A family business: stem cell progeny join the niche to regulate homeostasis View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-01-23

AUTHORS

Ya-Chieh Hsu, Elaine Fuchs

ABSTRACT

Key PointsStem cells reside in specialized microenvironments, known as niches. Cellular components of the niche have important roles in regulating various stem cell behaviours, including activation, dormancy, differentiation and migration.Traditionally, stem cell niches are thought to be composed of heterologous cell types derived from different lineages. Surprisingly, however, increasing evidence from both invertebrate and vertebrate stem cell systems shows that stem cell progeny themselves can also be important niche components and/or regulators of stem cell activity.In the Drosophila melanogaster male germline, progeny of the somatic cyst stem cells can contribute to their niche, which is called the 'hub'. Although this contribution may be low during steady state, certain fly mutations have been found to cause the somatic cyst stem cells to adopt a hub cell fate.In the mouse hair follicle, stem cells reside in the outermost layer of the follicle stem cell niche, which is located in an anatomical region known as the bulge. As these stem cells progress along their lineages to produce the hair and its channel, some terminally differentiated progeny end up back in the bulge, where they locate within the inner layer and function to maintain stem cell quiescence in the niche.In the intestine, fast-cycling intestinal stem cells are located at the bottom of the crypt and are interspersed by terminally differentiated progeny called Paneth cells. Reduction of Paneth cell numbers is accompanied by a concomitant reduction in the stem cell population, suggesting a possible role of Paneth cells in regulating stem cell self-renewal.In the adult haematopoietic system, most haematopoietic stem cells (HSCs) reside in the bone marrow. In this niche, regulatory T cells protect the HSCs from immune attack by making the niche an immune-privileged site. The mobilization and migration of HSCs also appears to be regulated by at least one additional HSC downstream lineage: macrophages. More... »

PAGES

103-114

References to SciGraph publications

  • 2008-06-08. Bmi1 is expressed in vivo in intestinal stem cells in NATURE GENETICS
  • 2010-03-21. Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia in NATURE
  • 2005-05-20. A Cre-inducible diphtheria toxin receptor mediates cell lineage ablation after toxin administration in NATURE METHODS
  • 1998-08. Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4 in NATURE GENETICS
  • 2004-03-14. Capturing and profiling adult hair follicle stem cells in NATURE BIOTECHNOLOGY
  • 2011-06-08. In vivo imaging of Treg cells providing immune privilege to the haematopoietic stem-cell niche in NATURE
  • 2009-08-30. Tcf3 and Tcf4 are essential for long-term homeostasis of skin epithelia in NATURE GENETICS
  • 2002-01. The multifaceted Paneth cell in CELLULAR AND MOLECULAR LIFE SCIENCES
  • 2004-09-19. BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt–β-catenin signaling in NATURE GENETICS
  • 2008-07-20. Multipotent somatic stem cells contribute to the stem cell niche in the Drosophila testis in NATURE
  • 1997-07. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell in NATURE MEDICINE
  • 2009-06-10. Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment in NATURE
  • 2006-04-05. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells in NATURE
  • 2009-03-29. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche in NATURE
  • 2010-07-11. Germline self-renewal requires cyst stem cells and stat regulates niche adhesion in Drosophila testes in NATURE CELL BIOLOGY
  • 2010-11-28. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts in NATURE
  • 2011-07-04. Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling in NATURE
  • 2000-10. Somatic support cells restrict germline stem cell self-renewal and promote differentiation in NATURE
  • 2008-12-10. Endochondral ossification is required for haematopoietic stem-cell niche formation in NATURE
  • 2003-03. Links between signal transduction, transcription and adhesion in epithelial bud development in NATURE
  • 1999-06-11. Noggin is a mesenchymally derived stimulator of hair-follicle induction in NATURE CELL BIOLOGY
  • 2008-12-05. Analysis of histone 2B-GFP retention reveals slowly cycling hematopoietic stem cells in NATURE BIOTECHNOLOGY
  • 2010-08. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche in NATURE
  • 2002-07-01. Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1+ stem cells from bone-marrow microenvironment in NATURE MEDICINE
  • 2007-10-14. Identification of stem cells in small intestine and colon by marker gene Lgr5 in NATURE
  • 2005-04-20. A common somitic origin for embryonic muscle progenitors and satellite cells in NATURE
  • 2011-08-31. The ageing systemic milieu negatively regulates neurogenesis and cognitive function in NATURE
  • 2011-09-18. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable in NATURE
  • 2002-04. Dominant role of the niche in melanocyte stem-cell fate determination in NATURE
  • 2007-05. Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding in NATURE
  • 2003-10. Osteoblastic cells regulate the haematopoietic stem cell niche in NATURE
  • 2003-10. Identification of the haematopoietic stem cell niche and control of the niche size in NATURE
  • 2008-01. Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration in NATURE
  • 2008-12-03. Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche in NATURE
  • 2008-01-30. A role for adult TLX-positive neural stem cells in learning and behaviour in NATURE
  • 2008-12-03. Detection of functional haematopoietic stem cell niche using real-time imaging in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nrm3272

    DOI

    http://dx.doi.org/10.1038/nrm3272

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1030000566

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/22266760


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Division", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Movement", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Drosophila melanogaster", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Homeostasis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Biological", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Organ Specificity", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Signal Transduction", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Stem Cell Niche", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Stem Cells", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Howard Hughes Medical Institute and Laboratory of Mammalian Cell Biology & Development, The Rockefeller University, 1230 York Avenue, Box 300, 10065, New York, New York, USA", 
              "id": "http://www.grid.ac/institutes/grid.134907.8", 
              "name": [
                "Howard Hughes Medical Institute and Laboratory of Mammalian Cell Biology & Development, The Rockefeller University, 1230 York Avenue, Box 300, 10065, New York, New York, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hsu", 
            "givenName": "Ya-Chieh", 
            "id": "sg:person.01024410355.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024410355.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Howard Hughes Medical Institute and Laboratory of Mammalian Cell Biology & Development, The Rockefeller University, 1230 York Avenue, Box 300, 10065, New York, New York, USA", 
              "id": "http://www.grid.ac/institutes/grid.134907.8", 
              "name": [
                "Howard Hughes Medical Institute and Laboratory of Mammalian Cell Biology & Development, The Rockefeller University, 1230 York Avenue, Box 300, 10065, New York, New York, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fuchs", 
            "givenName": "Elaine", 
            "id": "sg:person.0662723554.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0662723554.43"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nature07639", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018866560", 
              "https://doi.org/10.1038/nature07639"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06457", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046831536", 
              "https://doi.org/10.1038/nature06457"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.431", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008151813", 
              "https://doi.org/10.1038/ng.431"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07173", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035708241", 
              "https://doi.org/10.1038/nature07173"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature05766", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039610016", 
              "https://doi.org/10.1038/nature05766"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature01458", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047956904", 
              "https://doi.org/10.1038/nature01458"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08099", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011517403", 
              "https://doi.org/10.1038/nature08099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt950", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050242098", 
              "https://doi.org/10.1038/nbt950"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09262", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022774714", 
              "https://doi.org/10.1038/nature09262"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature10408", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052160859", 
              "https://doi.org/10.1038/nature10408"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.165", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025078309", 
              "https://doi.org/10.1038/ng.165"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07434", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044960417", 
              "https://doi.org/10.1038/nature07434"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02040", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003509222", 
              "https://doi.org/10.1038/nature02040"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07547", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050261328", 
              "https://doi.org/10.1038/nature07547"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.1517", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033056074", 
              "https://doi.org/10.1038/nbt.1517"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/11078", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032025231", 
              "https://doi.org/10.1038/11078"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature10357", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053553007", 
              "https://doi.org/10.1038/nature10357"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06196", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050225537", 
              "https://doi.org/10.1038/nature06196"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncb2086", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050199712", 
              "https://doi.org/10.1038/ncb2086"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nm0797-730", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022333282", 
              "https://doi.org/10.1038/nm0797-730"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35037606", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023189909", 
              "https://doi.org/10.1038/35037606"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06562", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033386070", 
              "https://doi.org/10.1038/nature06562"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08851", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003023917", 
              "https://doi.org/10.1038/nature08851"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07935", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024082069", 
              "https://doi.org/10.1038/nature07935"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02041", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033616640", 
              "https://doi.org/10.1038/nature02041"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/1270", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002695839", 
              "https://doi.org/10.1038/1270"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature10160", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032178497", 
              "https://doi.org/10.1038/nature10160"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04703", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046950382", 
              "https://doi.org/10.1038/nature04703"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth762", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004001535", 
              "https://doi.org/10.1038/nmeth762"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/416854a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049019319", 
              "https://doi.org/10.1038/416854a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03572", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013490531", 
              "https://doi.org/10.1038/nature03572"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00018-002-8412-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003513790", 
              "https://doi.org/10.1007/s00018-002-8412-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature10337", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053455836", 
              "https://doi.org/10.1038/nature10337"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1430", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008586672", 
              "https://doi.org/10.1038/ng1430"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09637", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030684957", 
              "https://doi.org/10.1038/nature09637"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nm740", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011527446", 
              "https://doi.org/10.1038/nm740"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2012-01-23", 
        "datePublishedReg": "2012-01-23", 
        "description": "Key PointsStem cells reside in specialized microenvironments, known as niches. Cellular components of the niche have important roles in regulating various stem cell behaviours, including activation, dormancy, differentiation and migration.Traditionally, stem cell niches are thought to be composed of heterologous cell types derived from different lineages. Surprisingly, however, increasing evidence from both invertebrate and vertebrate stem cell systems shows that stem cell progeny themselves can also be important niche components and/or regulators of stem cell activity.In the Drosophila melanogaster male germline, progeny of the somatic cyst stem cells can contribute to their niche, which is called the 'hub'. Although this contribution may be low during steady state, certain fly mutations have been found to cause the somatic cyst stem cells to adopt a hub cell fate.In the mouse hair follicle, stem cells reside in the outermost layer of the follicle stem cell niche, which is located in an anatomical region known as the bulge. As these stem cells progress along their lineages to produce the hair and its channel, some terminally differentiated progeny end up back in the bulge, where they locate within the inner layer and function to maintain stem cell quiescence in the niche.In the intestine, fast-cycling intestinal stem cells are located at the bottom of the crypt and are interspersed by terminally differentiated progeny called Paneth cells. Reduction of Paneth cell numbers is accompanied by a concomitant reduction in the stem cell population, suggesting a possible role of Paneth cells in regulating stem cell self-renewal.In the adult haematopoietic system, most haematopoietic stem cells (HSCs) reside in the bone marrow. In this niche, regulatory T cells protect the HSCs from immune attack by making the niche an immune-privileged site. The mobilization and migration of HSCs also appears to be regulated by at least one additional HSC downstream lineage: macrophages.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/nrm3272", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2464491", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1023609", 
            "issn": [
              "1471-0072", 
              "1471-0080"
            ], 
            "name": "Nature Reviews Molecular Cell Biology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "13"
          }
        ], 
        "keywords": [
          "somatic cyst stem cells", 
          "cyst stem cells", 
          "haematopoietic stem cells", 
          "stem cells", 
          "cell niche", 
          "cell progeny", 
          "follicle stem cell niche", 
          "Key PointsStem cells", 
          "adult haematopoietic system", 
          "important niche components", 
          "stem cell system", 
          "most haematopoietic stem cells", 
          "stem cell niche", 
          "stem cell quiescence", 
          "heterologous cell types", 
          "stem cell behavior", 
          "stem cell population", 
          "stem cell activity", 
          "intestinal stem cells", 
          "mouse hair follicles", 
          "Paneth cells", 
          "downstream lineages", 
          "male germline", 
          "cell fate", 
          "different lineages", 
          "niche components", 
          "cell quiescence", 
          "specialized microenvironment", 
          "cellular components", 
          "niche", 
          "lineages", 
          "Paneth cell numbers", 
          "cell behavior", 
          "cell types", 
          "haematopoietic system", 
          "progeny", 
          "cell populations", 
          "cell system", 
          "cell number", 
          "cells", 
          "possible role", 
          "hair follicles", 
          "concomitant reduction", 
          "important role", 
          "germline", 
          "bone marrow", 
          "dormancy", 
          "regulator", 
          "migration", 
          "homeostasis", 
          "mutations", 
          "immune attack", 
          "differentiation", 
          "role", 
          "fate", 
          "cell activity", 
          "T cells", 
          "outermost layer", 
          "quiescence", 
          "activation", 
          "immune-privileged site", 
          "microenvironment", 
          "macrophages", 
          "sites", 
          "hair", 
          "components", 
          "population", 
          "marrow", 
          "crypts", 
          "intestine", 
          "activity", 
          "hub", 
          "region", 
          "function", 
          "follicles", 
          "mobilization", 
          "bulge", 
          "inner layer", 
          "evidence", 
          "number", 
          "types", 
          "regulatory T cells", 
          "anatomical regions", 
          "reduction", 
          "system", 
          "channels", 
          "bottom", 
          "contribution", 
          "steady state", 
          "state", 
          "attacks", 
          "behavior", 
          "layer", 
          "family businesses", 
          "business"
        ], 
        "name": "A family business: stem cell progeny join the niche to regulate homeostasis", 
        "pagination": "103-114", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1030000566"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nrm3272"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "22266760"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nrm3272", 
          "https://app.dimensions.ai/details/publication/pub.1030000566"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:37", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_560.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/nrm3272"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nrm3272'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nrm3272'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nrm3272'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nrm3272'


     

    This table displays all metadata directly associated to this object as RDF triples.

    357 TRIPLES      21 PREDICATES      168 URIs      123 LITERALS      18 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nrm3272 schema:about N22ad9f0c28a84f8b8097ec43ef181a61
    2 N326253a8b7a946ad9539f1bf0b651056
    3 N3d0e6b01be3d4c5b9311b6add14360e3
    4 N48d61da5bbed46f69d8de21068f103ee
    5 N8ff55324d3a346a5a1e362af341001a8
    6 N965341c584ca4a4d9d176e40541fcbc6
    7 N9e3f12863b08490db1d15b49432aabe1
    8 Nad8449f8811b4ffba2ff9f6b33631835
    9 Nd70128cef3624e10bec9434519dfb578
    10 Ne05aa35952014892938b55443aec8ede
    11 Ne35e59ab209644d0b5880f8c19267511
    12 anzsrc-for:06
    13 anzsrc-for:0601
    14 anzsrc-for:0604
    15 schema:author Nccdf3fb6f421421da960f43dbbb95a53
    16 schema:citation sg:pub.10.1007/s00018-002-8412-z
    17 sg:pub.10.1038/11078
    18 sg:pub.10.1038/1270
    19 sg:pub.10.1038/35037606
    20 sg:pub.10.1038/416854a
    21 sg:pub.10.1038/nature01458
    22 sg:pub.10.1038/nature02040
    23 sg:pub.10.1038/nature02041
    24 sg:pub.10.1038/nature03572
    25 sg:pub.10.1038/nature04703
    26 sg:pub.10.1038/nature05766
    27 sg:pub.10.1038/nature06196
    28 sg:pub.10.1038/nature06457
    29 sg:pub.10.1038/nature06562
    30 sg:pub.10.1038/nature07173
    31 sg:pub.10.1038/nature07434
    32 sg:pub.10.1038/nature07547
    33 sg:pub.10.1038/nature07639
    34 sg:pub.10.1038/nature07935
    35 sg:pub.10.1038/nature08099
    36 sg:pub.10.1038/nature08851
    37 sg:pub.10.1038/nature09262
    38 sg:pub.10.1038/nature09637
    39 sg:pub.10.1038/nature10160
    40 sg:pub.10.1038/nature10337
    41 sg:pub.10.1038/nature10357
    42 sg:pub.10.1038/nature10408
    43 sg:pub.10.1038/nbt.1517
    44 sg:pub.10.1038/nbt950
    45 sg:pub.10.1038/ncb2086
    46 sg:pub.10.1038/ng.165
    47 sg:pub.10.1038/ng.431
    48 sg:pub.10.1038/ng1430
    49 sg:pub.10.1038/nm0797-730
    50 sg:pub.10.1038/nm740
    51 sg:pub.10.1038/nmeth762
    52 schema:datePublished 2012-01-23
    53 schema:datePublishedReg 2012-01-23
    54 schema:description Key PointsStem cells reside in specialized microenvironments, known as niches. Cellular components of the niche have important roles in regulating various stem cell behaviours, including activation, dormancy, differentiation and migration.Traditionally, stem cell niches are thought to be composed of heterologous cell types derived from different lineages. Surprisingly, however, increasing evidence from both invertebrate and vertebrate stem cell systems shows that stem cell progeny themselves can also be important niche components and/or regulators of stem cell activity.In the Drosophila melanogaster male germline, progeny of the somatic cyst stem cells can contribute to their niche, which is called the 'hub'. Although this contribution may be low during steady state, certain fly mutations have been found to cause the somatic cyst stem cells to adopt a hub cell fate.In the mouse hair follicle, stem cells reside in the outermost layer of the follicle stem cell niche, which is located in an anatomical region known as the bulge. As these stem cells progress along their lineages to produce the hair and its channel, some terminally differentiated progeny end up back in the bulge, where they locate within the inner layer and function to maintain stem cell quiescence in the niche.In the intestine, fast-cycling intestinal stem cells are located at the bottom of the crypt and are interspersed by terminally differentiated progeny called Paneth cells. Reduction of Paneth cell numbers is accompanied by a concomitant reduction in the stem cell population, suggesting a possible role of Paneth cells in regulating stem cell self-renewal.In the adult haematopoietic system, most haematopoietic stem cells (HSCs) reside in the bone marrow. In this niche, regulatory T cells protect the HSCs from immune attack by making the niche an immune-privileged site. The mobilization and migration of HSCs also appears to be regulated by at least one additional HSC downstream lineage: macrophages.
    55 schema:genre article
    56 schema:isAccessibleForFree true
    57 schema:isPartOf N314cb568ad5f4b3eae2e41c2e463ea42
    58 N385b75da777a41c19ade35d9105ea1d5
    59 sg:journal.1023609
    60 schema:keywords Key PointsStem cells
    61 Paneth cell numbers
    62 Paneth cells
    63 T cells
    64 activation
    65 activity
    66 adult haematopoietic system
    67 anatomical regions
    68 attacks
    69 behavior
    70 bone marrow
    71 bottom
    72 bulge
    73 business
    74 cell activity
    75 cell behavior
    76 cell fate
    77 cell niche
    78 cell number
    79 cell populations
    80 cell progeny
    81 cell quiescence
    82 cell system
    83 cell types
    84 cells
    85 cellular components
    86 channels
    87 components
    88 concomitant reduction
    89 contribution
    90 crypts
    91 cyst stem cells
    92 different lineages
    93 differentiation
    94 dormancy
    95 downstream lineages
    96 evidence
    97 family businesses
    98 fate
    99 follicle stem cell niche
    100 follicles
    101 function
    102 germline
    103 haematopoietic stem cells
    104 haematopoietic system
    105 hair
    106 hair follicles
    107 heterologous cell types
    108 homeostasis
    109 hub
    110 immune attack
    111 immune-privileged site
    112 important niche components
    113 important role
    114 inner layer
    115 intestinal stem cells
    116 intestine
    117 layer
    118 lineages
    119 macrophages
    120 male germline
    121 marrow
    122 microenvironment
    123 migration
    124 mobilization
    125 most haematopoietic stem cells
    126 mouse hair follicles
    127 mutations
    128 niche
    129 niche components
    130 number
    131 outermost layer
    132 population
    133 possible role
    134 progeny
    135 quiescence
    136 reduction
    137 region
    138 regulator
    139 regulatory T cells
    140 role
    141 sites
    142 somatic cyst stem cells
    143 specialized microenvironment
    144 state
    145 steady state
    146 stem cell activity
    147 stem cell behavior
    148 stem cell niche
    149 stem cell population
    150 stem cell quiescence
    151 stem cell system
    152 stem cells
    153 system
    154 types
    155 schema:name A family business: stem cell progeny join the niche to regulate homeostasis
    156 schema:pagination 103-114
    157 schema:productId N3da3a225615f4e3398a4064feb9058a7
    158 N62a7f1ae12e94dd4b700bc14b4bcce0e
    159 Nddd8a3ff33994a7380f4c3ac1c1e0071
    160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030000566
    161 https://doi.org/10.1038/nrm3272
    162 schema:sdDatePublished 2022-10-01T06:37
    163 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    164 schema:sdPublisher N408dbd92fe454937bbaf5ee1a08483b0
    165 schema:url https://doi.org/10.1038/nrm3272
    166 sgo:license sg:explorer/license/
    167 sgo:sdDataset articles
    168 rdf:type schema:ScholarlyArticle
    169 N22ad9f0c28a84f8b8097ec43ef181a61 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    170 schema:name Drosophila melanogaster
    171 rdf:type schema:DefinedTerm
    172 N314cb568ad5f4b3eae2e41c2e463ea42 schema:issueNumber 2
    173 rdf:type schema:PublicationIssue
    174 N326253a8b7a946ad9539f1bf0b651056 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    175 schema:name Humans
    176 rdf:type schema:DefinedTerm
    177 N385b75da777a41c19ade35d9105ea1d5 schema:volumeNumber 13
    178 rdf:type schema:PublicationVolume
    179 N3d0e6b01be3d4c5b9311b6add14360e3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    180 schema:name Stem Cells
    181 rdf:type schema:DefinedTerm
    182 N3da3a225615f4e3398a4064feb9058a7 schema:name dimensions_id
    183 schema:value pub.1030000566
    184 rdf:type schema:PropertyValue
    185 N408dbd92fe454937bbaf5ee1a08483b0 schema:name Springer Nature - SN SciGraph project
    186 rdf:type schema:Organization
    187 N48d61da5bbed46f69d8de21068f103ee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    188 schema:name Animals
    189 rdf:type schema:DefinedTerm
    190 N62a7f1ae12e94dd4b700bc14b4bcce0e schema:name doi
    191 schema:value 10.1038/nrm3272
    192 rdf:type schema:PropertyValue
    193 N8ff55324d3a346a5a1e362af341001a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    194 schema:name Cell Division
    195 rdf:type schema:DefinedTerm
    196 N965341c584ca4a4d9d176e40541fcbc6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    197 schema:name Stem Cell Niche
    198 rdf:type schema:DefinedTerm
    199 N98b5c627612e4146afe3d642f4322683 rdf:first sg:person.0662723554.43
    200 rdf:rest rdf:nil
    201 N9e3f12863b08490db1d15b49432aabe1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    202 schema:name Signal Transduction
    203 rdf:type schema:DefinedTerm
    204 Nad8449f8811b4ffba2ff9f6b33631835 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    205 schema:name Homeostasis
    206 rdf:type schema:DefinedTerm
    207 Nccdf3fb6f421421da960f43dbbb95a53 rdf:first sg:person.01024410355.39
    208 rdf:rest N98b5c627612e4146afe3d642f4322683
    209 Nd70128cef3624e10bec9434519dfb578 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    210 schema:name Organ Specificity
    211 rdf:type schema:DefinedTerm
    212 Nddd8a3ff33994a7380f4c3ac1c1e0071 schema:name pubmed_id
    213 schema:value 22266760
    214 rdf:type schema:PropertyValue
    215 Ne05aa35952014892938b55443aec8ede schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    216 schema:name Models, Biological
    217 rdf:type schema:DefinedTerm
    218 Ne35e59ab209644d0b5880f8c19267511 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    219 schema:name Cell Movement
    220 rdf:type schema:DefinedTerm
    221 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    222 schema:name Biological Sciences
    223 rdf:type schema:DefinedTerm
    224 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    225 schema:name Biochemistry and Cell Biology
    226 rdf:type schema:DefinedTerm
    227 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    228 schema:name Genetics
    229 rdf:type schema:DefinedTerm
    230 sg:grant.2464491 http://pending.schema.org/fundedItem sg:pub.10.1038/nrm3272
    231 rdf:type schema:MonetaryGrant
    232 sg:journal.1023609 schema:issn 1471-0072
    233 1471-0080
    234 schema:name Nature Reviews Molecular Cell Biology
    235 schema:publisher Springer Nature
    236 rdf:type schema:Periodical
    237 sg:person.01024410355.39 schema:affiliation grid-institutes:grid.134907.8
    238 schema:familyName Hsu
    239 schema:givenName Ya-Chieh
    240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024410355.39
    241 rdf:type schema:Person
    242 sg:person.0662723554.43 schema:affiliation grid-institutes:grid.134907.8
    243 schema:familyName Fuchs
    244 schema:givenName Elaine
    245 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0662723554.43
    246 rdf:type schema:Person
    247 sg:pub.10.1007/s00018-002-8412-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1003513790
    248 https://doi.org/10.1007/s00018-002-8412-z
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1038/11078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032025231
    251 https://doi.org/10.1038/11078
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1038/1270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002695839
    254 https://doi.org/10.1038/1270
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1038/35037606 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023189909
    257 https://doi.org/10.1038/35037606
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1038/416854a schema:sameAs https://app.dimensions.ai/details/publication/pub.1049019319
    260 https://doi.org/10.1038/416854a
    261 rdf:type schema:CreativeWork
    262 sg:pub.10.1038/nature01458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047956904
    263 https://doi.org/10.1038/nature01458
    264 rdf:type schema:CreativeWork
    265 sg:pub.10.1038/nature02040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003509222
    266 https://doi.org/10.1038/nature02040
    267 rdf:type schema:CreativeWork
    268 sg:pub.10.1038/nature02041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033616640
    269 https://doi.org/10.1038/nature02041
    270 rdf:type schema:CreativeWork
    271 sg:pub.10.1038/nature03572 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013490531
    272 https://doi.org/10.1038/nature03572
    273 rdf:type schema:CreativeWork
    274 sg:pub.10.1038/nature04703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046950382
    275 https://doi.org/10.1038/nature04703
    276 rdf:type schema:CreativeWork
    277 sg:pub.10.1038/nature05766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039610016
    278 https://doi.org/10.1038/nature05766
    279 rdf:type schema:CreativeWork
    280 sg:pub.10.1038/nature06196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050225537
    281 https://doi.org/10.1038/nature06196
    282 rdf:type schema:CreativeWork
    283 sg:pub.10.1038/nature06457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046831536
    284 https://doi.org/10.1038/nature06457
    285 rdf:type schema:CreativeWork
    286 sg:pub.10.1038/nature06562 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033386070
    287 https://doi.org/10.1038/nature06562
    288 rdf:type schema:CreativeWork
    289 sg:pub.10.1038/nature07173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035708241
    290 https://doi.org/10.1038/nature07173
    291 rdf:type schema:CreativeWork
    292 sg:pub.10.1038/nature07434 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044960417
    293 https://doi.org/10.1038/nature07434
    294 rdf:type schema:CreativeWork
    295 sg:pub.10.1038/nature07547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050261328
    296 https://doi.org/10.1038/nature07547
    297 rdf:type schema:CreativeWork
    298 sg:pub.10.1038/nature07639 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018866560
    299 https://doi.org/10.1038/nature07639
    300 rdf:type schema:CreativeWork
    301 sg:pub.10.1038/nature07935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024082069
    302 https://doi.org/10.1038/nature07935
    303 rdf:type schema:CreativeWork
    304 sg:pub.10.1038/nature08099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011517403
    305 https://doi.org/10.1038/nature08099
    306 rdf:type schema:CreativeWork
    307 sg:pub.10.1038/nature08851 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003023917
    308 https://doi.org/10.1038/nature08851
    309 rdf:type schema:CreativeWork
    310 sg:pub.10.1038/nature09262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022774714
    311 https://doi.org/10.1038/nature09262
    312 rdf:type schema:CreativeWork
    313 sg:pub.10.1038/nature09637 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030684957
    314 https://doi.org/10.1038/nature09637
    315 rdf:type schema:CreativeWork
    316 sg:pub.10.1038/nature10160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032178497
    317 https://doi.org/10.1038/nature10160
    318 rdf:type schema:CreativeWork
    319 sg:pub.10.1038/nature10337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053455836
    320 https://doi.org/10.1038/nature10337
    321 rdf:type schema:CreativeWork
    322 sg:pub.10.1038/nature10357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053553007
    323 https://doi.org/10.1038/nature10357
    324 rdf:type schema:CreativeWork
    325 sg:pub.10.1038/nature10408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052160859
    326 https://doi.org/10.1038/nature10408
    327 rdf:type schema:CreativeWork
    328 sg:pub.10.1038/nbt.1517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033056074
    329 https://doi.org/10.1038/nbt.1517
    330 rdf:type schema:CreativeWork
    331 sg:pub.10.1038/nbt950 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050242098
    332 https://doi.org/10.1038/nbt950
    333 rdf:type schema:CreativeWork
    334 sg:pub.10.1038/ncb2086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050199712
    335 https://doi.org/10.1038/ncb2086
    336 rdf:type schema:CreativeWork
    337 sg:pub.10.1038/ng.165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025078309
    338 https://doi.org/10.1038/ng.165
    339 rdf:type schema:CreativeWork
    340 sg:pub.10.1038/ng.431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008151813
    341 https://doi.org/10.1038/ng.431
    342 rdf:type schema:CreativeWork
    343 sg:pub.10.1038/ng1430 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008586672
    344 https://doi.org/10.1038/ng1430
    345 rdf:type schema:CreativeWork
    346 sg:pub.10.1038/nm0797-730 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022333282
    347 https://doi.org/10.1038/nm0797-730
    348 rdf:type schema:CreativeWork
    349 sg:pub.10.1038/nm740 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011527446
    350 https://doi.org/10.1038/nm740
    351 rdf:type schema:CreativeWork
    352 sg:pub.10.1038/nmeth762 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004001535
    353 https://doi.org/10.1038/nmeth762
    354 rdf:type schema:CreativeWork
    355 grid-institutes:grid.134907.8 schema:alternateName Howard Hughes Medical Institute and Laboratory of Mammalian Cell Biology & Development, The Rockefeller University, 1230 York Avenue, Box 300, 10065, New York, New York, USA
    356 schema:name Howard Hughes Medical Institute and Laboratory of Mammalian Cell Biology & Development, The Rockefeller University, 1230 York Avenue, Box 300, 10065, New York, New York, USA
    357 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...