038/nature12749"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s004250000284", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020308566", 
              "https://doi.org/10.1007/s004250000284"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35095061", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045246030", 
              "https://doi.org/10.1038/35095061"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature05504", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013277507", 
              "https://doi.org/10.1038/nature05504"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrm1988", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053705055", 
              "https://doi.org/10.1038/nrm1988"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04270", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018499675", 
              "https://doi.org/10.1038/nature04270"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35067079", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037074401", 
              "https://doi.org/10.1038/35067079"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07386", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016536495", 
              "https://doi.org/10.1038/nature07386"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/415806a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031409570", 
              "https://doi.org/10.1038/415806a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep03594", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047356983", 
              "https://doi.org/10.1038/srep03594"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2229-12-135", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017807159", 
              "https://doi.org/10.1186/1471-2229-12-135"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09143", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043527448", 
              "https://doi.org/10.1038/nature09143"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchembio.182", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029683194", 
              "https://doi.org/10.1038/nchembio.182"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09126", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049007322", 
              "https://doi.org/10.1038/nature09126"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00425-002-0742-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044634925", 
              "https://doi.org/10.1007/s00425-002-0742-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06206", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041696862", 
              "https://doi.org/10.1038/nature06206"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02085", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039269064", 
              "https://doi.org/10.1038/nature02085"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02081", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053129218", 
              "https://doi.org/10.1038/nature02081"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/378062a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025538253", 
              "https://doi.org/10.1038/378062a0"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-04-23", 
        "datePublishedReg": "2014-04-23", 
        "description": "Key PointsPlant stem cells, as in animals, are maintained in specialized microenvironments, which are known as stem cell niches, where local signals from organizer cells act to prevent stem cell differentiation. Interestingly, committed stem cell progeny in plants also provide versatile feedback signals to their stem cell progenitors, thus becoming an indispensable component of the niche.Plant stem cell niches are positioned within an organized group of dividing cells that are known as the meristem. In the model plant Arabidopsis thaliana, the shoot apical meristem and the root meristem are responsible for almost all the growth that occurs post-embryonically.Despite their similar organization, the RB protein is the only known protein involved in stem cell function that is conserved between the animal and plant kingdoms. Control of stem cell differentiation in plants involves a conserved module of peptide\u2013receptor signalling that counteracts homeodomain transcription factor activity from the organizer cells.Both in plants and animals the position of a functional stem cell niche needs to be maintained within a dynamic structure. Also in plants, in which the position of a stem cell niche can be observed with cellular resolution from early embryonic stages onwards, several positional cues have been identified that involve crosstalk between hormone signalling, microRNAs and transcription factors.The root and shoot stem cell niche organizers not only control the activity of surrounding stem cells but also regulate differentiation of distant transit-amplifying cells that sustain coherent organ growth. As observed in several animal stem cell niches the plant organizers have the ability to replace (damaged) stem cells.The A. thaliana shoot organizing cells consist of a constantly changing pool of cells that are apically replenished by stem cell progeny, while shedding cells towards differentiation basally. The root organizing cells can act as long-term stem cells by replacing damaged stem cells, which ensures stem cell niche longevity.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/nrm3790", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1023609", 
            "issn": [
              "1471-0072", 
              "1471-0080"
            ], 
            "name": "Nature Reviews Molecular Cell Biology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "15"
          }
        ], 
        "keywords": [
          "stem cell niche", 
          "stem cell differentiation", 
          "cell niche", 
          "stem cell progeny", 
          "stem cells", 
          "plant stem cell niche", 
          "animal stem cell niches", 
          "model plant Arabidopsis thaliana", 
          "cell progeny", 
          "organizer cells", 
          "cell differentiation", 
          "functional stem cell niche", 
          "long-term stem cells", 
          "plant Arabidopsis thaliana", 
          "organizing cells", 
          "shoot apical meristem", 
          "transcription factor activity", 
          "animal stem cells", 
          "stem cell function", 
          "stem cell progenitors", 
          "transit-amplifying cells", 
          "early embryonic stages", 
          "Arabidopsis thaliana", 
          "A. thaliana", 
          "hormone signaling", 
          "apical meristem", 
          "root meristem", 
          "plant kingdom", 
          "transcription factors", 
          "positional cues", 
          "organ growth", 
          "Rb protein", 
          "pool of cells", 
          "specialized microenvironment", 
          "meristem", 
          "cell progenitors", 
          "embryonic stages", 
          "niche", 
          "dividing cells", 
          "plants", 
          "thaliana", 
          "cellular resolution", 
          "factor activity", 
          "cell function", 
          "differentiation", 
          "signaling", 
          "progeny", 
          "protein", 
          "cells", 
          "dynamic structure", 
          "local signals", 
          "similar organization", 
          "animals", 
          "microRNAs", 
          "progenitors", 
          "growth", 
          "indispensable component", 
          "crosstalk", 
          "roots", 
          "longevity", 
          "activity", 
          "organizers", 
          "microenvironment", 
          "pool", 
          "cues", 
          "signals", 
          "function", 
          "stage", 
          "ability", 
          "components", 
          "Kingdom", 
          "structure", 
          "factors", 
          "position", 
          "organized group", 
          "organization", 
          "control", 
          "module", 
          "resolution", 
          "group", 
          "feedback signal"
        ], 
        "name": "Plant and animal stem cells: similar yet different", 
        "pagination": "301-312", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1002651439"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nrm3790"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "24755933"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nrm3790", 
          "https://app.dimensions.ai/details/publication/pub.1002651439"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-08-04T17:01", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_626.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/nrm3790"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nrm3790'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nrm3790'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nrm3790'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nrm3790'


     

    This table displays all metadata directly associated to this object as RDF triples.

    364 TRIPLES      21 PREDICATES      159 URIs      112 LITERALS      21 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nrm3790 schema:about N068fb5ada124403b99718f40a2ee5b58
    2 N104227eb4fd54b3bbb110810c31e22ec
    3 N255587a649b6421187f01e412a64b842
    4 N42ccbea7b5e5416cbe578db8a3c392c6
    5 N53ae5725de9a415fa6a815e8038e9629
    6 N67124250c34547a4aac31bad8096002d
    7 N748afba215104e559852024607725090
    8 N77aeab15e5ad4525ac37ab7f5044a898
    9 Na4598ae3f14b4031bdb5b84552450cb2
    10 Nb2a45ab13244400eb6cf5234da1af272
    11 Nb743c66945e9482d9b707bb544dea718
    12 Nbf6d40d6617748e8b44eae5eedebabe0
    13 Nd9d48b4101654a07931fd80e3e1d802a
    14 Nf949580d03494055968aa648f8741783
    15 anzsrc-for:06
    16 anzsrc-for:0601
    17 anzsrc-for:0604
    18 anzsrc-for:0607
    19 schema:author N8a478c760e10420fba3a722d54e57b7c
    20 schema:citation sg:pub.10.1007/978-1-62703-221-6_8
    21 sg:pub.10.1007/s00425-002-0742-4
    22 sg:pub.10.1007/s004250000284
    23 sg:pub.10.1007/s00427-003-0329-5
    24 sg:pub.10.1038/35050091
    25 sg:pub.10.1038/35067079
    26 sg:pub.10.1038/35095061
    27 sg:pub.10.1038/35102160
    28 sg:pub.10.1038/36856
    29 sg:pub.10.1038/378062a0
    30 sg:pub.10.1038/379066a0
    31 sg:pub.10.1038/415806a
    32 sg:pub.10.1038/nature02081
    33 sg:pub.10.1038/nature02085
    34 sg:pub.10.1038/nature03184
    35 sg:pub.10.1038/nature04270
    36 sg:pub.10.1038/nature05504
    37 sg:pub.10.1038/nature05703
    38 sg:pub.10.1038/nature06206
    39 sg:pub.10.1038/nature07386
    40 sg:pub.10.1038/nature08843
    41 sg:pub.10.1038/nature09126
    42 sg:pub.10.1038/nature09143
    43 sg:pub.10.1038/nature09351
    44 sg:pub.10.1038/nature09637
    45 sg:pub.10.1038/nature10791
    46 sg:pub.10.1038/nature12749
    47 sg:pub.10.1038/ncb1660
    48 sg:pub.10.1038/ncb1879
    49 sg:pub.10.1038/nchembio.182
    50 sg:pub.10.1038/nrm1988
    51 sg:pub.10.1038/nrm2164
    52 sg:pub.10.1038/nrm3272
    53 sg:pub.10.1038/nrm3721
    54 sg:pub.10.1038/srep03594
    55 sg:pub.10.1186/1471-2164-14-809
    56 sg:pub.10.1186/1471-2229-12-135
    57 schema:datePublished 2014-04-23
    58 schema:datePublishedReg 2014-04-23
    59 schema:description Key PointsPlant stem cells, as in animals, are maintained in specialized microenvironments, which are known as stem cell niches, where local signals from organizer cells act to prevent stem cell differentiation. Interestingly, committed stem cell progeny in plants also provide versatile feedback signals to their stem cell progenitors, thus becoming an indispensable component of the niche.Plant stem cell niches are positioned within an organized group of dividing cells that are known as the meristem. In the model plant Arabidopsis thaliana, the shoot apical meristem and the root meristem are responsible for almost all the growth that occurs post-embryonically.Despite their similar organization, the RB protein is the only known protein involved in stem cell function that is conserved between the animal and plant kingdoms. Control of stem cell differentiation in plants involves a conserved module of peptide–receptor signalling that counteracts homeodomain transcription factor activity from the organizer cells.Both in plants and animals the position of a functional stem cell niche needs to be maintained within a dynamic structure. Also in plants, in which the position of a stem cell niche can be observed with cellular resolution from early embryonic stages onwards, several positional cues have been identified that involve crosstalk between hormone signalling, microRNAs and transcription factors.The root and shoot stem cell niche organizers not only control the activity of surrounding stem cells but also regulate differentiation of distant transit-amplifying cells that sustain coherent organ growth. As observed in several animal stem cell niches the plant organizers have the ability to replace (damaged) stem cells.The A. thaliana shoot organizing cells consist of a constantly changing pool of cells that are apically replenished by stem cell progeny, while shedding cells towards differentiation basally. The root organizing cells can act as long-term stem cells by replacing damaged stem cells, which ensures stem cell niche longevity.
    60 schema:genre article
    61 schema:isAccessibleForFree false
    62 schema:isPartOf N309aec4e6f5845b584566d960e7ff207
    63 N8986a62f5e534fae9e11b5bd086cacbd
    64 sg:journal.1023609
    65 schema:keywords A. thaliana
    66 Arabidopsis thaliana
    67 Kingdom
    68 Rb protein
    69 ability
    70 activity
    71 animal stem cell niches
    72 animal stem cells
    73 animals
    74 apical meristem
    75 cell differentiation
    76 cell function
    77 cell niche
    78 cell progenitors
    79 cell progeny
    80 cells
    81 cellular resolution
    82 components
    83 control
    84 crosstalk
    85 cues
    86 differentiation
    87 dividing cells
    88 dynamic structure
    89 early embryonic stages
    90 embryonic stages
    91 factor activity
    92 factors
    93 feedback signal
    94 function
    95 functional stem cell niche
    96 group
    97 growth
    98 hormone signaling
    99 indispensable component
    100 local signals
    101 long-term stem cells
    102 longevity
    103 meristem
    104 microRNAs
    105 microenvironment
    106 model plant Arabidopsis thaliana
    107 module
    108 niche
    109 organ growth
    110 organization
    111 organized group
    112 organizer cells
    113 organizers
    114 organizing cells
    115 plant Arabidopsis thaliana
    116 plant kingdom
    117 plant stem cell niche
    118 plants
    119 pool
    120 pool of cells
    121 position
    122 positional cues
    123 progenitors
    124 progeny
    125 protein
    126 resolution
    127 root meristem
    128 roots
    129 shoot apical meristem
    130 signaling
    131 signals
    132 similar organization
    133 specialized microenvironment
    134 stage
    135 stem cell differentiation
    136 stem cell function
    137 stem cell niche
    138 stem cell progenitors
    139 stem cell progeny
    140 stem cells
    141 structure
    142 thaliana
    143 transcription factor activity
    144 transcription factors
    145 transit-amplifying cells
    146 schema:name Plant and animal stem cells: similar yet different
    147 schema:pagination 301-312
    148 schema:productId N080b4ac385e3485bb3efa7ae03bcac47
    149 N85bb449336354f2290f5e6e9db2dead2
    150 N970cba19b1e5469eb93cc9a7616eee65
    151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002651439
    152 https://doi.org/10.1038/nrm3790
    153 schema:sdDatePublished 2022-08-04T17:01
    154 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    155 schema:sdPublisher Nf2ff37832e9b475096fbe25c021331c6
    156 schema:url https://doi.org/10.1038/nrm3790
    157 sgo:license sg:explorer/license/
    158 sgo:sdDataset articles
    159 rdf:type schema:ScholarlyArticle
    160 N068fb5ada124403b99718f40a2ee5b58 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    161 schema:name Plant Cells
    162 rdf:type schema:DefinedTerm
    163 N080b4ac385e3485bb3efa7ae03bcac47 schema:name pubmed_id
    164 schema:value 24755933
    165 rdf:type schema:PropertyValue
    166 N104227eb4fd54b3bbb110810c31e22ec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    167 schema:name Arabidopsis Proteins
    168 rdf:type schema:DefinedTerm
    169 N255587a649b6421187f01e412a64b842 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    170 schema:name Regeneration
    171 rdf:type schema:DefinedTerm
    172 N309aec4e6f5845b584566d960e7ff207 schema:volumeNumber 15
    173 rdf:type schema:PublicationVolume
    174 N369d4759843c4cd38a2c650b2f584aa3 rdf:first sg:person.01071047465.61
    175 rdf:rest rdf:nil
    176 N42ccbea7b5e5416cbe578db8a3c392c6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    177 schema:name Stem Cells
    178 rdf:type schema:DefinedTerm
    179 N53ae5725de9a415fa6a815e8038e9629 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    180 schema:name Transcription Factors
    181 rdf:type schema:DefinedTerm
    182 N67124250c34547a4aac31bad8096002d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    183 schema:name Gene Expression Regulation, Plant
    184 rdf:type schema:DefinedTerm
    185 N748afba215104e559852024607725090 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    186 schema:name Arabidopsis
    187 rdf:type schema:DefinedTerm
    188 N77aeab15e5ad4525ac37ab7f5044a898 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    189 schema:name Stem Cell Niche
    190 rdf:type schema:DefinedTerm
    191 N85bb449336354f2290f5e6e9db2dead2 schema:name doi
    192 schema:value 10.1038/nrm3790
    193 rdf:type schema:PropertyValue
    194 N8986a62f5e534fae9e11b5bd086cacbd schema:issueNumber 5
    195 rdf:type schema:PublicationIssue
    196 N8a478c760e10420fba3a722d54e57b7c rdf:first sg:person.01205022760.10
    197 rdf:rest N369d4759843c4cd38a2c650b2f584aa3
    198 N970cba19b1e5469eb93cc9a7616eee65 schema:name dimensions_id
    199 schema:value pub.1002651439
    200 rdf:type schema:PropertyValue
    201 Na4598ae3f14b4031bdb5b84552450cb2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    202 schema:name Gene Expression Regulation, Developmental
    203 rdf:type schema:DefinedTerm
    204 Nb2a45ab13244400eb6cf5234da1af272 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    205 schema:name Animals
    206 rdf:type schema:DefinedTerm
    207 Nb743c66945e9482d9b707bb544dea718 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    208 schema:name Pluripotent Stem Cells
    209 rdf:type schema:DefinedTerm
    210 Nbf6d40d6617748e8b44eae5eedebabe0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    211 schema:name Cell Differentiation
    212 rdf:type schema:DefinedTerm
    213 Nd9d48b4101654a07931fd80e3e1d802a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    214 schema:name Signal Transduction
    215 rdf:type schema:DefinedTerm
    216 Nf2ff37832e9b475096fbe25c021331c6 schema:name Springer Nature - SN SciGraph project
    217 rdf:type schema:Organization
    218 Nf949580d03494055968aa648f8741783 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    219 schema:name Meristem
    220 rdf:type schema:DefinedTerm
    221 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    222 schema:name Biological Sciences
    223 rdf:type schema:DefinedTerm
    224 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    225 schema:name Biochemistry and Cell Biology
    226 rdf:type schema:DefinedTerm
    227 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    228 schema:name Genetics
    229 rdf:type schema:DefinedTerm
    230 anzsrc-for:0607 schema:inDefinedTermSet anzsrc-for:
    231 schema:name Plant Biology
    232 rdf:type schema:DefinedTerm
    233 sg:journal.1023609 schema:issn 1471-0072
    234 1471-0080
    235 schema:name Nature Reviews Molecular Cell Biology
    236 schema:publisher Springer Nature
    237 rdf:type schema:Periodical
    238 sg:person.01071047465.61 schema:affiliation grid-institutes:grid.7841.a
    239 schema:familyName Sabatini
    240 schema:givenName Sabrina
    241 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01071047465.61
    242 rdf:type schema:Person
    243 sg:person.01205022760.10 schema:affiliation grid-institutes:grid.4818.5
    244 schema:familyName Heidstra
    245 schema:givenName Renze
    246 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205022760.10
    247 rdf:type schema:Person
    248 sg:pub.10.1007/978-1-62703-221-6_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037629665
    249 https://doi.org/10.1007/978-1-62703-221-6_8
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1007/s00425-002-0742-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044634925
    252 https://doi.org/10.1007/s00425-002-0742-4
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1007/s004250000284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020308566
    255 https://doi.org/10.1007/s004250000284
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1007/s00427-003-0329-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005865692
    258 https://doi.org/10.1007/s00427-003-0329-5
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1038/35050091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010276604
    261 https://doi.org/10.1038/35050091
    262 rdf:type schema:CreativeWork
    263 sg:pub.10.1038/35067079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037074401
    264 https://doi.org/10.1038/35067079
    265 rdf:type schema:CreativeWork
    266 sg:pub.10.1038/35095061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045246030
    267 https://doi.org/10.1038/35095061
    268 rdf:type schema:CreativeWork
    269 sg:pub.10.1038/35102160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021584545
    270 https://doi.org/10.1038/35102160
    271 rdf:type schema:CreativeWork
    272 sg:pub.10.1038/36856 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008439456
    273 https://doi.org/10.1038/36856
    274 rdf:type schema:CreativeWork
    275 sg:pub.10.1038/378062a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025538253
    276 https://doi.org/10.1038/378062a0
    277 rdf:type schema:CreativeWork
    278 sg:pub.10.1038/379066a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009878323
    279 https://doi.org/10.1038/379066a0
    280 rdf:type schema:CreativeWork
    281 sg:pub.10.1038/415806a schema:sameAs https://app.dimensions.ai/details/publication/pub.1031409570
    282 https://doi.org/10.1038/415806a
    283 rdf:type schema:CreativeWork
    284 sg:pub.10.1038/nature02081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053129218
    285 https://doi.org/10.1038/nature02081
    286 rdf:type schema:CreativeWork
    287 sg:pub.10.1038/nature02085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039269064
    288 https://doi.org/10.1038/nature02085
    289 rdf:type schema:CreativeWork
    290 sg:pub.10.1038/nature03184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018664180
    291 https://doi.org/10.1038/nature03184
    292 rdf:type schema:CreativeWork
    293 sg:pub.10.1038/nature04270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018499675
    294 https://doi.org/10.1038/nature04270
    295 rdf:type schema:CreativeWork
    296 sg:pub.10.1038/nature05504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013277507
    297 https://doi.org/10.1038/nature05504
    298 rdf:type schema:CreativeWork
    299 sg:pub.10.1038/nature05703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005490341
    300 https://doi.org/10.1038/nature05703
    301 rdf:type schema:CreativeWork
    302 sg:pub.10.1038/nature06206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041696862
    303 https://doi.org/10.1038/nature06206
    304 rdf:type schema:CreativeWork
    305 sg:pub.10.1038/nature07386 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016536495
    306 https://doi.org/10.1038/nature07386
    307 rdf:type schema:CreativeWork
    308 sg:pub.10.1038/nature08843 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023017881
    309 https://doi.org/10.1038/nature08843
    310 rdf:type schema:CreativeWork
    311 sg:pub.10.1038/nature09126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049007322
    312 https://doi.org/10.1038/nature09126
    313 rdf:type schema:CreativeWork
    314 sg:pub.10.1038/nature09143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043527448
    315 https://doi.org/10.1038/nature09143
    316 rdf:type schema:CreativeWork
    317 sg:pub.10.1038/nature09351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041943326
    318 https://doi.org/10.1038/nature09351
    319 rdf:type schema:CreativeWork
    320 sg:pub.10.1038/nature09637 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030684957
    321 https://doi.org/10.1038/nature09637
    322 rdf:type schema:CreativeWork
    323 sg:pub.10.1038/nature10791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018432027
    324 https://doi.org/10.1038/nature10791
    325 rdf:type schema:CreativeWork
    326 sg:pub.10.1038/nature12749 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007961933
    327 https://doi.org/10.1038/nature12749
    328 rdf:type schema:CreativeWork
    329 sg:pub.10.1038/ncb1660 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035203713
    330 https://doi.org/10.1038/ncb1660
    331 rdf:type schema:CreativeWork
    332 sg:pub.10.1038/ncb1879 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034092137
    333 https://doi.org/10.1038/ncb1879
    334 rdf:type schema:CreativeWork
    335 sg:pub.10.1038/nchembio.182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029683194
    336 https://doi.org/10.1038/nchembio.182
    337 rdf:type schema:CreativeWork
    338 sg:pub.10.1038/nrm1988 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053705055
    339 https://doi.org/10.1038/nrm1988
    340 rdf:type schema:CreativeWork
    341 sg:pub.10.1038/nrm2164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043310293
    342 https://doi.org/10.1038/nrm2164
    343 rdf:type schema:CreativeWork
    344 sg:pub.10.1038/nrm3272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030000566
    345 https://doi.org/10.1038/nrm3272
    346 rdf:type schema:CreativeWork
    347 sg:pub.10.1038/nrm3721 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051868900
    348 https://doi.org/10.1038/nrm3721
    349 rdf:type schema:CreativeWork
    350 sg:pub.10.1038/srep03594 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047356983
    351 https://doi.org/10.1038/srep03594
    352 rdf:type schema:CreativeWork
    353 sg:pub.10.1186/1471-2164-14-809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025987491
    354 https://doi.org/10.1186/1471-2164-14-809
    355 rdf:type schema:CreativeWork
    356 sg:pub.10.1186/1471-2229-12-135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017807159
    357 https://doi.org/10.1186/1471-2229-12-135
    358 rdf:type schema:CreativeWork
    359 grid-institutes:grid.4818.5 schema:alternateName Plant Developmental Biology, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
    360 schema:name Plant Developmental Biology, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
    361 rdf:type schema:Organization
    362 grid-institutes:grid.7841.a schema:alternateName Dipartimento di Biologia e Biotecnologie, Laboratory of Functional Genomics and Proteomics of Model Systems, Università di Roma La Sapienza, Via dei Sardi 70, 00185, Rome, Italy
    363 schema:name Dipartimento di Biologia e Biotecnologie, Laboratory of Functional Genomics and Proteomics of Model Systems, Università di Roma La Sapienza, Via dei Sardi 70, 00185, Rome, Italy
    364 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...