ATR: an essential regulator of genome integrity View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-07-02

AUTHORS

Karlene A. Cimprich, David Cortez

ABSTRACT

Key PointsAtaxia-telangiectasia mutated (ATM) and RAD3-related (ATR) is a member of the phosphoinositide 3-kinase (PI3K)-related family of protein kinases, which includes ATM, that regulates DNA-damage responses to maintain genome integrity.A common DNA structure — single-stranded DNA (ssDNA) with a 5′ double-stranded primer junction — is responsible in most instances for ATR activation.ATR binds to a protein cofactor, ATR-interacting protein (ATRIP), that regulates ATR localization and activation.Topoisomerase-binding protein-1 (TOPBP1) directly activates ATR–ATRIP complexes. Its recruitment to DNA lesions is promoted by the 9-1-1 checkpoint clamp.ATR signals to regulate DNA replication, cell-cycle transitions and DNA repair through the phosphorylation of hundreds of substrates, including checkpoint kinase-1 (CHK1) and the minichromosome maintenance (MCM) helicase complex.ATM and ATR have overlapping but non-redundant functions in the DNA-damage response. Crosstalk between these pathways often occurs as a consequence of interconversion of the activating DNA lesions.ATR is essential for the survival of most replicating cells, perhaps because of the ubiquitous presence of DNA lesions and replication stress. More... »

PAGES

616-627

References to SciGraph publications

  • 2006-07-09. ATM mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles in NATURE GENETICS
  • 2004-06-27. ATR and ATM regulate the timing of DNA replication origin firing in NATURE CELL BIOLOGY
  • 2005-12-04. ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks in NATURE CELL BIOLOGY
  • 2001-06. ATR/ATM-mediated phosphorylation of human Rad17 is required for genotoxic stress responses in NATURE
  • 2003-03-17. A splicing mutation affecting expression of ataxia–telangiectasia and Rad3–related protein (ATR) results in Seckel syndrome in NATURE GENETICS
  • 2007-01-29. Regulation of ATR-dependent pathways by the FHA domain containing protein SNIP1 in ONCOGENE
  • 1993-04. Instability and decay of the primary structure of DNA in NATURE
  • 2003-06-17. Electron microscopy and 3D reconstructions reveal that human ATM kinase uses an arm-like domain to clamp around double-stranded DNA in ONCOGENE
  • 2005-04. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis in NATURE
  • 2005-04. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions in NATURE
  • 2001-08-01. Regulation of DNA replication fork progression through damaged DNA by the Mec1/Rad53 checkpoint in NATURE
  • 1998-10. Regulation of DNA-replication origins during cell-cycle progression in NATURE
  • 2005-03-02. Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage in NATURE
  • 2006-07-24. ATR-dependent checkpoint modulates XPA nuclear import in response to UV irradiation in ONCOGENE
  • 2007-12-19. Checkpoint independence of most DNA replication origins in fission yeast in BMC MOLECULAR AND CELL BIOLOGY
  • 2005-08-19. The Concept of Synthetic Lethality in the Context of Anticancer Therapy in NATURE REVIEWS CANCER
  • 2003-01-20. Repeated phosphopeptide motifs in Claspin mediate the regulated binding of Chk1 in NATURE CELL BIOLOGY
  • 2003-01. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation in NATURE
  • 2003-03-11. Werner's syndrome protein is phosphorylated in an ATR/ATM-dependent manner following replication arrest and DNA damage induced during the S phase of the cell cycle in ONCOGENE
  • 2000-03. The importance of repairing stalled replication forks in NATURE
  • 2000-09-09. Temporally coordinated assembly and disassembly of replication factories in the absence of DNA synthesis in NATURE CELL BIOLOGY
  • 2006-02-13. Recruitment of ATR to sites of ionising radiation-induced DNA damage requires ATM and components of the MRN protein complex in ONCOGENE
  • Journal

    TITLE

    Nature Reviews Molecular Cell Biology

    ISSUE

    8

    VOLUME

    9

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nrm2450

    DOI

    http://dx.doi.org/10.1038/nrm2450

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1034641993

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/18594563


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Ataxia Telangiectasia Mutated Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Carrier Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Cycle Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA Damage", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA-Binding Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genomic Instability", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Biological", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nuclear Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Protein Processing, Post-Translational", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Protein Serine-Threonine Kinases", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Signal Transduction", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Chemical and Systems Biology, Stanford University School of Medicine, Clark Center, 318 Campus Drive, W350B, 94305-5441, Stanford, California, USA", 
              "id": "http://www.grid.ac/institutes/grid.168010.e", 
              "name": [
                "Department of Chemical and Systems Biology, Stanford University School of Medicine, Clark Center, 318 Campus Drive, W350B, 94305-5441, Stanford, California, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cimprich", 
            "givenName": "Karlene A.", 
            "id": "sg:person.01123357462.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123357462.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biochemistry, Vanderbilt University School of Medicine, 613 Light Hall, 23rd @ Pierce Avenue, 37232, Nashville, Tennesee, USA", 
              "id": "http://www.grid.ac/institutes/grid.152326.1", 
              "name": [
                "Department of Biochemistry, Vanderbilt University School of Medicine, 613 Light Hall, 23rd @ Pierce Avenue, 37232, Nashville, Tennesee, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cortez", 
            "givenName": "David", 
            "id": "sg:person.0632255761.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632255761.45"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nature01368", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002815475", 
              "https://doi.org/10.1038/nature01368"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35087607", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008603300", 
              "https://doi.org/10.1038/35087607"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncb1145", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026679380", 
              "https://doi.org/10.1038/ncb1145"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03482", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037091000", 
              "https://doi.org/10.1038/nature03482"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1837", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046588350", 
              "https://doi.org/10.1038/ng1837"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2199-8-112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043919362", 
              "https://doi.org/10.1186/1471-2199-8-112"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03442", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015088298", 
              "https://doi.org/10.1038/nature03442"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/27007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004067806", 
              "https://doi.org/10.1038/27007"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35082110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028327839", 
              "https://doi.org/10.1038/35082110"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35036309", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006757017", 
              "https://doi.org/10.1038/35036309"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/362709a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019428971", 
              "https://doi.org/10.1038/362709a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncb1337", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029720893", 
              "https://doi.org/10.1038/ncb1337"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03485", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005294665", 
              "https://doi.org/10.1038/nature03485"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1129", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001864576", 
              "https://doi.org/10.1038/ng1129"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35003501", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038746059", 
              "https://doi.org/10.1038/35003501"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.onc.1209828", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013064274", 
              "https://doi.org/10.1038/sj.onc.1209828"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.onc.1210233", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043365428", 
              "https://doi.org/10.1038/sj.onc.1210233"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.onc.1209426", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027338899", 
              "https://doi.org/10.1038/sj.onc.1209426"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.onc.1206649", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030070546", 
              "https://doi.org/10.1038/sj.onc.1206649"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrc1691", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052792626", 
              "https://doi.org/10.1038/nrc1691"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncb921", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030078768", 
              "https://doi.org/10.1038/ncb921"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.onc.1206169", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016532165", 
              "https://doi.org/10.1038/sj.onc.1206169"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2008-07-02", 
        "datePublishedReg": "2008-07-02", 
        "description": "Key PointsAtaxia-telangiectasia mutated (ATM) and RAD3-related (ATR) is a member of the phosphoinositide 3-kinase (PI3K)-related family of protein kinases, which includes ATM, that regulates DNA-damage responses to maintain genome integrity.A common DNA structure \u2014 single-stranded DNA (ssDNA) with a 5\u2032 double-stranded primer junction \u2014 is responsible in most instances for ATR activation.ATR binds to a protein cofactor, ATR-interacting protein (ATRIP), that regulates ATR localization and activation.Topoisomerase-binding protein-1 (TOPBP1) directly activates ATR\u2013ATRIP complexes. Its recruitment to DNA lesions is promoted by the 9-1-1 checkpoint clamp.ATR signals to regulate DNA replication, cell-cycle transitions and DNA repair through the phosphorylation of hundreds of substrates, including checkpoint kinase-1 (CHK1) and the minichromosome maintenance (MCM) helicase complex.ATM and ATR have overlapping but non-redundant functions in the DNA-damage response. Crosstalk between these pathways often occurs as a consequence of interconversion of the activating DNA lesions.ATR is essential for the survival of most replicating cells, perhaps because of the ubiquitous presence of DNA lesions and replication stress.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/nrm2450", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2517840", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2476970", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2604930", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2521490", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2503978", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1023609", 
            "issn": [
              "1471-0072", 
              "1471-0080"
            ], 
            "name": "Nature Reviews Molecular Cell Biology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "8", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "9"
          }
        ], 
        "keywords": [
          "DNA damage response", 
          "checkpoint kinase 1", 
          "DNA lesions", 
          "genome integrity", 
          "minichromosome maintenance (MCM) helicase complex", 
          "ATR-ATRIP complex", 
          "phosphorylation of hundreds", 
          "non-redundant functions", 
          "cell cycle transition", 
          "checkpoint clamp", 
          "helicase complex", 
          "replication stress", 
          "ATR activation", 
          "protein cofactors", 
          "DNA replication", 
          "protein kinase", 
          "DNA repair", 
          "essential regulator", 
          "kinase 1", 
          "DNA structure", 
          "protein 1", 
          "replicating cells", 
          "ATR", 
          "ATR signal", 
          "Rad3", 
          "activation", 
          "ubiquitous presence", 
          "phosphoinositide", 
          "kinase", 
          "complexes", 
          "phosphorylation", 
          "regulator", 
          "cofactor", 
          "protein", 
          "DNA", 
          "pathway", 
          "crosstalk", 
          "replication", 
          "integrity", 
          "recruitment", 
          "cells", 
          "atm", 
          "localization", 
          "family", 
          "response", 
          "members", 
          "interconversion", 
          "repair", 
          "stress", 
          "substrate", 
          "survival", 
          "hundreds", 
          "function", 
          "junction", 
          "most instances", 
          "signals", 
          "consequences", 
          "presence", 
          "clamp", 
          "structure", 
          "transition", 
          "lesions", 
          "instances"
        ], 
        "name": "ATR: an essential regulator of genome integrity", 
        "pagination": "616-627", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1034641993"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nrm2450"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "18594563"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nrm2450", 
          "https://app.dimensions.ai/details/publication/pub.1034641993"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-08-04T16:57", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_454.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/nrm2450"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nrm2450'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nrm2450'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nrm2450'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nrm2450'


     

    This table displays all metadata directly associated to this object as RDF triples.

    288 TRIPLES      21 PREDICATES      124 URIs      93 LITERALS      20 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nrm2450 schema:about N079c82c0a73543dea6747c1f8b19c147
    2 N1240e663c2e5414282ecb7d0dcde5f22
    3 N2157bf9b8555464ba1ce50207f4670b4
    4 N4224a2925ef3445c9f02a68c992ac394
    5 N4409a1655f72490ab378b22162607ce7
    6 N5dbbbe75df7f41dca51d3a676cb10818
    7 N91e0930d3ad542b896318705d3b873d5
    8 N9f420209a7e44a47bfcec9fc6964cc0b
    9 Na194d778f167415eaa6031587dcdebb8
    10 Na77b9c105c8c45f3802c721f58031215
    11 Nb25b6f8292d04e02b828d1f667b261ab
    12 Nb3cff26507764a8b86ad5a183261c410
    13 Ne980e77e694b4e4699a1171da03cb331
    14 anzsrc-for:06
    15 anzsrc-for:0601
    16 anzsrc-for:0604
    17 schema:author N3fc7be59044549d3b1474a03caf4184b
    18 schema:citation sg:pub.10.1038/27007
    19 sg:pub.10.1038/35003501
    20 sg:pub.10.1038/35036309
    21 sg:pub.10.1038/35082110
    22 sg:pub.10.1038/35087607
    23 sg:pub.10.1038/362709a0
    24 sg:pub.10.1038/nature01368
    25 sg:pub.10.1038/nature03442
    26 sg:pub.10.1038/nature03482
    27 sg:pub.10.1038/nature03485
    28 sg:pub.10.1038/ncb1145
    29 sg:pub.10.1038/ncb1337
    30 sg:pub.10.1038/ncb921
    31 sg:pub.10.1038/ng1129
    32 sg:pub.10.1038/ng1837
    33 sg:pub.10.1038/nrc1691
    34 sg:pub.10.1038/sj.onc.1206169
    35 sg:pub.10.1038/sj.onc.1206649
    36 sg:pub.10.1038/sj.onc.1209426
    37 sg:pub.10.1038/sj.onc.1209828
    38 sg:pub.10.1038/sj.onc.1210233
    39 sg:pub.10.1186/1471-2199-8-112
    40 schema:datePublished 2008-07-02
    41 schema:datePublishedReg 2008-07-02
    42 schema:description Key PointsAtaxia-telangiectasia mutated (ATM) and RAD3-related (ATR) is a member of the phosphoinositide 3-kinase (PI3K)-related family of protein kinases, which includes ATM, that regulates DNA-damage responses to maintain genome integrity.A common DNA structure — single-stranded DNA (ssDNA) with a 5′ double-stranded primer junction — is responsible in most instances for ATR activation.ATR binds to a protein cofactor, ATR-interacting protein (ATRIP), that regulates ATR localization and activation.Topoisomerase-binding protein-1 (TOPBP1) directly activates ATR–ATRIP complexes. Its recruitment to DNA lesions is promoted by the 9-1-1 checkpoint clamp.ATR signals to regulate DNA replication, cell-cycle transitions and DNA repair through the phosphorylation of hundreds of substrates, including checkpoint kinase-1 (CHK1) and the minichromosome maintenance (MCM) helicase complex.ATM and ATR have overlapping but non-redundant functions in the DNA-damage response. Crosstalk between these pathways often occurs as a consequence of interconversion of the activating DNA lesions.ATR is essential for the survival of most replicating cells, perhaps because of the ubiquitous presence of DNA lesions and replication stress.
    43 schema:genre article
    44 schema:isAccessibleForFree true
    45 schema:isPartOf N183df9113e8641f2b898f24afef8994c
    46 N24c69bcb84ee4af0a047f945b0e1dba7
    47 sg:journal.1023609
    48 schema:keywords ATR
    49 ATR activation
    50 ATR signal
    51 ATR-ATRIP complex
    52 DNA
    53 DNA damage response
    54 DNA lesions
    55 DNA repair
    56 DNA replication
    57 DNA structure
    58 Rad3
    59 activation
    60 atm
    61 cell cycle transition
    62 cells
    63 checkpoint clamp
    64 checkpoint kinase 1
    65 clamp
    66 cofactor
    67 complexes
    68 consequences
    69 crosstalk
    70 essential regulator
    71 family
    72 function
    73 genome integrity
    74 helicase complex
    75 hundreds
    76 instances
    77 integrity
    78 interconversion
    79 junction
    80 kinase
    81 kinase 1
    82 lesions
    83 localization
    84 members
    85 minichromosome maintenance (MCM) helicase complex
    86 most instances
    87 non-redundant functions
    88 pathway
    89 phosphoinositide
    90 phosphorylation
    91 phosphorylation of hundreds
    92 presence
    93 protein
    94 protein 1
    95 protein cofactors
    96 protein kinase
    97 recruitment
    98 regulator
    99 repair
    100 replicating cells
    101 replication
    102 replication stress
    103 response
    104 signals
    105 stress
    106 structure
    107 substrate
    108 survival
    109 transition
    110 ubiquitous presence
    111 schema:name ATR: an essential regulator of genome integrity
    112 schema:pagination 616-627
    113 schema:productId N1d59ea1008d04ec4b7f9c6b60d93b76a
    114 Nab10dfbfe2924bb999efd91932983543
    115 Nc52342826c0c44a39bd4a671796f93de
    116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034641993
    117 https://doi.org/10.1038/nrm2450
    118 schema:sdDatePublished 2022-08-04T16:57
    119 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    120 schema:sdPublisher N95327ebdd6de4d5cac276fae54eaedc0
    121 schema:url https://doi.org/10.1038/nrm2450
    122 sgo:license sg:explorer/license/
    123 sgo:sdDataset articles
    124 rdf:type schema:ScholarlyArticle
    125 N079c82c0a73543dea6747c1f8b19c147 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    126 schema:name Signal Transduction
    127 rdf:type schema:DefinedTerm
    128 N1240e663c2e5414282ecb7d0dcde5f22 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    129 schema:name Humans
    130 rdf:type schema:DefinedTerm
    131 N183df9113e8641f2b898f24afef8994c schema:issueNumber 8
    132 rdf:type schema:PublicationIssue
    133 N1d59ea1008d04ec4b7f9c6b60d93b76a schema:name dimensions_id
    134 schema:value pub.1034641993
    135 rdf:type schema:PropertyValue
    136 N2157bf9b8555464ba1ce50207f4670b4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    137 schema:name DNA Damage
    138 rdf:type schema:DefinedTerm
    139 N24c69bcb84ee4af0a047f945b0e1dba7 schema:volumeNumber 9
    140 rdf:type schema:PublicationVolume
    141 N3fc7be59044549d3b1474a03caf4184b rdf:first sg:person.01123357462.02
    142 rdf:rest Na2556fffb16c40a8b41bcd4f7816d7ee
    143 N4224a2925ef3445c9f02a68c992ac394 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    144 schema:name Protein Serine-Threonine Kinases
    145 rdf:type schema:DefinedTerm
    146 N4409a1655f72490ab378b22162607ce7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    147 schema:name Models, Biological
    148 rdf:type schema:DefinedTerm
    149 N5dbbbe75df7f41dca51d3a676cb10818 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    150 schema:name Ataxia Telangiectasia Mutated Proteins
    151 rdf:type schema:DefinedTerm
    152 N91e0930d3ad542b896318705d3b873d5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    153 schema:name DNA-Binding Proteins
    154 rdf:type schema:DefinedTerm
    155 N95327ebdd6de4d5cac276fae54eaedc0 schema:name Springer Nature - SN SciGraph project
    156 rdf:type schema:Organization
    157 N9f420209a7e44a47bfcec9fc6964cc0b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    158 schema:name Carrier Proteins
    159 rdf:type schema:DefinedTerm
    160 Na194d778f167415eaa6031587dcdebb8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    161 schema:name Animals
    162 rdf:type schema:DefinedTerm
    163 Na2556fffb16c40a8b41bcd4f7816d7ee rdf:first sg:person.0632255761.45
    164 rdf:rest rdf:nil
    165 Na77b9c105c8c45f3802c721f58031215 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    166 schema:name Nuclear Proteins
    167 rdf:type schema:DefinedTerm
    168 Nab10dfbfe2924bb999efd91932983543 schema:name pubmed_id
    169 schema:value 18594563
    170 rdf:type schema:PropertyValue
    171 Nb25b6f8292d04e02b828d1f667b261ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    172 schema:name Protein Processing, Post-Translational
    173 rdf:type schema:DefinedTerm
    174 Nb3cff26507764a8b86ad5a183261c410 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    175 schema:name Genomic Instability
    176 rdf:type schema:DefinedTerm
    177 Nc52342826c0c44a39bd4a671796f93de schema:name doi
    178 schema:value 10.1038/nrm2450
    179 rdf:type schema:PropertyValue
    180 Ne980e77e694b4e4699a1171da03cb331 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    181 schema:name Cell Cycle Proteins
    182 rdf:type schema:DefinedTerm
    183 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    184 schema:name Biological Sciences
    185 rdf:type schema:DefinedTerm
    186 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    187 schema:name Biochemistry and Cell Biology
    188 rdf:type schema:DefinedTerm
    189 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    190 schema:name Genetics
    191 rdf:type schema:DefinedTerm
    192 sg:grant.2476970 http://pending.schema.org/fundedItem sg:pub.10.1038/nrm2450
    193 rdf:type schema:MonetaryGrant
    194 sg:grant.2503978 http://pending.schema.org/fundedItem sg:pub.10.1038/nrm2450
    195 rdf:type schema:MonetaryGrant
    196 sg:grant.2517840 http://pending.schema.org/fundedItem sg:pub.10.1038/nrm2450
    197 rdf:type schema:MonetaryGrant
    198 sg:grant.2521490 http://pending.schema.org/fundedItem sg:pub.10.1038/nrm2450
    199 rdf:type schema:MonetaryGrant
    200 sg:grant.2604930 http://pending.schema.org/fundedItem sg:pub.10.1038/nrm2450
    201 rdf:type schema:MonetaryGrant
    202 sg:journal.1023609 schema:issn 1471-0072
    203 1471-0080
    204 schema:name Nature Reviews Molecular Cell Biology
    205 schema:publisher Springer Nature
    206 rdf:type schema:Periodical
    207 sg:person.01123357462.02 schema:affiliation grid-institutes:grid.168010.e
    208 schema:familyName Cimprich
    209 schema:givenName Karlene A.
    210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123357462.02
    211 rdf:type schema:Person
    212 sg:person.0632255761.45 schema:affiliation grid-institutes:grid.152326.1
    213 schema:familyName Cortez
    214 schema:givenName David
    215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632255761.45
    216 rdf:type schema:Person
    217 sg:pub.10.1038/27007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004067806
    218 https://doi.org/10.1038/27007
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1038/35003501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038746059
    221 https://doi.org/10.1038/35003501
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1038/35036309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006757017
    224 https://doi.org/10.1038/35036309
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1038/35082110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028327839
    227 https://doi.org/10.1038/35082110
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1038/35087607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008603300
    230 https://doi.org/10.1038/35087607
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1038/362709a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019428971
    233 https://doi.org/10.1038/362709a0
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1038/nature01368 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002815475
    236 https://doi.org/10.1038/nature01368
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1038/nature03442 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015088298
    239 https://doi.org/10.1038/nature03442
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1038/nature03482 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037091000
    242 https://doi.org/10.1038/nature03482
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1038/nature03485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005294665
    245 https://doi.org/10.1038/nature03485
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1038/ncb1145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026679380
    248 https://doi.org/10.1038/ncb1145
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1038/ncb1337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029720893
    251 https://doi.org/10.1038/ncb1337
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1038/ncb921 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030078768
    254 https://doi.org/10.1038/ncb921
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1038/ng1129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001864576
    257 https://doi.org/10.1038/ng1129
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1038/ng1837 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046588350
    260 https://doi.org/10.1038/ng1837
    261 rdf:type schema:CreativeWork
    262 sg:pub.10.1038/nrc1691 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052792626
    263 https://doi.org/10.1038/nrc1691
    264 rdf:type schema:CreativeWork
    265 sg:pub.10.1038/sj.onc.1206169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016532165
    266 https://doi.org/10.1038/sj.onc.1206169
    267 rdf:type schema:CreativeWork
    268 sg:pub.10.1038/sj.onc.1206649 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030070546
    269 https://doi.org/10.1038/sj.onc.1206649
    270 rdf:type schema:CreativeWork
    271 sg:pub.10.1038/sj.onc.1209426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027338899
    272 https://doi.org/10.1038/sj.onc.1209426
    273 rdf:type schema:CreativeWork
    274 sg:pub.10.1038/sj.onc.1209828 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013064274
    275 https://doi.org/10.1038/sj.onc.1209828
    276 rdf:type schema:CreativeWork
    277 sg:pub.10.1038/sj.onc.1210233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043365428
    278 https://doi.org/10.1038/sj.onc.1210233
    279 rdf:type schema:CreativeWork
    280 sg:pub.10.1186/1471-2199-8-112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043919362
    281 https://doi.org/10.1186/1471-2199-8-112
    282 rdf:type schema:CreativeWork
    283 grid-institutes:grid.152326.1 schema:alternateName Department of Biochemistry, Vanderbilt University School of Medicine, 613 Light Hall, 23rd @ Pierce Avenue, 37232, Nashville, Tennesee, USA
    284 schema:name Department of Biochemistry, Vanderbilt University School of Medicine, 613 Light Hall, 23rd @ Pierce Avenue, 37232, Nashville, Tennesee, USA
    285 rdf:type schema:Organization
    286 grid-institutes:grid.168010.e schema:alternateName Department of Chemical and Systems Biology, Stanford University School of Medicine, Clark Center, 318 Campus Drive, W350B, 94305-5441, Stanford, California, USA
    287 schema:name Department of Chemical and Systems Biology, Stanford University School of Medicine, Clark Center, 318 Campus Drive, W350B, 94305-5441, Stanford, California, USA
    288 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...