Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-01-21

AUTHORS

Chris Jopling, Stephanie Boue, Juan Carlos Izpisua Belmonte

ABSTRACT

Key PointsThe ultimate goal of regenerative medicine is to replace lost or damaged cells. This can potentially be accomplished using the processes of dedifferentiation, transdifferentiation or reprogramming.During dedifferentiation, a terminally differentiated cell reverts back to a less-differentiated stage from within its own lineage, which allows it to proliferate. Many regenerative processes have been associated with dedifferentiation.Transdifferentiation sees cells regress to a point when they can switch lineages or can also occur directly between two different cell types.Reprogramming aims to induce differentiated cells into reverting to pluripotency. From here, they can differentiate into almost any cell type.During dedifferentiation and transdifferentiation, well-defined intermediate cell types have been identified. The process of reprogramming seems to be largely stochastic.Dedifferentiation and transdifferentiation can be successfully achieved in vivo, and reprogramming facilitates genetic manipulation such as correcting disease-inducing mutations. More... »

PAGES

79-89

References to SciGraph publications

  • 2006-03-05. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells in NATURE GENETICS
  • 2008-03-02. MicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 2008-06-22. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds in NATURE BIOTECHNOLOGY
  • 2009-11-08. Direct cell reprogramming is a stochastic process amenable to acceleration in NATURE
  • 2000-04. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells in NATURE GENETICS
  • 2009-06-14. Notch controls embryonic Schwann cell differentiation, postnatal myelination and adult plasticity in NATURE NEUROSCIENCE
  • 2010-09-14. Advances in understanding tissue regenerative capacity and mechanisms in animals in NATURE REVIEWS GENETICS
  • 2010-01-27. Direct conversion of fibroblasts to functional neurons by defined factors in NATURE
  • 2010-05-02. Dynamic single-cell imaging of direct reprogramming reveals an early specifying event in NATURE BIOTECHNOLOGY
  • 2008-08-27. In vivo reprogramming of adult pancreatic exocrine cells to β-cells in NATURE
  • 2007-07-01. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells in NATURE
  • 2009-07. Cells keep a memory of their tissue origin during axolotl limb regeneration in NATURE
  • 1999-10. Commitment to the B-lymphoid lineage depends on the transcription factor Pax5 in NATURE
  • 2007-11-30. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts in NATURE BIOTECHNOLOGY
  • 2007-12. Nanog safeguards pluripotency and mediates germline development in NATURE
  • 2010-03. Primary contribution to zebrafish heart regeneration by gata4+ cardiomyocytes in NATURE
  • 2010-03-25. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation in NATURE
  • 2003-07-06. GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5 in NATURE
  • 2008-07-24. Cellular mechanisms of tumour suppression by the retinoblastoma gene in NATURE REVIEWS CANCER
  • 1995-11-01. Aberrant neural and cardiac development in mice lacking the ErbB4 neuregulin receptor in NATURE
  • 2007-05-21. Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells in NATURE CELL BIOLOGY
  • 2002-08. Plasticity and reprogramming of differentiated cells in amphibian regeneration in NATURE REVIEWS MOLECULAR CELL BIOLOGY
  • 2008-07-01. A drug-inducible transgenic system for direct reprogramming of multiple somatic cell types in NATURE BIOTECHNOLOGY
  • 2008-05. The ground state of embryonic stem cell self-renewal in NATURE
  • 2009-10-14. Human DNA methylomes at base resolution show widespread epigenomic differences in NATURE
  • 1995-11-01. Multiple essential functions of neuregulin in development in NATURE
  • 2009-08-28. Direct reprogramming of human neural stem cells by OCT4 in NATURE
  • 2008-05-28. Dissecting direct reprogramming through integrative genomic analysis in NATURE
  • 2006-04-19. Polycomb complexes repress developmental regulators in murine embryonic stem cells in NATURE
  • 2006-05-17. Chromatin in pluripotent embryonic stem cells and differentiation in NATURE REVIEWS MOLECULAR CELL BIOLOGY
  • 2010-06-09. Nuclear reprogramming to a pluripotent state by three approaches in NATURE
  • 2007-03. The Salvador–Warts–Hippo pathway — an emerging tumour-suppressor network in NATURE REVIEWS CANCER
  • 2010-07-19. Epigenetic memory in induced pluripotent stem cells in NATURE
  • 2010-04-04. Conversion of adult pancreatic α-cells to β-cells after extreme β-cell loss in NATURE
  • 1995-11-01. Requirement for neuregulin receptor erbB2 in neural and cardiac development in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nrm3043

    DOI

    http://dx.doi.org/10.1038/nrm3043

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1000970278

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/21252997


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Cycle", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Dedifferentiation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Transdifferentiation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cellular Reprogramming", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Induced Pluripotent Stem Cells", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Regenerative Medicine", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Center of Regenerative Medicine in Barcelona, Dr. Aiguader, 88, 08003, Barcelona, Spain", 
              "id": "http://www.grid.ac/institutes/grid.434617.3", 
              "name": [
                "Center of Regenerative Medicine in Barcelona, Dr. Aiguader, 88, 08003, Barcelona, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jopling", 
            "givenName": "Chris", 
            "id": "sg:person.01037332651.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037332651.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Center of Regenerative Medicine in Barcelona, Dr. Aiguader, 88, 08003, Barcelona, Spain", 
              "id": "http://www.grid.ac/institutes/grid.434617.3", 
              "name": [
                "Center of Regenerative Medicine in Barcelona, Dr. Aiguader, 88, 08003, Barcelona, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Boue", 
            "givenName": "Stephanie", 
            "id": "sg:person.01077255356.91", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077255356.91"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Salk Institute for Biological Studies, 10010 North Torrey Pines Road, 92037, La Jolla, California, USA", 
              "id": "http://www.grid.ac/institutes/grid.250671.7", 
              "name": [
                "Center of Regenerative Medicine in Barcelona, Dr. Aiguader, 88, 08003, Barcelona, Spain", 
                "Salk Institute for Biological Studies, 10010 North Torrey Pines Road, 92037, La Jolla, California, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Belmonte", 
            "givenName": "Juan Carlos Izpisua", 
            "id": "sg:person.014010175255.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014010175255.22"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/378394a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051349142", 
              "https://doi.org/10.1038/378394a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrc2070", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044856141", 
              "https://doi.org/10.1038/nrc2070"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08797", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022463782", 
              "https://doi.org/10.1038/nature08797"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/378390a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017889408", 
              "https://doi.org/10.1038/378390a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nn.2323", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018502175", 
              "https://doi.org/10.1038/nn.2323"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.1632", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046760203", 
              "https://doi.org/10.1038/nbt.1632"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07314", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005774015", 
              "https://doi.org/10.1038/nature07314"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08152", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034361762", 
              "https://doi.org/10.1038/nature08152"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06968", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004707194", 
              "https://doi.org/10.1038/nature06968"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08804", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012430772", 
              "https://doi.org/10.1038/nature08804"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1374", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002744128", 
              "https://doi.org/10.1038/nbt1374"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2879", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017462108", 
              "https://doi.org/10.1038/nrg2879"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020501792", 
              "https://doi.org/10.1038/nature06403"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrm881", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004103465", 
              "https://doi.org/10.1038/nrm881"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036216819", 
              "https://doi.org/10.1038/nature06008"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrm1938", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037338625", 
              "https://doi.org/10.1038/nrm1938"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04733", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038720785", 
              "https://doi.org/10.1038/nature04733"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09229", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047692648", 
              "https://doi.org/10.1038/nature09229"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1483", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004160248", 
              "https://doi.org/10.1038/nbt1483"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1418", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014318073", 
              "https://doi.org/10.1038/nbt1418"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncb1589", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045493237", 
              "https://doi.org/10.1038/ncb1589"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08592", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030291386", 
              "https://doi.org/10.1038/nature08592"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/74199", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018147371", 
              "https://doi.org/10.1038/74199"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08899", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021886040", 
              "https://doi.org/10.1038/nature08899"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08436", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002503252", 
              "https://doi.org/10.1038/nature08436"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nsmb.1391", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019754577", 
              "https://doi.org/10.1038/nsmb.1391"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07056", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037743725", 
              "https://doi.org/10.1038/nature07056"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/378386a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025875409", 
              "https://doi.org/10.1038/378386a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1760", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030833745", 
              "https://doi.org/10.1038/ng1760"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrc2399", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033037679", 
              "https://doi.org/10.1038/nrc2399"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08514", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001394004", 
              "https://doi.org/10.1038/nature08514"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/44076", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044447708", 
              "https://doi.org/10.1038/44076"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09342", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011424005", 
              "https://doi.org/10.1038/nature09342"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08894", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032388624", 
              "https://doi.org/10.1038/nature08894"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature01827", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053582075", 
              "https://doi.org/10.1038/nature01827"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011-01-21", 
        "datePublishedReg": "2011-01-21", 
        "description": "Key PointsThe ultimate goal of regenerative medicine is to replace lost or damaged cells. This can potentially be accomplished using the processes of dedifferentiation, transdifferentiation or reprogramming.During dedifferentiation, a terminally differentiated cell reverts back to a less-differentiated stage from within its own lineage, which allows it to proliferate. Many regenerative processes have been associated with dedifferentiation.Transdifferentiation sees cells regress to a point when they can switch lineages or can also occur directly between two different cell types.Reprogramming aims to induce differentiated cells into reverting to pluripotency. From here, they can differentiate into almost any cell type.During dedifferentiation and transdifferentiation, well-defined intermediate cell types have been identified. The process of reprogramming seems to be largely stochastic.Dedifferentiation and transdifferentiation can be successfully achieved in vivo, and reprogramming facilitates genetic manipulation such as correcting disease-inducing mutations.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/nrm3043", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2438806", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1023609", 
            "issn": [
              "1471-0072", 
              "1471-0080"
            ], 
            "name": "Nature Reviews Molecular Cell Biology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "12"
          }
        ], 
        "keywords": [
          "cell types", 
          "process of reprogramming", 
          "different cell types", 
          "disease-inducing mutations", 
          "process of dedifferentiation", 
          "own lineage", 
          "genetic manipulation", 
          "differentiated cells", 
          "intermediate cell type", 
          "reprogramming", 
          "transdifferentiation", 
          "lineages", 
          "regenerative medicine", 
          "dedifferentiation", 
          "regenerative processes", 
          "cells", 
          "pluripotency", 
          "mutations", 
          "vivo", 
          "regeneration", 
          "types", 
          "revert", 
          "manipulation", 
          "process", 
          "stage", 
          "ultimate goal", 
          "medicine", 
          "route", 
          "goal", 
          "point"
        ], 
        "name": "Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration", 
        "pagination": "79-89", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1000970278"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nrm3043"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "21252997"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nrm3043", 
          "https://app.dimensions.ai/details/publication/pub.1000970278"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-08-04T16:59", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_551.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/nrm3043"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nrm3043'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nrm3043'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nrm3043'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nrm3043'


     

    This table displays all metadata directly associated to this object as RDF triples.

    283 TRIPLES      21 PREDICATES      98 URIs      55 LITERALS      15 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nrm3043 schema:about N1bbfd05b3a5d459fb1aba9ec5de7404e
    2 N2169fd09641e4c4297b03a56731219cc
    3 N216e0e9c13624920836fe47c7fa83161
    4 N2c43a270bc444fe59e7076df9bb576c6
    5 N7199948687a546dab936ca3552771d98
    6 N7de29ec3924044fdac6a09f6634dfd70
    7 N84f1e607502446ce95b916dbee6b3c6d
    8 Nd5f2dbfb19e0428ba5857c6fd89594a0
    9 anzsrc-for:06
    10 anzsrc-for:0601
    11 schema:author N5d933709ac664c3f96aa98cd7a03fde3
    12 schema:citation sg:pub.10.1038/378386a0
    13 sg:pub.10.1038/378390a0
    14 sg:pub.10.1038/378394a0
    15 sg:pub.10.1038/44076
    16 sg:pub.10.1038/74199
    17 sg:pub.10.1038/nature01827
    18 sg:pub.10.1038/nature04733
    19 sg:pub.10.1038/nature06008
    20 sg:pub.10.1038/nature06403
    21 sg:pub.10.1038/nature06968
    22 sg:pub.10.1038/nature07056
    23 sg:pub.10.1038/nature07314
    24 sg:pub.10.1038/nature08152
    25 sg:pub.10.1038/nature08436
    26 sg:pub.10.1038/nature08514
    27 sg:pub.10.1038/nature08592
    28 sg:pub.10.1038/nature08797
    29 sg:pub.10.1038/nature08804
    30 sg:pub.10.1038/nature08894
    31 sg:pub.10.1038/nature08899
    32 sg:pub.10.1038/nature09229
    33 sg:pub.10.1038/nature09342
    34 sg:pub.10.1038/nbt.1632
    35 sg:pub.10.1038/nbt1374
    36 sg:pub.10.1038/nbt1418
    37 sg:pub.10.1038/nbt1483
    38 sg:pub.10.1038/ncb1589
    39 sg:pub.10.1038/ng1760
    40 sg:pub.10.1038/nn.2323
    41 sg:pub.10.1038/nrc2070
    42 sg:pub.10.1038/nrc2399
    43 sg:pub.10.1038/nrg2879
    44 sg:pub.10.1038/nrm1938
    45 sg:pub.10.1038/nrm881
    46 sg:pub.10.1038/nsmb.1391
    47 schema:datePublished 2011-01-21
    48 schema:datePublishedReg 2011-01-21
    49 schema:description Key PointsThe ultimate goal of regenerative medicine is to replace lost or damaged cells. This can potentially be accomplished using the processes of dedifferentiation, transdifferentiation or reprogramming.During dedifferentiation, a terminally differentiated cell reverts back to a less-differentiated stage from within its own lineage, which allows it to proliferate. Many regenerative processes have been associated with dedifferentiation.Transdifferentiation sees cells regress to a point when they can switch lineages or can also occur directly between two different cell types.Reprogramming aims to induce differentiated cells into reverting to pluripotency. From here, they can differentiate into almost any cell type.During dedifferentiation and transdifferentiation, well-defined intermediate cell types have been identified. The process of reprogramming seems to be largely stochastic.Dedifferentiation and transdifferentiation can be successfully achieved in vivo, and reprogramming facilitates genetic manipulation such as correcting disease-inducing mutations.
    50 schema:genre article
    51 schema:isAccessibleForFree false
    52 schema:isPartOf N30061e18607a43259e04b535da54b548
    53 Nf902cd07f9da446fbadf5bc96bacb09a
    54 sg:journal.1023609
    55 schema:keywords cell types
    56 cells
    57 dedifferentiation
    58 different cell types
    59 differentiated cells
    60 disease-inducing mutations
    61 genetic manipulation
    62 goal
    63 intermediate cell type
    64 lineages
    65 manipulation
    66 medicine
    67 mutations
    68 own lineage
    69 pluripotency
    70 point
    71 process
    72 process of dedifferentiation
    73 process of reprogramming
    74 regeneration
    75 regenerative medicine
    76 regenerative processes
    77 reprogramming
    78 revert
    79 route
    80 stage
    81 transdifferentiation
    82 types
    83 ultimate goal
    84 vivo
    85 schema:name Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration
    86 schema:pagination 79-89
    87 schema:productId N731dcf57593842abaebdfcf269abafed
    88 N9574db0dfc924c30b417810f7265f56d
    89 Nfd82d08953dd4992bb0a446a395bd572
    90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000970278
    91 https://doi.org/10.1038/nrm3043
    92 schema:sdDatePublished 2022-08-04T16:59
    93 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    94 schema:sdPublisher N362290380b7c4448ae9c3aba3a299e88
    95 schema:url https://doi.org/10.1038/nrm3043
    96 sgo:license sg:explorer/license/
    97 sgo:sdDataset articles
    98 rdf:type schema:ScholarlyArticle
    99 N0d3b8e2866b14dee9023acc771c06406 rdf:first sg:person.014010175255.22
    100 rdf:rest rdf:nil
    101 N1bbfd05b3a5d459fb1aba9ec5de7404e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    102 schema:name Cell Dedifferentiation
    103 rdf:type schema:DefinedTerm
    104 N2169fd09641e4c4297b03a56731219cc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    105 schema:name Cellular Reprogramming
    106 rdf:type schema:DefinedTerm
    107 N216e0e9c13624920836fe47c7fa83161 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    108 schema:name Animals
    109 rdf:type schema:DefinedTerm
    110 N2c43a270bc444fe59e7076df9bb576c6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    111 schema:name Cell Transdifferentiation
    112 rdf:type schema:DefinedTerm
    113 N30061e18607a43259e04b535da54b548 schema:issueNumber 2
    114 rdf:type schema:PublicationIssue
    115 N362290380b7c4448ae9c3aba3a299e88 schema:name Springer Nature - SN SciGraph project
    116 rdf:type schema:Organization
    117 N5d933709ac664c3f96aa98cd7a03fde3 rdf:first sg:person.01037332651.10
    118 rdf:rest N620935c28fb14d27a4f9134a5f8f3c57
    119 N620935c28fb14d27a4f9134a5f8f3c57 rdf:first sg:person.01077255356.91
    120 rdf:rest N0d3b8e2866b14dee9023acc771c06406
    121 N7199948687a546dab936ca3552771d98 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    122 schema:name Humans
    123 rdf:type schema:DefinedTerm
    124 N731dcf57593842abaebdfcf269abafed schema:name dimensions_id
    125 schema:value pub.1000970278
    126 rdf:type schema:PropertyValue
    127 N7de29ec3924044fdac6a09f6634dfd70 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    128 schema:name Regenerative Medicine
    129 rdf:type schema:DefinedTerm
    130 N84f1e607502446ce95b916dbee6b3c6d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name Cell Cycle
    132 rdf:type schema:DefinedTerm
    133 N9574db0dfc924c30b417810f7265f56d schema:name doi
    134 schema:value 10.1038/nrm3043
    135 rdf:type schema:PropertyValue
    136 Nd5f2dbfb19e0428ba5857c6fd89594a0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    137 schema:name Induced Pluripotent Stem Cells
    138 rdf:type schema:DefinedTerm
    139 Nf902cd07f9da446fbadf5bc96bacb09a schema:volumeNumber 12
    140 rdf:type schema:PublicationVolume
    141 Nfd82d08953dd4992bb0a446a395bd572 schema:name pubmed_id
    142 schema:value 21252997
    143 rdf:type schema:PropertyValue
    144 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    145 schema:name Biological Sciences
    146 rdf:type schema:DefinedTerm
    147 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    148 schema:name Biochemistry and Cell Biology
    149 rdf:type schema:DefinedTerm
    150 sg:grant.2438806 http://pending.schema.org/fundedItem sg:pub.10.1038/nrm3043
    151 rdf:type schema:MonetaryGrant
    152 sg:journal.1023609 schema:issn 1471-0072
    153 1471-0080
    154 schema:name Nature Reviews Molecular Cell Biology
    155 schema:publisher Springer Nature
    156 rdf:type schema:Periodical
    157 sg:person.01037332651.10 schema:affiliation grid-institutes:grid.434617.3
    158 schema:familyName Jopling
    159 schema:givenName Chris
    160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037332651.10
    161 rdf:type schema:Person
    162 sg:person.01077255356.91 schema:affiliation grid-institutes:grid.434617.3
    163 schema:familyName Boue
    164 schema:givenName Stephanie
    165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077255356.91
    166 rdf:type schema:Person
    167 sg:person.014010175255.22 schema:affiliation grid-institutes:grid.250671.7
    168 schema:familyName Belmonte
    169 schema:givenName Juan Carlos Izpisua
    170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014010175255.22
    171 rdf:type schema:Person
    172 sg:pub.10.1038/378386a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025875409
    173 https://doi.org/10.1038/378386a0
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1038/378390a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017889408
    176 https://doi.org/10.1038/378390a0
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1038/378394a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051349142
    179 https://doi.org/10.1038/378394a0
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1038/44076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044447708
    182 https://doi.org/10.1038/44076
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1038/74199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018147371
    185 https://doi.org/10.1038/74199
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1038/nature01827 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053582075
    188 https://doi.org/10.1038/nature01827
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1038/nature04733 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038720785
    191 https://doi.org/10.1038/nature04733
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1038/nature06008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036216819
    194 https://doi.org/10.1038/nature06008
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1038/nature06403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020501792
    197 https://doi.org/10.1038/nature06403
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1038/nature06968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004707194
    200 https://doi.org/10.1038/nature06968
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1038/nature07056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037743725
    203 https://doi.org/10.1038/nature07056
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1038/nature07314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005774015
    206 https://doi.org/10.1038/nature07314
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1038/nature08152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034361762
    209 https://doi.org/10.1038/nature08152
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1038/nature08436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002503252
    212 https://doi.org/10.1038/nature08436
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1038/nature08514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001394004
    215 https://doi.org/10.1038/nature08514
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1038/nature08592 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030291386
    218 https://doi.org/10.1038/nature08592
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1038/nature08797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022463782
    221 https://doi.org/10.1038/nature08797
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1038/nature08804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012430772
    224 https://doi.org/10.1038/nature08804
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1038/nature08894 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032388624
    227 https://doi.org/10.1038/nature08894
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1038/nature08899 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021886040
    230 https://doi.org/10.1038/nature08899
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1038/nature09229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047692648
    233 https://doi.org/10.1038/nature09229
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1038/nature09342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011424005
    236 https://doi.org/10.1038/nature09342
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1038/nbt.1632 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046760203
    239 https://doi.org/10.1038/nbt.1632
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1038/nbt1374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002744128
    242 https://doi.org/10.1038/nbt1374
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1038/nbt1418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014318073
    245 https://doi.org/10.1038/nbt1418
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1038/nbt1483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004160248
    248 https://doi.org/10.1038/nbt1483
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1038/ncb1589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045493237
    251 https://doi.org/10.1038/ncb1589
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1038/ng1760 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030833745
    254 https://doi.org/10.1038/ng1760
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1038/nn.2323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018502175
    257 https://doi.org/10.1038/nn.2323
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1038/nrc2070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044856141
    260 https://doi.org/10.1038/nrc2070
    261 rdf:type schema:CreativeWork
    262 sg:pub.10.1038/nrc2399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033037679
    263 https://doi.org/10.1038/nrc2399
    264 rdf:type schema:CreativeWork
    265 sg:pub.10.1038/nrg2879 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017462108
    266 https://doi.org/10.1038/nrg2879
    267 rdf:type schema:CreativeWork
    268 sg:pub.10.1038/nrm1938 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037338625
    269 https://doi.org/10.1038/nrm1938
    270 rdf:type schema:CreativeWork
    271 sg:pub.10.1038/nrm881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004103465
    272 https://doi.org/10.1038/nrm881
    273 rdf:type schema:CreativeWork
    274 sg:pub.10.1038/nsmb.1391 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019754577
    275 https://doi.org/10.1038/nsmb.1391
    276 rdf:type schema:CreativeWork
    277 grid-institutes:grid.250671.7 schema:alternateName Salk Institute for Biological Studies, 10010 North Torrey Pines Road, 92037, La Jolla, California, USA
    278 schema:name Center of Regenerative Medicine in Barcelona, Dr. Aiguader, 88, 08003, Barcelona, Spain
    279 Salk Institute for Biological Studies, 10010 North Torrey Pines Road, 92037, La Jolla, California, USA
    280 rdf:type schema:Organization
    281 grid-institutes:grid.434617.3 schema:alternateName Center of Regenerative Medicine in Barcelona, Dr. Aiguader, 88, 08003, Barcelona, Spain
    282 schema:name Center of Regenerative Medicine in Barcelona, Dr. Aiguader, 88, 08003, Barcelona, Spain
    283 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...