Regulating Rho GTPases and their regulators View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-06-15

AUTHORS

Richard G. Hodge, Anne J. Ridley

ABSTRACT

Key PointsRho GTPases regulate a wide range of cellular responses, including changes to the cytoskeleton and cell adhesion. Their activity therefore needs to be precisely controlled to determine which response occurs, depending on the context and stimulus.Most Rho GTPases cycle between an active GTP-bound and an inactive GDP-bound form, a process that is regulated by guanine nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs) and guanine nucleotide dissociation inhibitors (GDIs). In their GTP-bound form, they interact with a diverse range of different targets to induce cellular responses.In addition to GTP–GDP cycling, Rho GTPases are regulated by a diverse range of post-translational modifications, including phosphorylation, ubiquitylation and sumoylation, which alter their localization, activity and stability.GEFs, GAPs and GDIs are also regulated by post-translational modifications, which in turn affect their activity, stability and ability to form protein complexes. These changes then impinge on where and when Rho GTPases are activated.The spatiotemporal activation of Rho GTPases is coordinated by a complex network of post-translational modifications and protein–protein interactions. This determines which Rho GTPase targets are activated, and hence the cellular outcome. More... »

PAGES

496-510

References to SciGraph publications

  • 2015-07-13. A phosphorylation switch controls the spatiotemporal activation of Rho GTPases in directional cell migration in NATURE COMMUNICATIONS
  • 2015-02-09. Loss of the E3 ubiquitin ligase HACE1 results in enhanced Rac1 signaling contributing to breast cancer progression in ONCOGENE
  • 2010-12-01. The Fer tyrosine kinase regulates interactions of Rho GDP-Dissociation Inhibitor α with the small GTPase Rac in BMC MOLECULAR AND CELL BIOLOGY
  • 2012-04-02. PKCα phosphorylation of RhoGDI2 at Ser31 disrupts interactions with Rac1 and decreases GDI activity in ONCOGENE
  • 2007-01. Palmitoylation: policing protein stability and traffic in NATURE REVIEWS MOLECULAR CELL BIOLOGY
  • 2015-07-01. A Rac/Cdc42 exchange factor complex promotes formation of lateral filopodia and blood vessel lumen morphogenesis in NATURE COMMUNICATIONS
  • 2011-05-15. The Rho GEFs LARG and GEF-H1 regulate the mechanical response to force on integrins in NATURE CELL BIOLOGY
  • 2011-05-15. Protein kinase A governs a RhoA–RhoGDI protrusion–retraction pacemaker in migrating cells in NATURE CELL BIOLOGY
  • 2005-02. GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors in NATURE REVIEWS MOLECULAR CELL BIOLOGY
  • 2014-09-24. ATR/Chk1/Smurf1 pathway determines cell fate after DNA damage by controlling RhoB abundance in NATURE COMMUNICATIONS
  • 2015-04-22. Coupled local translation and degradation regulate growth cone collapse in NATURE COMMUNICATIONS
  • 2014-04-01. F-box protein complex FBXL19 regulates TGFβ1-induced E-cadherin down-regulation by mediating Rac3 ubiquitination and degradation in MOLECULAR CANCER
  • 2008-09. Mammalian Rho GTPases: new insights into their functions from in vivo studies in NATURE REVIEWS MOLECULAR CELL BIOLOGY
  • 2004-01-08. Homo- and hetero-oligomerization of PDZ-RhoGEF, LARG and p115RhoGEF by their C-terminal region regulates their in vivo Rho GEF activity and transforming potential in ONCOGENE
  • 2010-10-10. SUMOylation of the GTPase Rac1 is required for optimal cell migration in NATURE CELL BIOLOGY
  • 2011-07-22. The 'invisible hand': regulation of RHO GTPases by RHOGDIs in NATURE REVIEWS MOLECULAR CELL BIOLOGY
  • 2014-08-24. An extracellular-matrix-specific GEF–GAP interaction regulates Rho GTPase crosstalk for 3D collagen migration in NATURE CELL BIOLOGY
  • 2006-10-08. RhoH GTPase recruits and activates Zap70 required for T cell receptor signaling and thymocyte development in NATURE IMMUNOLOGY
  • 2015-06-16. Cdk1 phosphorylates the Rac activator Tiam1 to activate centrosomal Pak and promote mitotic spindle formation in NATURE COMMUNICATIONS
  • 2013-03-19. PKA-induced dimerization of the RhoGAP DLC1 promotes its inhibition of tumorigenesis and metastasis in NATURE COMMUNICATIONS
  • 2016-02-18. Differential Rac1 signalling by guanine nucleotide exchange factors implicates FLII in regulating Rac1-driven cell migration in NATURE COMMUNICATIONS
  • 2013-12-23. PAK signalling during the development and progression of cancer in NATURE REVIEWS CANCER
  • 2015-03-09. An EGFR/PI3K/AKT axis promotes accumulation of the Rac1-GEF Tiam1 that is critical in EGFR-driven tumorigenesis in ONCOGENE
  • 2012-05-21. The tumour suppressor HACE1 controls cell migration by regulating Rac1 degradation in ONCOGENE
  • 2008-02-26. Rho GTPases of the RhoBTB subfamily and tumorigenesis1 in ACTA PHARMACOLOGICA SINICA
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nrm.2016.67

    DOI

    http://dx.doi.org/10.1038/nrm.2016.67

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1028633180

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/27301673


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Protein Processing, Post-Translational", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "rho GTP-Binding Proteins", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, SE1 1UL, London, UK", 
              "id": "http://www.grid.ac/institutes/grid.13097.3c", 
              "name": [
                "Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, SE1 1UL, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hodge", 
            "givenName": "Richard G.", 
            "id": "sg:person.07747101307.78", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07747101307.78"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, SE1 1UL, London, UK", 
              "id": "http://www.grid.ac/institutes/grid.13097.3c", 
              "name": [
                "Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, SE1 1UL, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ridley", 
            "givenName": "Anne J.", 
            "id": "sg:person.01161105370.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161105370.25"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/ni1396", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047180981", 
              "https://doi.org/10.1038/ni1396"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrc3645", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017737074", 
              "https://doi.org/10.1038/nrc3645"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms7888", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001674293", 
              "https://doi.org/10.1038/ncomms7888"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncb3026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016434087", 
              "https://doi.org/10.1038/ncb3026"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrm3153", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052654470", 
              "https://doi.org/10.1038/nrm3153"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms2604", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052368009", 
              "https://doi.org/10.1038/ncomms2604"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1476-4598-13-76", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027078986", 
              "https://doi.org/10.1186/1476-4598-13-76"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms5901", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002555251", 
              "https://doi.org/10.1038/ncomms5901"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms8721", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033205667", 
              "https://doi.org/10.1038/ncomms8721"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrm1587", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006050511", 
              "https://doi.org/10.1038/nrm1587"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1111/j.1745-7254.2008.00773.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040477153", 
              "https://doi.org/10.1111/j.1745-7254.2008.00773.x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrm2476", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012018803", 
              "https://doi.org/10.1038/nrm2476"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/onc.2012.189", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053506374", 
              "https://doi.org/10.1038/onc.2012.189"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncb2231", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011575567", 
              "https://doi.org/10.1038/ncb2231"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/onc.2015.45", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002192550", 
              "https://doi.org/10.1038/onc.2015.45"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/onc.2014.468", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036151200", 
              "https://doi.org/10.1038/onc.2014.468"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms8286", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044922179", 
              "https://doi.org/10.1038/ncomms8286"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrm2084", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033758120", 
              "https://doi.org/10.1038/nrm2084"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2091-11-48", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044010660", 
              "https://doi.org/10.1186/1471-2091-11-48"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms8437", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005214269", 
              "https://doi.org/10.1038/ncomms8437"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/onc.2012.124", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025554083", 
              "https://doi.org/10.1038/onc.2012.124"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncb2112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035022578", 
              "https://doi.org/10.1038/ncb2112"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncb2254", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029006148", 
              "https://doi.org/10.1038/ncb2254"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms10664", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031242819", 
              "https://doi.org/10.1038/ncomms10664"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.onc.1207012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053320842", 
              "https://doi.org/10.1038/sj.onc.1207012"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-06-15", 
        "datePublishedReg": "2016-06-15", 
        "description": "Key PointsRho GTPases regulate a wide range of cellular responses, including changes to the cytoskeleton and cell adhesion. Their activity therefore needs to be precisely controlled to determine which response occurs, depending on the context and stimulus.Most Rho GTPases cycle between an active GTP-bound and an inactive GDP-bound form, a process that is regulated by guanine nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs) and guanine nucleotide dissociation inhibitors (GDIs). In their GTP-bound form, they interact with a diverse range of different targets to induce cellular responses.In addition to GTP\u2013GDP cycling, Rho GTPases are regulated by a diverse range of post-translational modifications, including phosphorylation, ubiquitylation and sumoylation, which alter their localization, activity and stability.GEFs, GAPs and GDIs are also regulated by post-translational modifications, which in turn affect their activity, stability and ability to form protein complexes. These changes then impinge on where and when Rho GTPases are activated.The spatiotemporal activation of Rho GTPases is coordinated by a complex network of post-translational modifications and protein\u2013protein interactions. This determines which Rho GTPase targets are activated, and hence the cellular outcome.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/nrm.2016.67", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.5140248", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1023609", 
            "issn": [
              "1471-0072", 
              "1471-0080"
            ], 
            "name": "Nature Reviews Molecular Cell Biology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "8", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "17"
          }
        ], 
        "keywords": [
          "guanine nucleotide exchange factors", 
          "GTPase-activating proteins", 
          "post-translational modifications", 
          "Rho GTPases", 
          "cellular responses", 
          "inactive GDP-bound form", 
          "Rho GTPase targets", 
          "nucleotide exchange factors", 
          "GDP-bound form", 
          "protein-protein interactions", 
          "GTP-bound form", 
          "GTPase targets", 
          "dissociation inhibitor", 
          "protein complexes", 
          "exchange factor", 
          "cellular outcomes", 
          "GTPases", 
          "spatiotemporal activation", 
          "cell adhesion", 
          "diverse range", 
          "ubiquitylation", 
          "SUMOylation", 
          "cytoskeleton", 
          "complex networks", 
          "phosphorylation", 
          "regulator", 
          "protein", 
          "target", 
          "Rho", 
          "activity", 
          "modification", 
          "response", 
          "GDI", 
          "activation", 
          "localization", 
          "inhibitors", 
          "different targets", 
          "complexes", 
          "adhesion", 
          "wide range", 
          "cycling", 
          "interaction", 
          "changes", 
          "cycle", 
          "form", 
          "ability", 
          "range", 
          "stimuli", 
          "factors", 
          "addition", 
          "turn", 
          "stability", 
          "process", 
          "network", 
          "context", 
          "outcomes"
        ], 
        "name": "Regulating Rho GTPases and their regulators", 
        "pagination": "496-510", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1028633180"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nrm.2016.67"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "27301673"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nrm.2016.67", 
          "https://app.dimensions.ai/details/publication/pub.1028633180"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-08-04T17:05", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_706.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/nrm.2016.67"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nrm.2016.67'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nrm.2016.67'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nrm.2016.67'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nrm.2016.67'


     

    This table displays all metadata directly associated to this object as RDF triples.

    242 TRIPLES      21 PREDICATES      110 URIs      77 LITERALS      11 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nrm.2016.67 schema:about N11db3dad784d480abd00dd952978f34b
    2 N34c11075573d44e4aaef0df2953f0f80
    3 N6f3a12206423426cb48e3178c70e4700
    4 Ne9cba9a112d9426abf52b8f25a53171b
    5 anzsrc-for:06
    6 anzsrc-for:0601
    7 schema:author Nc8aa51b2747249dea08299410fd9a343
    8 schema:citation sg:pub.10.1038/ncb2112
    9 sg:pub.10.1038/ncb2231
    10 sg:pub.10.1038/ncb2254
    11 sg:pub.10.1038/ncb3026
    12 sg:pub.10.1038/ncomms10664
    13 sg:pub.10.1038/ncomms2604
    14 sg:pub.10.1038/ncomms5901
    15 sg:pub.10.1038/ncomms7888
    16 sg:pub.10.1038/ncomms8286
    17 sg:pub.10.1038/ncomms8437
    18 sg:pub.10.1038/ncomms8721
    19 sg:pub.10.1038/ni1396
    20 sg:pub.10.1038/nrc3645
    21 sg:pub.10.1038/nrm1587
    22 sg:pub.10.1038/nrm2084
    23 sg:pub.10.1038/nrm2476
    24 sg:pub.10.1038/nrm3153
    25 sg:pub.10.1038/onc.2012.124
    26 sg:pub.10.1038/onc.2012.189
    27 sg:pub.10.1038/onc.2014.468
    28 sg:pub.10.1038/onc.2015.45
    29 sg:pub.10.1038/sj.onc.1207012
    30 sg:pub.10.1111/j.1745-7254.2008.00773.x
    31 sg:pub.10.1186/1471-2091-11-48
    32 sg:pub.10.1186/1476-4598-13-76
    33 schema:datePublished 2016-06-15
    34 schema:datePublishedReg 2016-06-15
    35 schema:description Key PointsRho GTPases regulate a wide range of cellular responses, including changes to the cytoskeleton and cell adhesion. Their activity therefore needs to be precisely controlled to determine which response occurs, depending on the context and stimulus.Most Rho GTPases cycle between an active GTP-bound and an inactive GDP-bound form, a process that is regulated by guanine nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs) and guanine nucleotide dissociation inhibitors (GDIs). In their GTP-bound form, they interact with a diverse range of different targets to induce cellular responses.In addition to GTP–GDP cycling, Rho GTPases are regulated by a diverse range of post-translational modifications, including phosphorylation, ubiquitylation and sumoylation, which alter their localization, activity and stability.GEFs, GAPs and GDIs are also regulated by post-translational modifications, which in turn affect their activity, stability and ability to form protein complexes. These changes then impinge on where and when Rho GTPases are activated.The spatiotemporal activation of Rho GTPases is coordinated by a complex network of post-translational modifications and protein–protein interactions. This determines which Rho GTPase targets are activated, and hence the cellular outcome.
    36 schema:genre article
    37 schema:isAccessibleForFree false
    38 schema:isPartOf N7d1ec2e5b4a340559b18db14eba4ca27
    39 N9e88b3211fc847649819747ca14f66e2
    40 sg:journal.1023609
    41 schema:keywords GDI
    42 GDP-bound form
    43 GTP-bound form
    44 GTPase targets
    45 GTPase-activating proteins
    46 GTPases
    47 Rho
    48 Rho GTPase targets
    49 Rho GTPases
    50 SUMOylation
    51 ability
    52 activation
    53 activity
    54 addition
    55 adhesion
    56 cell adhesion
    57 cellular outcomes
    58 cellular responses
    59 changes
    60 complex networks
    61 complexes
    62 context
    63 cycle
    64 cycling
    65 cytoskeleton
    66 different targets
    67 dissociation inhibitor
    68 diverse range
    69 exchange factor
    70 factors
    71 form
    72 guanine nucleotide exchange factors
    73 inactive GDP-bound form
    74 inhibitors
    75 interaction
    76 localization
    77 modification
    78 network
    79 nucleotide exchange factors
    80 outcomes
    81 phosphorylation
    82 post-translational modifications
    83 process
    84 protein
    85 protein complexes
    86 protein-protein interactions
    87 range
    88 regulator
    89 response
    90 spatiotemporal activation
    91 stability
    92 stimuli
    93 target
    94 turn
    95 ubiquitylation
    96 wide range
    97 schema:name Regulating Rho GTPases and their regulators
    98 schema:pagination 496-510
    99 schema:productId N2dd0815cf846437f972ed4e621583099
    100 N3469cef27284449e99a95606934f97cb
    101 Ndaada3ddbff8446fb42f35a02243187c
    102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028633180
    103 https://doi.org/10.1038/nrm.2016.67
    104 schema:sdDatePublished 2022-08-04T17:05
    105 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    106 schema:sdPublisher Nf18e219f425e4191bbe7ea7e95545aff
    107 schema:url https://doi.org/10.1038/nrm.2016.67
    108 sgo:license sg:explorer/license/
    109 sgo:sdDataset articles
    110 rdf:type schema:ScholarlyArticle
    111 N11db3dad784d480abd00dd952978f34b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    112 schema:name rho GTP-Binding Proteins
    113 rdf:type schema:DefinedTerm
    114 N1b038bac82724240ba18c84dff7f0ac2 rdf:first sg:person.01161105370.25
    115 rdf:rest rdf:nil
    116 N2dd0815cf846437f972ed4e621583099 schema:name pubmed_id
    117 schema:value 27301673
    118 rdf:type schema:PropertyValue
    119 N3469cef27284449e99a95606934f97cb schema:name dimensions_id
    120 schema:value pub.1028633180
    121 rdf:type schema:PropertyValue
    122 N34c11075573d44e4aaef0df2953f0f80 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    123 schema:name Humans
    124 rdf:type schema:DefinedTerm
    125 N6f3a12206423426cb48e3178c70e4700 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    126 schema:name Animals
    127 rdf:type schema:DefinedTerm
    128 N7d1ec2e5b4a340559b18db14eba4ca27 schema:volumeNumber 17
    129 rdf:type schema:PublicationVolume
    130 N9e88b3211fc847649819747ca14f66e2 schema:issueNumber 8
    131 rdf:type schema:PublicationIssue
    132 Nc8aa51b2747249dea08299410fd9a343 rdf:first sg:person.07747101307.78
    133 rdf:rest N1b038bac82724240ba18c84dff7f0ac2
    134 Ndaada3ddbff8446fb42f35a02243187c schema:name doi
    135 schema:value 10.1038/nrm.2016.67
    136 rdf:type schema:PropertyValue
    137 Ne9cba9a112d9426abf52b8f25a53171b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    138 schema:name Protein Processing, Post-Translational
    139 rdf:type schema:DefinedTerm
    140 Nf18e219f425e4191bbe7ea7e95545aff schema:name Springer Nature - SN SciGraph project
    141 rdf:type schema:Organization
    142 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    143 schema:name Biological Sciences
    144 rdf:type schema:DefinedTerm
    145 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    146 schema:name Biochemistry and Cell Biology
    147 rdf:type schema:DefinedTerm
    148 sg:grant.5140248 http://pending.schema.org/fundedItem sg:pub.10.1038/nrm.2016.67
    149 rdf:type schema:MonetaryGrant
    150 sg:journal.1023609 schema:issn 1471-0072
    151 1471-0080
    152 schema:name Nature Reviews Molecular Cell Biology
    153 schema:publisher Springer Nature
    154 rdf:type schema:Periodical
    155 sg:person.01161105370.25 schema:affiliation grid-institutes:grid.13097.3c
    156 schema:familyName Ridley
    157 schema:givenName Anne J.
    158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161105370.25
    159 rdf:type schema:Person
    160 sg:person.07747101307.78 schema:affiliation grid-institutes:grid.13097.3c
    161 schema:familyName Hodge
    162 schema:givenName Richard G.
    163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07747101307.78
    164 rdf:type schema:Person
    165 sg:pub.10.1038/ncb2112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035022578
    166 https://doi.org/10.1038/ncb2112
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1038/ncb2231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011575567
    169 https://doi.org/10.1038/ncb2231
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1038/ncb2254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029006148
    172 https://doi.org/10.1038/ncb2254
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1038/ncb3026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016434087
    175 https://doi.org/10.1038/ncb3026
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1038/ncomms10664 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031242819
    178 https://doi.org/10.1038/ncomms10664
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1038/ncomms2604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052368009
    181 https://doi.org/10.1038/ncomms2604
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1038/ncomms5901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002555251
    184 https://doi.org/10.1038/ncomms5901
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1038/ncomms7888 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001674293
    187 https://doi.org/10.1038/ncomms7888
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1038/ncomms8286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044922179
    190 https://doi.org/10.1038/ncomms8286
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1038/ncomms8437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005214269
    193 https://doi.org/10.1038/ncomms8437
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1038/ncomms8721 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033205667
    196 https://doi.org/10.1038/ncomms8721
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1038/ni1396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047180981
    199 https://doi.org/10.1038/ni1396
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1038/nrc3645 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017737074
    202 https://doi.org/10.1038/nrc3645
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1038/nrm1587 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006050511
    205 https://doi.org/10.1038/nrm1587
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1038/nrm2084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033758120
    208 https://doi.org/10.1038/nrm2084
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1038/nrm2476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012018803
    211 https://doi.org/10.1038/nrm2476
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1038/nrm3153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052654470
    214 https://doi.org/10.1038/nrm3153
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1038/onc.2012.124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025554083
    217 https://doi.org/10.1038/onc.2012.124
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1038/onc.2012.189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053506374
    220 https://doi.org/10.1038/onc.2012.189
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1038/onc.2014.468 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036151200
    223 https://doi.org/10.1038/onc.2014.468
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1038/onc.2015.45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002192550
    226 https://doi.org/10.1038/onc.2015.45
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1038/sj.onc.1207012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053320842
    229 https://doi.org/10.1038/sj.onc.1207012
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1111/j.1745-7254.2008.00773.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040477153
    232 https://doi.org/10.1111/j.1745-7254.2008.00773.x
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1186/1471-2091-11-48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044010660
    235 https://doi.org/10.1186/1471-2091-11-48
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1186/1476-4598-13-76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027078986
    238 https://doi.org/10.1186/1476-4598-13-76
    239 rdf:type schema:CreativeWork
    240 grid-institutes:grid.13097.3c schema:alternateName Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, SE1 1UL, London, UK
    241 schema:name Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, SE1 1UL, London, UK
    242 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...