Analysing immune cell migration View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-10-16

AUTHORS

Joost B. Beltman, Athanasius F. M. Marée, Rob J. de Boer

ABSTRACT

Key PointsTo analyse time-lapse video microscopy experiments of the immune system, quantification of cell migration is required. A toolbox of quantitative measures, such as cell speed, motility coefficient, confinement ratio and various angles of migration is available for that purpose.Time-lapse imaging of the immune system is associated with various artefacts than can affect the estimated cell positions over time. As a result, measures of cell migration are also affected by such artefacts, and this may obscure biologically relevant differences between experimental settings or generate spurious results.Imaging artefacts are related either to cell tracking (switching or splitting of tracks, double tracking of cells and errors of tracking near borders) or to imaging itself (imprecise calibration of the axial dimension and small tissue drift).Detection and correction for artefacts can be done using various migration angles. For example, plotting the average angle to the axial border plane versus the distance to that border can help to detect border tracking errors, calibration errors in the axial dimension and small tissue drift.Cell-based measurements are better at detecting distinct subpopulations among cells than step-based approaches. However, an important disadvantage of cell-based versus step-based parameters is that the shape of the imaged space affects the results, and this makes comparison between experiments problematic.Determining contact times between cells in imaging experiments is non-trivial because observed (underestimated) rather than exact contact time is known for most contacts. However, the true contact time distribution can be estimated using a mathematical approach. More... »

PAGES

789-798

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nri2638

DOI

http://dx.doi.org/10.1038/nri2638

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008648027

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19834485


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1107", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Immunology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Artifacts", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Movement", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microscopy, Video", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Theoretical Biology, Utrecht University, Padualaan 8, 3584, Utrecht, CH, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.5477.1", 
          "name": [
            "Theoretical Biology, Utrecht University, Padualaan 8, 3584, Utrecht, CH, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Beltman", 
        "givenName": "Joost B.", 
        "id": "sg:person.01124356136.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124356136.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "John Innes Centre, Norwich Research park, Colney, 7UH, Norwich, NR4, UK", 
          "id": "http://www.grid.ac/institutes/grid.14830.3e", 
          "name": [
            "John Innes Centre, Norwich Research park, Colney, 7UH, Norwich, NR4, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mar\u00e9e", 
        "givenName": "Athanasius F. M.", 
        "id": "sg:person.01276626350.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276626350.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Theoretical Biology, Utrecht University, Padualaan 8, 3584, Utrecht, CH, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.5477.1", 
          "name": [
            "Theoretical Biology, Utrecht University, Padualaan 8, 3584, Utrecht, CH, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Boer", 
        "givenName": "Rob J.", 
        "id": "sg:person.0774503452.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774503452.97"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nmeth.1233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012735480", 
          "https://doi.org/10.1038/nmeth.1233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014167362", 
          "https://doi.org/10.1038/nmeth.1237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nri2588", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040492363", 
          "https://doi.org/10.1038/nri2588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ni928", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046585548", 
          "https://doi.org/10.1038/ni928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ni.1761", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037724445", 
          "https://doi.org/10.1038/ni.1761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07345", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017192233", 
          "https://doi.org/10.1038/nature07345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ni1559", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005026571", 
          "https://doi.org/10.1038/ni1559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nri2602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044792878", 
          "https://doi.org/10.1038/nri2602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02238", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007518600", 
          "https://doi.org/10.1038/nature02238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nri1884", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003764201", 
          "https://doi.org/10.1038/nri1884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04651", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024462310", 
          "https://doi.org/10.1038/nature04651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ni1139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000280622", 
          "https://doi.org/10.1038/ni1139"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-10-16", 
    "datePublishedReg": "2009-10-16", 
    "description": "Key PointsTo analyse time-lapse video microscopy experiments of the immune system, quantification of cell migration is required. A toolbox of quantitative measures, such as cell speed, motility coefficient, confinement ratio and various angles of migration is available for that purpose.Time-lapse imaging of the immune system is associated with various artefacts than can affect the estimated cell positions over time. As a result, measures of cell migration are also affected by such artefacts, and this may obscure biologically relevant differences between experimental settings or generate spurious results.Imaging artefacts are related either to cell tracking (switching or splitting of tracks, double tracking of cells and errors of tracking near borders) or to imaging itself (imprecise calibration of the axial dimension and small tissue drift).Detection and correction for artefacts can be done using various migration angles. For example, plotting the average angle to the axial border plane versus the distance to that border can help to detect border tracking errors, calibration errors in the axial dimension and small tissue drift.Cell-based measurements are better at detecting distinct subpopulations among cells than step-based approaches. However, an important disadvantage of cell-based versus step-based parameters is that the shape of the imaged space affects the results, and this makes comparison between experiments problematic.Determining contact times between cells in imaging experiments is non-trivial because observed (underestimated) rather than exact contact time is known for most contacts. However, the true contact time distribution can be estimated using a mathematical approach.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/nri2638", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4113555", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2787741", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1029717", 
        "issn": [
          "1474-1733", 
          "1474-1741"
        ], 
        "name": "Nature Reviews Immunology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "keywords": [
      "imaged space", 
      "microscopy experiments", 
      "video microscopy experiments", 
      "imaging artifacts", 
      "mathematical approach", 
      "calibration errors", 
      "axial dimensions", 
      "tracking error", 
      "angle", 
      "angle of migration", 
      "motility coefficient", 
      "average angle", 
      "contact time distributions", 
      "time distribution", 
      "border plane", 
      "step-based approach", 
      "experiments", 
      "plane", 
      "measurements", 
      "drift", 
      "correction", 
      "imaging", 
      "spurious results", 
      "distance", 
      "confinement ratio", 
      "error", 
      "cell migration", 
      "such artifacts", 
      "artifacts", 
      "shape", 
      "time-lapse imaging", 
      "quantitative measures", 
      "distribution", 
      "coefficient", 
      "cell position", 
      "system", 
      "parameters", 
      "space", 
      "time", 
      "results", 
      "tracking", 
      "approach", 
      "cell speed", 
      "toolbox", 
      "position", 
      "detection", 
      "important disadvantage", 
      "speed", 
      "ratio", 
      "dimensions", 
      "experimental settings", 
      "immune system", 
      "distinct subpopulations", 
      "migration angle", 
      "contact", 
      "comparison", 
      "cell-based measurements", 
      "immune cell migration", 
      "example", 
      "migration", 
      "cells", 
      "measures", 
      "disadvantages", 
      "subpopulations", 
      "quantification", 
      "purpose", 
      "contact time", 
      "differences", 
      "setting", 
      "most contact", 
      "relevant differences", 
      "border"
    ], 
    "name": "Analysing immune cell migration", 
    "pagination": "789-798", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008648027"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nri2638"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19834485"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nri2638", 
      "https://app.dimensions.ai/details/publication/pub.1008648027"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T20:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_478.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/nri2638"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nri2638'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nri2638'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nri2638'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nri2638'


 

This table displays all metadata directly associated to this object as RDF triples.

222 TRIPLES      21 PREDICATES      114 URIs      94 LITERALS      12 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nri2638 schema:about N2415ee96e86a431f8e110d3b45ac64b4
2 N91ab0b7cd2ca48999a8944bf6a226049
3 Nb859a0f2e8e04587b84966dc11001509
4 Ne92cefa77f8b4bf080b21367c254dbbd
5 Nfb3d4f1ba6264bae8b7cdf1b0f472e28
6 anzsrc-for:11
7 anzsrc-for:1107
8 schema:author N5f4a869242554d7da99943696a887c8a
9 schema:citation sg:pub.10.1038/nature02238
10 sg:pub.10.1038/nature04651
11 sg:pub.10.1038/nature07345
12 sg:pub.10.1038/ni.1761
13 sg:pub.10.1038/ni1139
14 sg:pub.10.1038/ni1559
15 sg:pub.10.1038/ni928
16 sg:pub.10.1038/nmeth.1233
17 sg:pub.10.1038/nmeth.1237
18 sg:pub.10.1038/nri1884
19 sg:pub.10.1038/nri2588
20 sg:pub.10.1038/nri2602
21 schema:datePublished 2009-10-16
22 schema:datePublishedReg 2009-10-16
23 schema:description Key PointsTo analyse time-lapse video microscopy experiments of the immune system, quantification of cell migration is required. A toolbox of quantitative measures, such as cell speed, motility coefficient, confinement ratio and various angles of migration is available for that purpose.Time-lapse imaging of the immune system is associated with various artefacts than can affect the estimated cell positions over time. As a result, measures of cell migration are also affected by such artefacts, and this may obscure biologically relevant differences between experimental settings or generate spurious results.Imaging artefacts are related either to cell tracking (switching or splitting of tracks, double tracking of cells and errors of tracking near borders) or to imaging itself (imprecise calibration of the axial dimension and small tissue drift).Detection and correction for artefacts can be done using various migration angles. For example, plotting the average angle to the axial border plane versus the distance to that border can help to detect border tracking errors, calibration errors in the axial dimension and small tissue drift.Cell-based measurements are better at detecting distinct subpopulations among cells than step-based approaches. However, an important disadvantage of cell-based versus step-based parameters is that the shape of the imaged space affects the results, and this makes comparison between experiments problematic.Determining contact times between cells in imaging experiments is non-trivial because observed (underestimated) rather than exact contact time is known for most contacts. However, the true contact time distribution can be estimated using a mathematical approach.
24 schema:genre article
25 schema:isAccessibleForFree false
26 schema:isPartOf N6f2aa8351360404abf0609582004b132
27 Ncc5b7eb58e4b47969206ab9988ddfa18
28 sg:journal.1029717
29 schema:keywords angle
30 angle of migration
31 approach
32 artifacts
33 average angle
34 axial dimensions
35 border
36 border plane
37 calibration errors
38 cell migration
39 cell position
40 cell speed
41 cell-based measurements
42 cells
43 coefficient
44 comparison
45 confinement ratio
46 contact
47 contact time
48 contact time distributions
49 correction
50 detection
51 differences
52 dimensions
53 disadvantages
54 distance
55 distinct subpopulations
56 distribution
57 drift
58 error
59 example
60 experimental settings
61 experiments
62 imaged space
63 imaging
64 imaging artifacts
65 immune cell migration
66 immune system
67 important disadvantage
68 mathematical approach
69 measurements
70 measures
71 microscopy experiments
72 migration
73 migration angle
74 most contact
75 motility coefficient
76 parameters
77 plane
78 position
79 purpose
80 quantification
81 quantitative measures
82 ratio
83 relevant differences
84 results
85 setting
86 shape
87 space
88 speed
89 spurious results
90 step-based approach
91 subpopulations
92 such artifacts
93 system
94 time
95 time distribution
96 time-lapse imaging
97 toolbox
98 tracking
99 tracking error
100 video microscopy experiments
101 schema:name Analysing immune cell migration
102 schema:pagination 789-798
103 schema:productId N659ea7517d5e49f3b6cc7cc8325ebbcf
104 Nd1b7becb0ede4836a27d3f84bacccaf5
105 Ned9ab3eaf29c4a9199e6f16c7a64e6d8
106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008648027
107 https://doi.org/10.1038/nri2638
108 schema:sdDatePublished 2022-11-24T20:54
109 schema:sdLicense https://scigraph.springernature.com/explorer/license/
110 schema:sdPublisher N0d1371c9d33145e4900c690dd0a2e347
111 schema:url https://doi.org/10.1038/nri2638
112 sgo:license sg:explorer/license/
113 sgo:sdDataset articles
114 rdf:type schema:ScholarlyArticle
115 N0d1371c9d33145e4900c690dd0a2e347 schema:name Springer Nature - SN SciGraph project
116 rdf:type schema:Organization
117 N2415ee96e86a431f8e110d3b45ac64b4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Humans
119 rdf:type schema:DefinedTerm
120 N5f4a869242554d7da99943696a887c8a rdf:first sg:person.01124356136.09
121 rdf:rest Nf465a351c4d748a3b68d4ad57a92d35f
122 N659ea7517d5e49f3b6cc7cc8325ebbcf schema:name doi
123 schema:value 10.1038/nri2638
124 rdf:type schema:PropertyValue
125 N6f2aa8351360404abf0609582004b132 schema:volumeNumber 9
126 rdf:type schema:PublicationVolume
127 N91ab0b7cd2ca48999a8944bf6a226049 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Artifacts
129 rdf:type schema:DefinedTerm
130 Nb859a0f2e8e04587b84966dc11001509 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Cell Movement
132 rdf:type schema:DefinedTerm
133 Ncc5b7eb58e4b47969206ab9988ddfa18 schema:issueNumber 11
134 rdf:type schema:PublicationIssue
135 Nd1b7becb0ede4836a27d3f84bacccaf5 schema:name dimensions_id
136 schema:value pub.1008648027
137 rdf:type schema:PropertyValue
138 Ndc7db11f9ad240b19703e29d32452845 rdf:first sg:person.0774503452.97
139 rdf:rest rdf:nil
140 Ne92cefa77f8b4bf080b21367c254dbbd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Microscopy, Video
142 rdf:type schema:DefinedTerm
143 Ned9ab3eaf29c4a9199e6f16c7a64e6d8 schema:name pubmed_id
144 schema:value 19834485
145 rdf:type schema:PropertyValue
146 Nf465a351c4d748a3b68d4ad57a92d35f rdf:first sg:person.01276626350.25
147 rdf:rest Ndc7db11f9ad240b19703e29d32452845
148 Nfb3d4f1ba6264bae8b7cdf1b0f472e28 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Animals
150 rdf:type schema:DefinedTerm
151 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
152 schema:name Medical and Health Sciences
153 rdf:type schema:DefinedTerm
154 anzsrc-for:1107 schema:inDefinedTermSet anzsrc-for:
155 schema:name Immunology
156 rdf:type schema:DefinedTerm
157 sg:grant.2787741 http://pending.schema.org/fundedItem sg:pub.10.1038/nri2638
158 rdf:type schema:MonetaryGrant
159 sg:grant.4113555 http://pending.schema.org/fundedItem sg:pub.10.1038/nri2638
160 rdf:type schema:MonetaryGrant
161 sg:journal.1029717 schema:issn 1474-1733
162 1474-1741
163 schema:name Nature Reviews Immunology
164 schema:publisher Springer Nature
165 rdf:type schema:Periodical
166 sg:person.01124356136.09 schema:affiliation grid-institutes:grid.5477.1
167 schema:familyName Beltman
168 schema:givenName Joost B.
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124356136.09
170 rdf:type schema:Person
171 sg:person.01276626350.25 schema:affiliation grid-institutes:grid.14830.3e
172 schema:familyName Marée
173 schema:givenName Athanasius F. M.
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276626350.25
175 rdf:type schema:Person
176 sg:person.0774503452.97 schema:affiliation grid-institutes:grid.5477.1
177 schema:familyName de Boer
178 schema:givenName Rob J.
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774503452.97
180 rdf:type schema:Person
181 sg:pub.10.1038/nature02238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007518600
182 https://doi.org/10.1038/nature02238
183 rdf:type schema:CreativeWork
184 sg:pub.10.1038/nature04651 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024462310
185 https://doi.org/10.1038/nature04651
186 rdf:type schema:CreativeWork
187 sg:pub.10.1038/nature07345 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017192233
188 https://doi.org/10.1038/nature07345
189 rdf:type schema:CreativeWork
190 sg:pub.10.1038/ni.1761 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037724445
191 https://doi.org/10.1038/ni.1761
192 rdf:type schema:CreativeWork
193 sg:pub.10.1038/ni1139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000280622
194 https://doi.org/10.1038/ni1139
195 rdf:type schema:CreativeWork
196 sg:pub.10.1038/ni1559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005026571
197 https://doi.org/10.1038/ni1559
198 rdf:type schema:CreativeWork
199 sg:pub.10.1038/ni928 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046585548
200 https://doi.org/10.1038/ni928
201 rdf:type schema:CreativeWork
202 sg:pub.10.1038/nmeth.1233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012735480
203 https://doi.org/10.1038/nmeth.1233
204 rdf:type schema:CreativeWork
205 sg:pub.10.1038/nmeth.1237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014167362
206 https://doi.org/10.1038/nmeth.1237
207 rdf:type schema:CreativeWork
208 sg:pub.10.1038/nri1884 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003764201
209 https://doi.org/10.1038/nri1884
210 rdf:type schema:CreativeWork
211 sg:pub.10.1038/nri2588 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040492363
212 https://doi.org/10.1038/nri2588
213 rdf:type schema:CreativeWork
214 sg:pub.10.1038/nri2602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044792878
215 https://doi.org/10.1038/nri2602
216 rdf:type schema:CreativeWork
217 grid-institutes:grid.14830.3e schema:alternateName John Innes Centre, Norwich Research park, Colney, 7UH, Norwich, NR4, UK
218 schema:name John Innes Centre, Norwich Research park, Colney, 7UH, Norwich, NR4, UK
219 rdf:type schema:Organization
220 grid-institutes:grid.5477.1 schema:alternateName Theoretical Biology, Utrecht University, Padualaan 8, 3584, Utrecht, CH, The Netherlands
221 schema:name Theoretical Biology, Utrecht University, Padualaan 8, 3584, Utrecht, CH, The Netherlands
222 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...