Molecular mechanisms of organelle inheritance: lessons from peroxisomes in yeast View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-08-18

AUTHORS

Andrei Fagarasanu, Fred D. Mast, Barbara Knoblach, Richard A. Rachubinski

ABSTRACT

Key PointsThe cytoplasm of eukaryotic cells is elaborately subdivided into membrane-bound compartments called organelles, each precisely tailored for a defined set of biochemical reactions. Cells must maintain their organelle populations to retain the benefits of having organelles.With each division, cells duplicate their organelles and distribute them equitably between the two resultant cells, thus ensuring the faithful transmission of the organelles to future generations.During the past decade, considerable advances have been made towards understanding the molecular mechanisms of organelle inheritance in the budding yeast Saccharomyces cerevisiae. This has facilitated the study of organelle inheritance because the growth of S. cerevisiae is highly polarized, with a mother cell forming a bud that is initially much smaller than itself.Peroxisomes are ubiquitous organelles that contain enzymes responsible for multiple biochemical pathways, notably the β-oxidation of fatty acids and the metabolism of hydrogen peroxide.Peroxisome inheritance in S. cerevisiae is achieved through the directional movement of a subset of peroxisomes to the growing bud, concomitant with the retention of the remaining peroxisomes in the mother cell.Cellular components involved specifically in both peroxisome retention and movement have recently come to light. It is now clear that the regulation of these components is influenced by cell cycle cues and the extent of the peroxisome transfer to the bud, to ultimately achieve a fair and harmonious distribution of these organelles at cell division.One concept that is beginning to emerge is that, even though each organelle uses specific molecular components to ensure its inheritance by future generations, a set of fundamental rules apply to all mechanisms of organelle inheritance. More... »

PAGES

644-654

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nrm2960

DOI

http://dx.doi.org/10.1038/nrm2960

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1025515850

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20717147


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Regulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Organelles", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Peroxisomes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Saccharomyces cerevisiae", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Saccharomyces cerevisiae Proteins", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Cell Biology, University of Alberta, Medical Sciences Building 514, T6G 2H7, Edmonton, Alberta, Canada", 
          "id": "http://www.grid.ac/institutes/grid.17089.37", 
          "name": [
            "Department of Cell Biology, University of Alberta, Medical Sciences Building 514, T6G 2H7, Edmonton, Alberta, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fagarasanu", 
        "givenName": "Andrei", 
        "id": "sg:person.0661460612.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661460612.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Cell Biology, University of Alberta, Medical Sciences Building 514, T6G 2H7, Edmonton, Alberta, Canada", 
          "id": "http://www.grid.ac/institutes/grid.17089.37", 
          "name": [
            "Department of Cell Biology, University of Alberta, Medical Sciences Building 514, T6G 2H7, Edmonton, Alberta, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mast", 
        "givenName": "Fred D.", 
        "id": "sg:person.0777156240.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777156240.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Cell Biology, University of Alberta, Medical Sciences Building 514, T6G 2H7, Edmonton, Alberta, Canada", 
          "id": "http://www.grid.ac/institutes/grid.17089.37", 
          "name": [
            "Department of Cell Biology, University of Alberta, Medical Sciences Building 514, T6G 2H7, Edmonton, Alberta, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Knoblach", 
        "givenName": "Barbara", 
        "id": "sg:person.01044730045.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044730045.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Cell Biology, University of Alberta, Medical Sciences Building 514, T6G 2H7, Edmonton, Alberta, Canada", 
          "id": "http://www.grid.ac/institutes/grid.17089.37", 
          "name": [
            "Department of Cell Biology, University of Alberta, Medical Sciences Building 514, T6G 2H7, Edmonton, Alberta, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rachubinski", 
        "givenName": "Richard A.", 
        "id": "sg:person.01212415532.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212415532.62"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/ncb718", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050922294", 
          "https://doi.org/10.1038/ncb718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00418-008-0396-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025662453", 
          "https://doi.org/10.1007/s00418-008-0396-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncb719", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015561031", 
          "https://doi.org/10.1038/ncb719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrm1892", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019552019", 
          "https://doi.org/10.1038/nrm1892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047075953", 
          "https://doi.org/10.1038/nature01453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncb834", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041500941", 
          "https://doi.org/10.1038/ncb834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrm1313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023258012", 
          "https://doi.org/10.1038/nrm1313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35023024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037308963", 
          "https://doi.org/10.1038/35023024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncb770", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048291238", 
          "https://doi.org/10.1038/ncb770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s004250050566", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015435132", 
          "https://doi.org/10.1007/s004250050566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrm2179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005678930", 
          "https://doi.org/10.1038/nrm2179"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-08-18", 
    "datePublishedReg": "2010-08-18", 
    "description": "Key PointsThe cytoplasm of eukaryotic cells is elaborately subdivided into membrane-bound compartments called organelles, each precisely tailored for a defined set of biochemical reactions. Cells must maintain their organelle populations to retain the benefits of having organelles.With each division, cells duplicate their organelles and distribute them equitably between the two resultant cells, thus ensuring the faithful transmission of the organelles to future generations.During the past decade, considerable advances have been made towards understanding the molecular mechanisms of organelle inheritance in the budding yeast Saccharomyces cerevisiae. This has facilitated the study of organelle inheritance because the growth of S. cerevisiae is highly polarized, with a mother cell forming a bud that is initially much smaller than itself.Peroxisomes are ubiquitous organelles that contain enzymes responsible for multiple biochemical pathways, notably the \u03b2-oxidation of fatty acids and the metabolism of hydrogen peroxide.Peroxisome inheritance in S. cerevisiae is achieved through the directional movement of a subset of peroxisomes to the growing bud, concomitant with the retention of the remaining peroxisomes in the mother cell.Cellular components involved specifically in both peroxisome retention and movement have recently come to light. It is now clear that the regulation of these components is influenced by cell cycle cues and the extent of the peroxisome transfer to the bud, to ultimately achieve a fair and harmonious distribution of these organelles at cell division.One concept that is beginning to emerge is that, even though each organelle uses specific molecular components to ensure its inheritance by future generations, a set of fundamental rules apply to all mechanisms of organelle inheritance.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/nrm2960", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1023609", 
        "issn": [
          "1471-0072", 
          "1471-0080"
        ], 
        "name": "Nature Reviews Molecular Cell Biology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "keywords": [
      "organelle inheritance", 
      "mother cells", 
      "S. cerevisiae", 
      "molecular mechanisms", 
      "cell cycle cues", 
      "membrane-bound compartments", 
      "subset of peroxisomes", 
      "specific molecular components", 
      "multiple biochemical pathways", 
      "peroxisome inheritance", 
      "ubiquitous organelles", 
      "eukaryotic cells", 
      "yeast Saccharomyces", 
      "organelle populations", 
      "faithful transmission", 
      "cell division", 
      "biochemical pathways", 
      "organelles", 
      "cellular components", 
      "molecular components", 
      "\u03b2-oxidation", 
      "peroxisomes", 
      "resultant cells", 
      "directional movement", 
      "cerevisiae", 
      "inheritance", 
      "buds", 
      "biochemical reactions", 
      "fatty acids", 
      "cells", 
      "hydrogen peroxide", 
      "Saccharomyces", 
      "division", 
      "yeast", 
      "cytoplasm", 
      "mechanism", 
      "considerable advances", 
      "enzyme", 
      "regulation", 
      "pathway", 
      "compartments", 
      "metabolism", 
      "harmonious distribution", 
      "growth", 
      "cues", 
      "components", 
      "acid", 
      "future generations", 
      "past decade", 
      "population", 
      "peroxide", 
      "fundamental rules", 
      "generation", 
      "advances", 
      "subset", 
      "movement", 
      "retention", 
      "light", 
      "distribution", 
      "set", 
      "extent", 
      "transfer", 
      "decades", 
      "study", 
      "transmission", 
      "reaction", 
      "benefits", 
      "concept", 
      "lessons", 
      "rules"
    ], 
    "name": "Molecular mechanisms of organelle inheritance: lessons from peroxisomes in yeast", 
    "pagination": "644-654", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1025515850"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nrm2960"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20717147"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nrm2960", 
      "https://app.dimensions.ai/details/publication/pub.1025515850"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T20:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_522.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/nrm2960"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nrm2960'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nrm2960'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nrm2960'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nrm2960'


 

This table displays all metadata directly associated to this object as RDF triples.

216 TRIPLES      21 PREDICATES      111 URIs      92 LITERALS      12 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nrm2960 schema:about N08b52c5c63c14389a637d3b86e0fb33c
2 N1e340637939c43b6bf2447e7124fcd46
3 N24f0ae95dfae49678561cd2abca2e8fb
4 N7e497b705cc54adc85f518755d39bc68
5 Nf0c9a2bb15c14d47a3da9796797c9d2d
6 anzsrc-for:06
7 anzsrc-for:0601
8 schema:author Nd5b37177509d4e22af97b56dca180ab0
9 schema:citation sg:pub.10.1007/s00418-008-0396-9
10 sg:pub.10.1007/s004250050566
11 sg:pub.10.1038/35023024
12 sg:pub.10.1038/nature01453
13 sg:pub.10.1038/ncb718
14 sg:pub.10.1038/ncb719
15 sg:pub.10.1038/ncb770
16 sg:pub.10.1038/ncb834
17 sg:pub.10.1038/nrm1313
18 sg:pub.10.1038/nrm1892
19 sg:pub.10.1038/nrm2179
20 schema:datePublished 2010-08-18
21 schema:datePublishedReg 2010-08-18
22 schema:description Key PointsThe cytoplasm of eukaryotic cells is elaborately subdivided into membrane-bound compartments called organelles, each precisely tailored for a defined set of biochemical reactions. Cells must maintain their organelle populations to retain the benefits of having organelles.With each division, cells duplicate their organelles and distribute them equitably between the two resultant cells, thus ensuring the faithful transmission of the organelles to future generations.During the past decade, considerable advances have been made towards understanding the molecular mechanisms of organelle inheritance in the budding yeast Saccharomyces cerevisiae. This has facilitated the study of organelle inheritance because the growth of S. cerevisiae is highly polarized, with a mother cell forming a bud that is initially much smaller than itself.Peroxisomes are ubiquitous organelles that contain enzymes responsible for multiple biochemical pathways, notably the β-oxidation of fatty acids and the metabolism of hydrogen peroxide.Peroxisome inheritance in S. cerevisiae is achieved through the directional movement of a subset of peroxisomes to the growing bud, concomitant with the retention of the remaining peroxisomes in the mother cell.Cellular components involved specifically in both peroxisome retention and movement have recently come to light. It is now clear that the regulation of these components is influenced by cell cycle cues and the extent of the peroxisome transfer to the bud, to ultimately achieve a fair and harmonious distribution of these organelles at cell division.One concept that is beginning to emerge is that, even though each organelle uses specific molecular components to ensure its inheritance by future generations, a set of fundamental rules apply to all mechanisms of organelle inheritance.
23 schema:genre article
24 schema:isAccessibleForFree false
25 schema:isPartOf N3e3180b9ef4d4a189f6e1f8405a13839
26 Nae0af5ee3c044103a3a31c7e226709cc
27 sg:journal.1023609
28 schema:keywords S. cerevisiae
29 Saccharomyces
30 acid
31 advances
32 benefits
33 biochemical pathways
34 biochemical reactions
35 buds
36 cell cycle cues
37 cell division
38 cells
39 cellular components
40 cerevisiae
41 compartments
42 components
43 concept
44 considerable advances
45 cues
46 cytoplasm
47 decades
48 directional movement
49 distribution
50 division
51 enzyme
52 eukaryotic cells
53 extent
54 faithful transmission
55 fatty acids
56 fundamental rules
57 future generations
58 generation
59 growth
60 harmonious distribution
61 hydrogen peroxide
62 inheritance
63 lessons
64 light
65 mechanism
66 membrane-bound compartments
67 metabolism
68 molecular components
69 molecular mechanisms
70 mother cells
71 movement
72 multiple biochemical pathways
73 organelle inheritance
74 organelle populations
75 organelles
76 past decade
77 pathway
78 peroxide
79 peroxisome inheritance
80 peroxisomes
81 population
82 reaction
83 regulation
84 resultant cells
85 retention
86 rules
87 set
88 specific molecular components
89 study
90 subset
91 subset of peroxisomes
92 transfer
93 transmission
94 ubiquitous organelles
95 yeast
96 yeast Saccharomyces
97 β-oxidation
98 schema:name Molecular mechanisms of organelle inheritance: lessons from peroxisomes in yeast
99 schema:pagination 644-654
100 schema:productId N0c6ba061b0694416a5b301023307e7a5
101 N93b4ba503f7f428f8c60b018f722c2db
102 Nba4dc7377c4b42f5b599a6a9dfee3ef0
103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025515850
104 https://doi.org/10.1038/nrm2960
105 schema:sdDatePublished 2022-11-24T20:55
106 schema:sdLicense https://scigraph.springernature.com/explorer/license/
107 schema:sdPublisher N735f4a38fa3f41b29d07dbd0cad64837
108 schema:url https://doi.org/10.1038/nrm2960
109 sgo:license sg:explorer/license/
110 sgo:sdDataset articles
111 rdf:type schema:ScholarlyArticle
112 N08b52c5c63c14389a637d3b86e0fb33c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Saccharomyces cerevisiae
114 rdf:type schema:DefinedTerm
115 N0c6ba061b0694416a5b301023307e7a5 schema:name dimensions_id
116 schema:value pub.1025515850
117 rdf:type schema:PropertyValue
118 N1e340637939c43b6bf2447e7124fcd46 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Gene Expression Regulation
120 rdf:type schema:DefinedTerm
121 N24f0ae95dfae49678561cd2abca2e8fb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Saccharomyces cerevisiae Proteins
123 rdf:type schema:DefinedTerm
124 N3e3180b9ef4d4a189f6e1f8405a13839 schema:volumeNumber 11
125 rdf:type schema:PublicationVolume
126 N684df32ada714c6daef0b95b04961163 rdf:first sg:person.01044730045.69
127 rdf:rest N6c1f358829764d668d5d0053bc61fa05
128 N6c1f358829764d668d5d0053bc61fa05 rdf:first sg:person.01212415532.62
129 rdf:rest rdf:nil
130 N735f4a38fa3f41b29d07dbd0cad64837 schema:name Springer Nature - SN SciGraph project
131 rdf:type schema:Organization
132 N7e497b705cc54adc85f518755d39bc68 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Organelles
134 rdf:type schema:DefinedTerm
135 N93b4ba503f7f428f8c60b018f722c2db schema:name doi
136 schema:value 10.1038/nrm2960
137 rdf:type schema:PropertyValue
138 Nae0af5ee3c044103a3a31c7e226709cc schema:issueNumber 9
139 rdf:type schema:PublicationIssue
140 Nba4dc7377c4b42f5b599a6a9dfee3ef0 schema:name pubmed_id
141 schema:value 20717147
142 rdf:type schema:PropertyValue
143 Nd42ca3dd18004c0f9e4edafd17091de3 rdf:first sg:person.0777156240.64
144 rdf:rest N684df32ada714c6daef0b95b04961163
145 Nd5b37177509d4e22af97b56dca180ab0 rdf:first sg:person.0661460612.05
146 rdf:rest Nd42ca3dd18004c0f9e4edafd17091de3
147 Nf0c9a2bb15c14d47a3da9796797c9d2d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Peroxisomes
149 rdf:type schema:DefinedTerm
150 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
151 schema:name Biological Sciences
152 rdf:type schema:DefinedTerm
153 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
154 schema:name Biochemistry and Cell Biology
155 rdf:type schema:DefinedTerm
156 sg:journal.1023609 schema:issn 1471-0072
157 1471-0080
158 schema:name Nature Reviews Molecular Cell Biology
159 schema:publisher Springer Nature
160 rdf:type schema:Periodical
161 sg:person.01044730045.69 schema:affiliation grid-institutes:grid.17089.37
162 schema:familyName Knoblach
163 schema:givenName Barbara
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044730045.69
165 rdf:type schema:Person
166 sg:person.01212415532.62 schema:affiliation grid-institutes:grid.17089.37
167 schema:familyName Rachubinski
168 schema:givenName Richard A.
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212415532.62
170 rdf:type schema:Person
171 sg:person.0661460612.05 schema:affiliation grid-institutes:grid.17089.37
172 schema:familyName Fagarasanu
173 schema:givenName Andrei
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661460612.05
175 rdf:type schema:Person
176 sg:person.0777156240.64 schema:affiliation grid-institutes:grid.17089.37
177 schema:familyName Mast
178 schema:givenName Fred D.
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777156240.64
180 rdf:type schema:Person
181 sg:pub.10.1007/s00418-008-0396-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025662453
182 https://doi.org/10.1007/s00418-008-0396-9
183 rdf:type schema:CreativeWork
184 sg:pub.10.1007/s004250050566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015435132
185 https://doi.org/10.1007/s004250050566
186 rdf:type schema:CreativeWork
187 sg:pub.10.1038/35023024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037308963
188 https://doi.org/10.1038/35023024
189 rdf:type schema:CreativeWork
190 sg:pub.10.1038/nature01453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047075953
191 https://doi.org/10.1038/nature01453
192 rdf:type schema:CreativeWork
193 sg:pub.10.1038/ncb718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050922294
194 https://doi.org/10.1038/ncb718
195 rdf:type schema:CreativeWork
196 sg:pub.10.1038/ncb719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015561031
197 https://doi.org/10.1038/ncb719
198 rdf:type schema:CreativeWork
199 sg:pub.10.1038/ncb770 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048291238
200 https://doi.org/10.1038/ncb770
201 rdf:type schema:CreativeWork
202 sg:pub.10.1038/ncb834 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041500941
203 https://doi.org/10.1038/ncb834
204 rdf:type schema:CreativeWork
205 sg:pub.10.1038/nrm1313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023258012
206 https://doi.org/10.1038/nrm1313
207 rdf:type schema:CreativeWork
208 sg:pub.10.1038/nrm1892 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019552019
209 https://doi.org/10.1038/nrm1892
210 rdf:type schema:CreativeWork
211 sg:pub.10.1038/nrm2179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005678930
212 https://doi.org/10.1038/nrm2179
213 rdf:type schema:CreativeWork
214 grid-institutes:grid.17089.37 schema:alternateName Department of Cell Biology, University of Alberta, Medical Sciences Building 514, T6G 2H7, Edmonton, Alberta, Canada
215 schema:name Department of Cell Biology, University of Alberta, Medical Sciences Building 514, T6G 2H7, Edmonton, Alberta, Canada
216 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...