Chromatin remodelling: the industrial revolution of DNA around histones View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-06-01

AUTHORS

Anjanabha Saha, Jacqueline Wittmeyer, Bradley R. Cairns

ABSTRACT

Key PointsChromatin-remodelling machines (remodellers) are large, multi-protein complexes that use the energy of ATP hydrolysis to mobilize and restructure nucleosomes. Nucleosomes wrap 146 bp of DNA in ∼1.7 turns around a histone-octamer disk, and the DNA inside the nucleosome is generally inaccessible to DNA-binding factors. Remodellers provide access to the underlying DNA to enable transcription, chromatin assembly, DNA repair and other processes. Central questions in the chromatin field include how remodellers convert the energy of ATP hydrolysis into a mechanical force to mobilize the nucleosome, and how different remodeller complexes select which nucleosome to move and restructure.Remodellers are partitioned into five families with specialized biological roles. However, all remodellers contain a subunit with a conserved ATPase domain. As well as the conserved ATPase, each remodeller complex contains unique proteins that specialize each remodeller for these biological roles. However, as all remodellers move nucleosomes, and as all movement is ATP dependent, mobilization is probably a property of the conserved ATPase subunit.The ATPase domains of remodellers are similar in sequence and structure to known DNA-translocating proteins in viruses and bacteria. Recent evidence with the SWI/SNF and ISWI remodeller families has revealed that remodeller ATPases are directional DNA translocases that are capable of the directional pumping of DNA. This property is applied to nucleosomes in the following manner: the ATPase seems to bind ∼40 bp inside the nucleosome, from which location it pumps DNA around the histone-octamer surface. This enables the movement of the nucleosome along the DNA, allowing the exposure of DNA to regulatory factors.The additional domains and proteins that are attached to the ATPase are important for nucleosome selection, and additionally help to regulate the ATPase activity. These attendant proteins bind to histones and nucleosomal DNA, and their binding to these epitopes is affected by the histone-modification state. Therefore, the modification state of histones helps to determine whether the nucleosome is an appropriate substrate for a remodeller complex. More... »

PAGES

437-447

References to SciGraph publications

  • 2001-02. Mammalian SWI/SNF complexes promote MyoD-mediated muscle differentiation in NATURE GENETICS
  • 2002-08. Dynamics of ATP-dependent chromatin assembly by ACF in NATURE
  • 2005-12-11. The human SWI/SNF subunit Brm is a regulator of alternative splicing in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 2006-03-05. Chromatin remodeling by ISW2 and SWI/SNF requires DNA translocation inside the nucleosome in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 1999-07. The bromodomain: a chromatin-targeting module? in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 2005-07-17. A 'loop recapture' mechanism for ACF-dependent nucleosome remodeling in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 1998-06. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription in NATURE GENETICS
  • 2003-08-01. Chromatin assembly by DNA-translocating motors in NATURE REVIEWS MOLECULAR CELL BIOLOGY
  • 1997-08. Chromatin-remodelling factor CHRAC contains the ATPases ISWI and topoisomerase II in NATURE
  • 2004-12-05. Rapid spontaneous accessibility of nucleosomal DNA in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 1999-09. Mi-2 complex couples DNA methylation to chromatin remodelling and histone deacetylation in NATURE GENETICS
  • 1997-09. Crystal structure of the nucleosome core particle at 2.8 Å resolution in NATURE
  • 2006-01. RNA translocation and unwinding mechanism of HCV NS3 helicase and its coordination by ATP in NATURE
  • 2003-02-10. Rad54 protein possesses chromatin-remodeling activity stimulated by the Rad51–ssDNA nucleoprotein filament in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 2003-05. The structure of DNA in the nucleosome core in NATURE
  • 2004-11. Baf60c is essential for function of BAF chromatin remodelling complexes in heart development in NATURE
  • 2002-11-18. An ACF1–ISWI chromatin-remodeling complex is required for DNA replication through heterochromatin in NATURE GENETICS
  • 2005-08-07. Chromatin remodeling through directional DNA translocation from an internal nucleosomal site in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 2002-08. A chromatin remodelling complex that loads cohesin onto human chromosomes in NATURE
  • 2000-01. The language of covalent histone modifications in NATURE
  • 2000-08-01. A chromatin remodelling complex involved in transcription and DNA processing in NATURE
  • 1999-08. Nucleosome mobilization catalysed by the yeast SWI/SNF complex in NATURE
  • 2005-04-03. Structure of the SWI2/SNF2 chromatin-remodeling domain of eukaryotic Rad54 in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 2004-07-11. Evidence for nucleosome depletion at active regulatory regions genome-wide in NATURE GENETICS
  • 2004-07-18. Nucleosomes facilitate their own invasion in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nrm1945

    DOI

    http://dx.doi.org/10.1038/nrm1945

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1017808364

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/16723979


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chromatin Assembly and Disassembly", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Histones", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nucleosomes", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Oncological Sciences and Howard Hughes Medical Institute, Huntsman Cancer Institute, University of Utah School of Medicine, 2000 Circle of Hope, 84112, Salt Lake City, Utah, USA", 
              "id": "http://www.grid.ac/institutes/grid.223827.e", 
              "name": [
                "Department of Oncological Sciences and Howard Hughes Medical Institute, Huntsman Cancer Institute, University of Utah School of Medicine, 2000 Circle of Hope, 84112, Salt Lake City, Utah, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Saha", 
            "givenName": "Anjanabha", 
            "id": "sg:person.01024062233.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024062233.37"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Oncological Sciences and Howard Hughes Medical Institute, Huntsman Cancer Institute, University of Utah School of Medicine, 2000 Circle of Hope, 84112, Salt Lake City, Utah, USA", 
              "id": "http://www.grid.ac/institutes/grid.223827.e", 
              "name": [
                "Department of Oncological Sciences and Howard Hughes Medical Institute, Huntsman Cancer Institute, University of Utah School of Medicine, 2000 Circle of Hope, 84112, Salt Lake City, Utah, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wittmeyer", 
            "givenName": "Jacqueline", 
            "id": "sg:person.0634033233.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634033233.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Oncological Sciences and Howard Hughes Medical Institute, Huntsman Cancer Institute, University of Utah School of Medicine, 2000 Circle of Hope, 84112, Salt Lake City, Utah, USA", 
              "id": "http://www.grid.ac/institutes/grid.223827.e", 
              "name": [
                "Department of Oncological Sciences and Howard Hughes Medical Institute, Huntsman Cancer Institute, University of Utah School of Medicine, 2000 Circle of Hope, 84112, Salt Lake City, Utah, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cairns", 
            "givenName": "Bradley R.", 
            "id": "sg:person.01334377233.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334377233.39"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nature04331", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029960143", 
              "https://doi.org/10.1038/nature04331"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/41587", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048194327", 
              "https://doi.org/10.1038/41587"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nsmb801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049119301", 
              "https://doi.org/10.1038/nsmb801"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/47412", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025852070", 
              "https://doi.org/10.1038/47412"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature01024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010375574", 
              "https://doi.org/10.1038/nature01024"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nsb901", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009545445", 
              "https://doi.org/10.1038/nsb901"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nsmb869", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027098109", 
              "https://doi.org/10.1038/nsmb869"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/38444", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010210236", 
              "https://doi.org/10.1038/38444"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1046", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023336885", 
              "https://doi.org/10.1038/ng1046"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/84826", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008239594", 
              "https://doi.org/10.1038/84826"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nsmb1030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050533452", 
              "https://doi.org/10.1038/nsmb1030"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nsmb966", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030208615", 
              "https://doi.org/10.1038/nsmb966"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03071", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023026114", 
              "https://doi.org/10.1038/nature03071"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1400", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038197264", 
              "https://doi.org/10.1038/ng1400"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nsmb973", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007163617", 
              "https://doi.org/10.1038/nsmb973"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/12664", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039527067", 
              "https://doi.org/10.1038/12664"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nsmb1071", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031606401", 
              "https://doi.org/10.1038/nsmb1071"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/23506", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023106340", 
              "https://doi.org/10.1038/23506"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature01595", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015134044", 
              "https://doi.org/10.1038/nature01595"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrm1177", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046368868", 
              "https://doi.org/10.1038/nrm1177"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35020123", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019059101", 
              "https://doi.org/10.1038/35020123"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nsmb919", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007211500", 
              "https://doi.org/10.1038/nsmb919"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/561", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027172656", 
              "https://doi.org/10.1038/561"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature00929", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037081131", 
              "https://doi.org/10.1038/nature00929"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/10640", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017164472", 
              "https://doi.org/10.1038/10640"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2006-06-01", 
        "datePublishedReg": "2006-06-01", 
        "description": "Key PointsChromatin-remodelling machines (remodellers) are large, multi-protein complexes that use the energy of ATP hydrolysis to mobilize and restructure nucleosomes. Nucleosomes wrap 146 bp of DNA in \u223c1.7 turns around a histone-octamer disk, and the DNA inside the nucleosome is generally inaccessible to DNA-binding factors. Remodellers provide access to the underlying DNA to enable transcription, chromatin assembly, DNA repair and other processes. Central questions in the chromatin field include how remodellers convert the energy of ATP hydrolysis into a mechanical force to mobilize the nucleosome, and how different remodeller complexes select which nucleosome to move and restructure.Remodellers are partitioned into five families with specialized biological roles. However, all remodellers contain a subunit with a conserved ATPase domain. As well as the conserved ATPase, each remodeller complex contains unique proteins that specialize each remodeller for these biological roles. However, as all remodellers move nucleosomes, and as all movement is ATP dependent, mobilization is probably a property of the conserved ATPase subunit.The ATPase domains of remodellers are similar in sequence and structure to known DNA-translocating proteins in viruses and bacteria. Recent evidence with the SWI/SNF and ISWI remodeller families has revealed that remodeller ATPases are directional DNA translocases that are capable of the directional pumping of DNA. This property is applied to nucleosomes in the following manner: the ATPase seems to bind \u223c40 bp inside the nucleosome, from which location it pumps DNA around the histone-octamer surface. This enables the movement of the nucleosome along the DNA, allowing the exposure of DNA to regulatory factors.The additional domains and proteins that are attached to the ATPase are important for nucleosome selection, and additionally help to regulate the ATPase activity. These attendant proteins bind to histones and nucleosomal DNA, and their binding to these epitopes is affected by the histone-modification state. Therefore, the modification state of histones helps to determine whether the nucleosome is an appropriate substrate for a remodeller complex.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/nrm1945", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1023609", 
            "issn": [
              "1471-0072", 
              "1471-0080"
            ], 
            "name": "Nature Reviews Molecular Cell Biology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "7"
          }
        ], 
        "keywords": [
          "ATPase domain", 
          "ATP hydrolysis", 
          "biological role", 
          "histone modification states", 
          "SWI/SNF", 
          "multi-protein complexes", 
          "DNA-binding factors", 
          "specialized biological roles", 
          "histone octamer surface", 
          "Key PointsChromatin", 
          "restructure nucleosomes", 
          "DNA translocases", 
          "chromatin assembly", 
          "chromatin field", 
          "modification states", 
          "ATPase subunits", 
          "remodellers", 
          "protein binds", 
          "nucleosomal DNA", 
          "unique proteins", 
          "DNA repair", 
          "nucleosomes", 
          "regulatory factors", 
          "exposure of DNA", 
          "additional domains", 
          "histones", 
          "DNA", 
          "ATPase activity", 
          "protein", 
          "ATPase", 
          "mechanical forces", 
          "subunits", 
          "directional pumping", 
          "appropriate substrate", 
          "BP", 
          "complexes", 
          "Recent evidence", 
          "translocases", 
          "domain", 
          "transcription", 
          "ATPases", 
          "family", 
          "binds", 
          "hydrolysis", 
          "ATP", 
          "bacteria", 
          "SNF", 
          "role", 
          "binding", 
          "sequence", 
          "central question", 
          "assembly", 
          "virus", 
          "epitopes", 
          "repair", 
          "selection", 
          "substrate", 
          "activity", 
          "factors", 
          "manner", 
          "mobilization", 
          "evidence", 
          "movement", 
          "structure", 
          "exposure", 
          "location", 
          "process", 
          "state", 
          "properties", 
          "questions", 
          "surface", 
          "disk", 
          "field", 
          "force", 
          "following manner", 
          "pumping", 
          "revolution", 
          "energy", 
          "access", 
          "restructure", 
          "industrial revolution", 
          "machine"
        ], 
        "name": "Chromatin remodelling: the industrial revolution of DNA around histones", 
        "pagination": "437-447", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1017808364"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nrm1945"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "16723979"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nrm1945", 
          "https://app.dimensions.ai/details/publication/pub.1017808364"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-08-04T16:57", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_426.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/nrm1945"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nrm1945'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nrm1945'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nrm1945'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nrm1945'


     

    This table displays all metadata directly associated to this object as RDF triples.

    277 TRIPLES      21 PREDICATES      137 URIs      104 LITERALS      12 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nrm1945 schema:about N54259975bbd74dd994bd8ec418fafcfa
    2 N5d0dc5fd6e214235bebe07ea54189d6f
    3 N794eea1ae6d14754a51db3b3506fb34a
    4 N84d0647360a442b0a723591392b0f7a3
    5 N8d4f4311d78b479d9b25c8af5e1441d1
    6 anzsrc-for:06
    7 anzsrc-for:0601
    8 schema:author N254c2434f9794e408a1df404d4c867d2
    9 schema:citation sg:pub.10.1038/10640
    10 sg:pub.10.1038/12664
    11 sg:pub.10.1038/23506
    12 sg:pub.10.1038/35020123
    13 sg:pub.10.1038/38444
    14 sg:pub.10.1038/41587
    15 sg:pub.10.1038/47412
    16 sg:pub.10.1038/561
    17 sg:pub.10.1038/84826
    18 sg:pub.10.1038/nature00929
    19 sg:pub.10.1038/nature01024
    20 sg:pub.10.1038/nature01595
    21 sg:pub.10.1038/nature03071
    22 sg:pub.10.1038/nature04331
    23 sg:pub.10.1038/ng1046
    24 sg:pub.10.1038/ng1400
    25 sg:pub.10.1038/nrm1177
    26 sg:pub.10.1038/nsb901
    27 sg:pub.10.1038/nsmb1030
    28 sg:pub.10.1038/nsmb1071
    29 sg:pub.10.1038/nsmb801
    30 sg:pub.10.1038/nsmb869
    31 sg:pub.10.1038/nsmb919
    32 sg:pub.10.1038/nsmb966
    33 sg:pub.10.1038/nsmb973
    34 schema:datePublished 2006-06-01
    35 schema:datePublishedReg 2006-06-01
    36 schema:description Key PointsChromatin-remodelling machines (remodellers) are large, multi-protein complexes that use the energy of ATP hydrolysis to mobilize and restructure nucleosomes. Nucleosomes wrap 146 bp of DNA in ∼1.7 turns around a histone-octamer disk, and the DNA inside the nucleosome is generally inaccessible to DNA-binding factors. Remodellers provide access to the underlying DNA to enable transcription, chromatin assembly, DNA repair and other processes. Central questions in the chromatin field include how remodellers convert the energy of ATP hydrolysis into a mechanical force to mobilize the nucleosome, and how different remodeller complexes select which nucleosome to move and restructure.Remodellers are partitioned into five families with specialized biological roles. However, all remodellers contain a subunit with a conserved ATPase domain. As well as the conserved ATPase, each remodeller complex contains unique proteins that specialize each remodeller for these biological roles. However, as all remodellers move nucleosomes, and as all movement is ATP dependent, mobilization is probably a property of the conserved ATPase subunit.The ATPase domains of remodellers are similar in sequence and structure to known DNA-translocating proteins in viruses and bacteria. Recent evidence with the SWI/SNF and ISWI remodeller families has revealed that remodeller ATPases are directional DNA translocases that are capable of the directional pumping of DNA. This property is applied to nucleosomes in the following manner: the ATPase seems to bind ∼40 bp inside the nucleosome, from which location it pumps DNA around the histone-octamer surface. This enables the movement of the nucleosome along the DNA, allowing the exposure of DNA to regulatory factors.The additional domains and proteins that are attached to the ATPase are important for nucleosome selection, and additionally help to regulate the ATPase activity. These attendant proteins bind to histones and nucleosomal DNA, and their binding to these epitopes is affected by the histone-modification state. Therefore, the modification state of histones helps to determine whether the nucleosome is an appropriate substrate for a remodeller complex.
    37 schema:genre article
    38 schema:isAccessibleForFree false
    39 schema:isPartOf Nc6a44bb54fe04a868bf3a382b16c7906
    40 Neef3ed297af3454e9676b71df3d84124
    41 sg:journal.1023609
    42 schema:keywords ATP
    43 ATP hydrolysis
    44 ATPase
    45 ATPase activity
    46 ATPase domain
    47 ATPase subunits
    48 ATPases
    49 BP
    50 DNA
    51 DNA repair
    52 DNA translocases
    53 DNA-binding factors
    54 Key PointsChromatin
    55 Recent evidence
    56 SNF
    57 SWI/SNF
    58 access
    59 activity
    60 additional domains
    61 appropriate substrate
    62 assembly
    63 bacteria
    64 binding
    65 binds
    66 biological role
    67 central question
    68 chromatin assembly
    69 chromatin field
    70 complexes
    71 directional pumping
    72 disk
    73 domain
    74 energy
    75 epitopes
    76 evidence
    77 exposure
    78 exposure of DNA
    79 factors
    80 family
    81 field
    82 following manner
    83 force
    84 histone modification states
    85 histone octamer surface
    86 histones
    87 hydrolysis
    88 industrial revolution
    89 location
    90 machine
    91 manner
    92 mechanical forces
    93 mobilization
    94 modification states
    95 movement
    96 multi-protein complexes
    97 nucleosomal DNA
    98 nucleosomes
    99 process
    100 properties
    101 protein
    102 protein binds
    103 pumping
    104 questions
    105 regulatory factors
    106 remodellers
    107 repair
    108 restructure
    109 restructure nucleosomes
    110 revolution
    111 role
    112 selection
    113 sequence
    114 specialized biological roles
    115 state
    116 structure
    117 substrate
    118 subunits
    119 surface
    120 transcription
    121 translocases
    122 unique proteins
    123 virus
    124 schema:name Chromatin remodelling: the industrial revolution of DNA around histones
    125 schema:pagination 437-447
    126 schema:productId N08ff4757ca0b4d9fa62a1eda08104525
    127 N0b0a91a7fa584b07b11fb645ba2cc569
    128 N74bbe726c42c4bd3a6bb0753f7165cd0
    129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017808364
    130 https://doi.org/10.1038/nrm1945
    131 schema:sdDatePublished 2022-08-04T16:57
    132 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    133 schema:sdPublisher N0b0702839a6743d09018ecb3f7ed7660
    134 schema:url https://doi.org/10.1038/nrm1945
    135 sgo:license sg:explorer/license/
    136 sgo:sdDataset articles
    137 rdf:type schema:ScholarlyArticle
    138 N08ff4757ca0b4d9fa62a1eda08104525 schema:name doi
    139 schema:value 10.1038/nrm1945
    140 rdf:type schema:PropertyValue
    141 N0b0702839a6743d09018ecb3f7ed7660 schema:name Springer Nature - SN SciGraph project
    142 rdf:type schema:Organization
    143 N0b0a91a7fa584b07b11fb645ba2cc569 schema:name dimensions_id
    144 schema:value pub.1017808364
    145 rdf:type schema:PropertyValue
    146 N1ab2523847bb442692e337ff54c111ad rdf:first sg:person.01334377233.39
    147 rdf:rest rdf:nil
    148 N254c2434f9794e408a1df404d4c867d2 rdf:first sg:person.01024062233.37
    149 rdf:rest N363f8eff8cbb4d55a3946aaf06337af8
    150 N363f8eff8cbb4d55a3946aaf06337af8 rdf:first sg:person.0634033233.28
    151 rdf:rest N1ab2523847bb442692e337ff54c111ad
    152 N54259975bbd74dd994bd8ec418fafcfa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    153 schema:name Animals
    154 rdf:type schema:DefinedTerm
    155 N5d0dc5fd6e214235bebe07ea54189d6f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    156 schema:name Histones
    157 rdf:type schema:DefinedTerm
    158 N74bbe726c42c4bd3a6bb0753f7165cd0 schema:name pubmed_id
    159 schema:value 16723979
    160 rdf:type schema:PropertyValue
    161 N794eea1ae6d14754a51db3b3506fb34a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    162 schema:name DNA
    163 rdf:type schema:DefinedTerm
    164 N84d0647360a442b0a723591392b0f7a3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    165 schema:name Nucleosomes
    166 rdf:type schema:DefinedTerm
    167 N8d4f4311d78b479d9b25c8af5e1441d1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    168 schema:name Chromatin Assembly and Disassembly
    169 rdf:type schema:DefinedTerm
    170 Nc6a44bb54fe04a868bf3a382b16c7906 schema:volumeNumber 7
    171 rdf:type schema:PublicationVolume
    172 Neef3ed297af3454e9676b71df3d84124 schema:issueNumber 6
    173 rdf:type schema:PublicationIssue
    174 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    175 schema:name Biological Sciences
    176 rdf:type schema:DefinedTerm
    177 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    178 schema:name Biochemistry and Cell Biology
    179 rdf:type schema:DefinedTerm
    180 sg:journal.1023609 schema:issn 1471-0072
    181 1471-0080
    182 schema:name Nature Reviews Molecular Cell Biology
    183 schema:publisher Springer Nature
    184 rdf:type schema:Periodical
    185 sg:person.01024062233.37 schema:affiliation grid-institutes:grid.223827.e
    186 schema:familyName Saha
    187 schema:givenName Anjanabha
    188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024062233.37
    189 rdf:type schema:Person
    190 sg:person.01334377233.39 schema:affiliation grid-institutes:grid.223827.e
    191 schema:familyName Cairns
    192 schema:givenName Bradley R.
    193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334377233.39
    194 rdf:type schema:Person
    195 sg:person.0634033233.28 schema:affiliation grid-institutes:grid.223827.e
    196 schema:familyName Wittmeyer
    197 schema:givenName Jacqueline
    198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634033233.28
    199 rdf:type schema:Person
    200 sg:pub.10.1038/10640 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017164472
    201 https://doi.org/10.1038/10640
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1038/12664 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039527067
    204 https://doi.org/10.1038/12664
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1038/23506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023106340
    207 https://doi.org/10.1038/23506
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1038/35020123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019059101
    210 https://doi.org/10.1038/35020123
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1038/38444 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010210236
    213 https://doi.org/10.1038/38444
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1038/41587 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048194327
    216 https://doi.org/10.1038/41587
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1038/47412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025852070
    219 https://doi.org/10.1038/47412
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1038/561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027172656
    222 https://doi.org/10.1038/561
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1038/84826 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008239594
    225 https://doi.org/10.1038/84826
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1038/nature00929 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037081131
    228 https://doi.org/10.1038/nature00929
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1038/nature01024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010375574
    231 https://doi.org/10.1038/nature01024
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1038/nature01595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015134044
    234 https://doi.org/10.1038/nature01595
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1038/nature03071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023026114
    237 https://doi.org/10.1038/nature03071
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1038/nature04331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029960143
    240 https://doi.org/10.1038/nature04331
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1038/ng1046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023336885
    243 https://doi.org/10.1038/ng1046
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1038/ng1400 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038197264
    246 https://doi.org/10.1038/ng1400
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1038/nrm1177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046368868
    249 https://doi.org/10.1038/nrm1177
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1038/nsb901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009545445
    252 https://doi.org/10.1038/nsb901
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1038/nsmb1030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050533452
    255 https://doi.org/10.1038/nsmb1030
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1038/nsmb1071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031606401
    258 https://doi.org/10.1038/nsmb1071
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1038/nsmb801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049119301
    261 https://doi.org/10.1038/nsmb801
    262 rdf:type schema:CreativeWork
    263 sg:pub.10.1038/nsmb869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027098109
    264 https://doi.org/10.1038/nsmb869
    265 rdf:type schema:CreativeWork
    266 sg:pub.10.1038/nsmb919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007211500
    267 https://doi.org/10.1038/nsmb919
    268 rdf:type schema:CreativeWork
    269 sg:pub.10.1038/nsmb966 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030208615
    270 https://doi.org/10.1038/nsmb966
    271 rdf:type schema:CreativeWork
    272 sg:pub.10.1038/nsmb973 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007163617
    273 https://doi.org/10.1038/nsmb973
    274 rdf:type schema:CreativeWork
    275 grid-institutes:grid.223827.e schema:alternateName Department of Oncological Sciences and Howard Hughes Medical Institute, Huntsman Cancer Institute, University of Utah School of Medicine, 2000 Circle of Hope, 84112, Salt Lake City, Utah, USA
    276 schema:name Department of Oncological Sciences and Howard Hughes Medical Institute, Huntsman Cancer Institute, University of Utah School of Medicine, 2000 Circle of Hope, 84112, Salt Lake City, Utah, USA
    277 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...