Inflammasome adaptors and sensors: intracellular regulators of infection and inflammation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-01-01

AUTHORS

Sanjeev Mariathasan, Denise M. Monack

ABSTRACT

Key PointsHosts have evolved strategies to detect and respond rapidly to invading microorganisms and host-cell damage or 'danger signals'. The caspase-1 inflammasome is a dynamic complex in which specific NOD-like receptors (NLRs) and adaptor molecules are brought into play, depending on the nature of the primary trigger.ASC (apoptosis-associated speck-like protein containing a CARD) has a central role in the inflammasome. Through homotypic protein–protein interactions with its own CARD (caspase-recruitment domain) and PYD (pyrin domain), ASC is thought to act as a direct bridge between the sensor NALPs (NACHT-, LRR- and pyrin-domain-containing proteins) and the downstream effector caspase-1.The two-signal activation model is derived from studies of the treatment of cultured macrophages with pathogen-associated molecular patterns, which, in the absence of ATP, are insufficient to activate the inflammasome complex. However, infection with bacterial pathogens both in vitro and in vivo does not require ATP to trigger the inflammasome.NALP3 is involved in sensing toxins, 'danger signals' such as gout crystals, Staphylococcus aureus, Listeria monocytogenes, bacterial RNA and trinitrophenylchloride.IPAF (ICE-protease activating factor) is involved in sensing various intracellular bacterial pathogens, such as Salmonella typhimurium, Shigella flexneri and Legionella pneumophila. Flagellin might be one common pathogen-associated molecule that is recognized by IPAF and/or NAIP5 (neuronal apoptosis inhibitor protein 5).ASC is required for the inflammasome recognition of Francisella tularensis. More... »

PAGES

31-40

References to SciGraph publications

  • 2006-03-01. CATERPILLERs, pyrin and hereditary immunological disorders in NATURE REVIEWS IMMUNOLOGY
  • 2004-10-17. Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island in NATURE IMMUNOLOGY
  • 2006-04-30. Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1β via Ipaf in NATURE IMMUNOLOGY
  • 2006-04-30. Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1β in salmonella-infected macrophages in NATURE IMMUNOLOGY
  • 2004-07. Toll-like receptor signalling in NATURE REVIEWS IMMUNOLOGY
  • 2006-04-01. Enhanced bacterial clearance and sepsis resistance in caspase-12-deficient mice in NATURE
  • 2001-10-22. Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle–Wells syndrome in NATURE GENETICS
  • 2004-06-09. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf in NATURE
  • 2006-07. Intracellular pattern recognition receptors in the host response in NATURE
  • 2006-09-15. Inflammatory caspases and inflammasomes: master switches of inflammation in CELL DEATH & DIFFERENTIATION
  • 2005-07-22. Cryopyrin and pyrin activate caspase-1, but not NF-κB, via ASC oligomerization in CELL DEATH & DIFFERENTIATION
  • 2002-12-16. Birc1e is the gene within the Lgn1 locus associated with resistance to Legionella pneumophila in NATURE GENETICS
  • 2005-12-09. Signalling pathways and molecular interactions of NOD1 and NOD2 in NATURE REVIEWS IMMUNOLOGY
  • 2006-01-29. The Birc1e cytosolic pattern-recognition receptor contributes to the detection and control of Legionella pneumophila infection in NATURE IMMUNOLOGY
  • 2006-01-22. Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin in NATURE GENETICS
  • 2001-06. Regulation of IL-1β generation by Pseudo-ICE and ICEBERG, two dominant negative caspase recruitment domain proteins in CELL DEATH & DIFFERENTIATION
  • 2006-01-11. Gout-associated uric acid crystals activate the NALP3 inflammasome in NATURE
  • 2006-01-11. Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3 in NATURE
  • 2006-01-11. Cryopyrin activates the inflammasome in response to toxins and ATP in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nri1997

    DOI

    http://dx.doi.org/10.1038/nri1997

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1017248811

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/17186029


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1107", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Immunology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "CARD Signaling Adaptor Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Infections", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Inflammation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mice", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Immunological", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Translational Oncology, Genentech, 1 DNA Way, 94080, South San Francisco, California, USA", 
              "id": "http://www.grid.ac/institutes/grid.418158.1", 
              "name": [
                "Department of Translational Oncology, Genentech, 1 DNA Way, 94080, South San Francisco, California, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mariathasan", 
            "givenName": "Sanjeev", 
            "id": "sg:person.0653762550.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653762550.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Microbiology and Immunology, Stanford University, 94305, Stanford, California, USA", 
              "id": "http://www.grid.ac/institutes/grid.168010.e", 
              "name": [
                "Department of Microbiology and Immunology, Stanford University, 94305, Stanford, California, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Monack", 
            "givenName": "Denise M.", 
            "id": "sg:person.0610224120.91", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610224120.91"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/sj.cdd.4400881", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033448689", 
              "https://doi.org/10.1038/sj.cdd.4400881"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1724", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015154248", 
              "https://doi.org/10.1038/ng1724"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nri1747", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049921864", 
              "https://doi.org/10.1038/nri1747"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ni1346", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033803512", 
              "https://doi.org/10.1038/ni1346"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04656", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002509840", 
              "https://doi.org/10.1038/nature04656"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04517", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042379672", 
              "https://doi.org/10.1038/nature04517"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ni1344", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039911850", 
              "https://doi.org/10.1038/ni1344"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02664", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002716731", 
              "https://doi.org/10.1038/nature02664"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04515", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025852033", 
              "https://doi.org/10.1038/nature04515"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04516", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039236419", 
              "https://doi.org/10.1038/nature04516"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.cdd.4402038", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024454646", 
              "https://doi.org/10.1038/sj.cdd.4402038"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nri1788", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000970329", 
              "https://doi.org/10.1038/nri1788"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nri1391", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023753307", 
              "https://doi.org/10.1038/nri1391"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng756", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015613080", 
              "https://doi.org/10.1038/ng756"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ni1131", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030144801", 
              "https://doi.org/10.1038/ni1131"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1065", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046683186", 
              "https://doi.org/10.1038/ng1065"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04946", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007730336", 
              "https://doi.org/10.1038/nature04946"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ni1305", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014396392", 
              "https://doi.org/10.1038/ni1305"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.cdd.4401734", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035235524", 
              "https://doi.org/10.1038/sj.cdd.4401734"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2007-01-01", 
        "datePublishedReg": "2007-01-01", 
        "description": "Key PointsHosts have evolved strategies to detect and respond rapidly to invading microorganisms and host-cell damage or 'danger signals'. The caspase-1 inflammasome is a dynamic complex in which specific NOD-like receptors (NLRs) and adaptor molecules are brought into play, depending on the nature of the primary trigger.ASC (apoptosis-associated speck-like protein containing a CARD) has a central role in the inflammasome. Through homotypic protein\u2013protein interactions with its own CARD (caspase-recruitment domain) and PYD (pyrin domain), ASC is thought to act as a direct bridge between the sensor NALPs (NACHT-, LRR- and pyrin-domain-containing proteins) and the downstream effector caspase-1.The two-signal activation model is derived from studies of the treatment of cultured macrophages with pathogen-associated molecular patterns, which, in the absence of ATP, are insufficient to activate the inflammasome complex. However, infection with bacterial pathogens both in vitro and in vivo does not require ATP to trigger the inflammasome.NALP3 is involved in sensing toxins, 'danger signals' such as gout crystals, Staphylococcus aureus, Listeria monocytogenes, bacterial RNA and trinitrophenylchloride.IPAF (ICE-protease activating factor) is involved in sensing various intracellular bacterial pathogens, such as Salmonella typhimurium, Shigella flexneri and Legionella pneumophila. Flagellin might be one common pathogen-associated molecule that is recognized by IPAF and/or NAIP5 (neuronal apoptosis inhibitor protein 5).ASC is required for the inflammasome recognition of Francisella tularensis.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/nri1997", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1029717", 
            "issn": [
              "1474-1733", 
              "1474-1741"
            ], 
            "name": "Nature Reviews Immunology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "7"
          }
        ], 
        "keywords": [
          "NOD-like receptors", 
          "homotypic protein-protein interactions", 
          "regulators of infection", 
          "protein-protein interactions", 
          "bacterial pathogens", 
          "pathogen-associated molecular patterns", 
          "intracellular bacterial pathogen", 
          "host cell damage", 
          "pathogen-associated molecules", 
          "absence of ATP", 
          "danger signals", 
          "inflammasome recognition", 
          "caspase-1 inflammasome", 
          "dynamic complex", 
          "bacterial RNA", 
          "adaptor molecule", 
          "molecular patterns", 
          "Legionella pneumophila", 
          "inflammasome complex", 
          "cultured macrophages", 
          "Francisella tularensis", 
          "central role", 
          "Shigella flexneri", 
          "Salmonella typhimurium", 
          "ATP", 
          "pathogens", 
          "gout crystals", 
          "Naip5", 
          "Listeria monocytogenes", 
          "inflammasome", 
          "primary trigger", 
          "complexes", 
          "adaptor", 
          "RNA", 
          "IPAF", 
          "regulator", 
          "ASC", 
          "flagellin", 
          "microorganisms", 
          "molecules", 
          "NALPs", 
          "pneumophila", 
          "tularensis", 
          "typhimurium", 
          "toxin", 
          "vivo", 
          "receptors", 
          "flexneri", 
          "Staphylococcus aureus", 
          "NALP3", 
          "macrophages", 
          "signals", 
          "monocytogenes", 
          "role", 
          "PYD", 
          "activation model", 
          "interaction", 
          "infection", 
          "absence", 
          "triggers", 
          "direct bridge", 
          "patterns", 
          "damage", 
          "aureus", 
          "own cards", 
          "recognition", 
          "strategies", 
          "inflammation", 
          "study", 
          "bridge", 
          "nature", 
          "treatment", 
          "model", 
          "play", 
          "sensors", 
          "crystals", 
          "cards"
        ], 
        "name": "Inflammasome adaptors and sensors: intracellular regulators of infection and inflammation", 
        "pagination": "31-40", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1017248811"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nri1997"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "17186029"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nri1997", 
          "https://app.dimensions.ai/details/publication/pub.1017248811"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T15:52", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_437.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/nri1997"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nri1997'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nri1997'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nri1997'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nri1997'


     

    This table displays all metadata directly associated to this object as RDF triples.

    252 TRIPLES      21 PREDICATES      128 URIs      101 LITERALS      14 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nri1997 schema:about N18b69d2a3f5d44c5806abcbe69a7a795
    2 N629e6d15121f4e02ba0e4bde1234b0ba
    3 N6e09b125a0b24ac494cecb7f701446bd
    4 N7dd2c92633bc4d51b28dc5cde3a65a70
    5 Nb1fdd6f112be4b20badd54cbb0b451a9
    6 Ndd758425cc3c47d1b87eed3698ef500b
    7 Neb28ac1ff09a43f38602f620ceeb60af
    8 anzsrc-for:11
    9 anzsrc-for:1107
    10 schema:author Nd287f493e3a9492fa7d19abcd313cd92
    11 schema:citation sg:pub.10.1038/nature02664
    12 sg:pub.10.1038/nature04515
    13 sg:pub.10.1038/nature04516
    14 sg:pub.10.1038/nature04517
    15 sg:pub.10.1038/nature04656
    16 sg:pub.10.1038/nature04946
    17 sg:pub.10.1038/ng1065
    18 sg:pub.10.1038/ng1724
    19 sg:pub.10.1038/ng756
    20 sg:pub.10.1038/ni1131
    21 sg:pub.10.1038/ni1305
    22 sg:pub.10.1038/ni1344
    23 sg:pub.10.1038/ni1346
    24 sg:pub.10.1038/nri1391
    25 sg:pub.10.1038/nri1747
    26 sg:pub.10.1038/nri1788
    27 sg:pub.10.1038/sj.cdd.4400881
    28 sg:pub.10.1038/sj.cdd.4401734
    29 sg:pub.10.1038/sj.cdd.4402038
    30 schema:datePublished 2007-01-01
    31 schema:datePublishedReg 2007-01-01
    32 schema:description Key PointsHosts have evolved strategies to detect and respond rapidly to invading microorganisms and host-cell damage or 'danger signals'. The caspase-1 inflammasome is a dynamic complex in which specific NOD-like receptors (NLRs) and adaptor molecules are brought into play, depending on the nature of the primary trigger.ASC (apoptosis-associated speck-like protein containing a CARD) has a central role in the inflammasome. Through homotypic protein–protein interactions with its own CARD (caspase-recruitment domain) and PYD (pyrin domain), ASC is thought to act as a direct bridge between the sensor NALPs (NACHT-, LRR- and pyrin-domain-containing proteins) and the downstream effector caspase-1.The two-signal activation model is derived from studies of the treatment of cultured macrophages with pathogen-associated molecular patterns, which, in the absence of ATP, are insufficient to activate the inflammasome complex. However, infection with bacterial pathogens both in vitro and in vivo does not require ATP to trigger the inflammasome.NALP3 is involved in sensing toxins, 'danger signals' such as gout crystals, Staphylococcus aureus, Listeria monocytogenes, bacterial RNA and trinitrophenylchloride.IPAF (ICE-protease activating factor) is involved in sensing various intracellular bacterial pathogens, such as Salmonella typhimurium, Shigella flexneri and Legionella pneumophila. Flagellin might be one common pathogen-associated molecule that is recognized by IPAF and/or NAIP5 (neuronal apoptosis inhibitor protein 5).ASC is required for the inflammasome recognition of Francisella tularensis.
    33 schema:genre article
    34 schema:isAccessibleForFree false
    35 schema:isPartOf N3a41cf0c354e408aa6a1b6a48ce6c052
    36 Ndd1d62718d59452cbb407df77f14f4cf
    37 sg:journal.1029717
    38 schema:keywords ASC
    39 ATP
    40 Francisella tularensis
    41 IPAF
    42 Legionella pneumophila
    43 Listeria monocytogenes
    44 NALP3
    45 NALPs
    46 NOD-like receptors
    47 Naip5
    48 PYD
    49 RNA
    50 Salmonella typhimurium
    51 Shigella flexneri
    52 Staphylococcus aureus
    53 absence
    54 absence of ATP
    55 activation model
    56 adaptor
    57 adaptor molecule
    58 aureus
    59 bacterial RNA
    60 bacterial pathogens
    61 bridge
    62 cards
    63 caspase-1 inflammasome
    64 central role
    65 complexes
    66 crystals
    67 cultured macrophages
    68 damage
    69 danger signals
    70 direct bridge
    71 dynamic complex
    72 flagellin
    73 flexneri
    74 gout crystals
    75 homotypic protein-protein interactions
    76 host cell damage
    77 infection
    78 inflammasome
    79 inflammasome complex
    80 inflammasome recognition
    81 inflammation
    82 interaction
    83 intracellular bacterial pathogen
    84 macrophages
    85 microorganisms
    86 model
    87 molecular patterns
    88 molecules
    89 monocytogenes
    90 nature
    91 own cards
    92 pathogen-associated molecular patterns
    93 pathogen-associated molecules
    94 pathogens
    95 patterns
    96 play
    97 pneumophila
    98 primary trigger
    99 protein-protein interactions
    100 receptors
    101 recognition
    102 regulator
    103 regulators of infection
    104 role
    105 sensors
    106 signals
    107 strategies
    108 study
    109 toxin
    110 treatment
    111 triggers
    112 tularensis
    113 typhimurium
    114 vivo
    115 schema:name Inflammasome adaptors and sensors: intracellular regulators of infection and inflammation
    116 schema:pagination 31-40
    117 schema:productId N5d49618b198f43ccb6cfb94f7de93b86
    118 N87e8d03ac7744b4d9be3f742dd99da8b
    119 Nc246c676872c4af7a3b78c07645cc5fe
    120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017248811
    121 https://doi.org/10.1038/nri1997
    122 schema:sdDatePublished 2022-09-02T15:52
    123 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    124 schema:sdPublisher N9c899c03cbe04aeeb6640a4b409b2749
    125 schema:url https://doi.org/10.1038/nri1997
    126 sgo:license sg:explorer/license/
    127 sgo:sdDataset articles
    128 rdf:type schema:ScholarlyArticle
    129 N18b69d2a3f5d44c5806abcbe69a7a795 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    130 schema:name Models, Immunological
    131 rdf:type schema:DefinedTerm
    132 N3a41cf0c354e408aa6a1b6a48ce6c052 schema:volumeNumber 7
    133 rdf:type schema:PublicationVolume
    134 N5d49618b198f43ccb6cfb94f7de93b86 schema:name doi
    135 schema:value 10.1038/nri1997
    136 rdf:type schema:PropertyValue
    137 N629e6d15121f4e02ba0e4bde1234b0ba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    138 schema:name CARD Signaling Adaptor Proteins
    139 rdf:type schema:DefinedTerm
    140 N6e09b125a0b24ac494cecb7f701446bd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    141 schema:name Animals
    142 rdf:type schema:DefinedTerm
    143 N7dd2c92633bc4d51b28dc5cde3a65a70 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    144 schema:name Mice
    145 rdf:type schema:DefinedTerm
    146 N87e8d03ac7744b4d9be3f742dd99da8b schema:name pubmed_id
    147 schema:value 17186029
    148 rdf:type schema:PropertyValue
    149 N93a711eb9ca34707a292776207bfb340 rdf:first sg:person.0610224120.91
    150 rdf:rest rdf:nil
    151 N9c899c03cbe04aeeb6640a4b409b2749 schema:name Springer Nature - SN SciGraph project
    152 rdf:type schema:Organization
    153 Nb1fdd6f112be4b20badd54cbb0b451a9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    154 schema:name Humans
    155 rdf:type schema:DefinedTerm
    156 Nc246c676872c4af7a3b78c07645cc5fe schema:name dimensions_id
    157 schema:value pub.1017248811
    158 rdf:type schema:PropertyValue
    159 Nd287f493e3a9492fa7d19abcd313cd92 rdf:first sg:person.0653762550.34
    160 rdf:rest N93a711eb9ca34707a292776207bfb340
    161 Ndd1d62718d59452cbb407df77f14f4cf schema:issueNumber 1
    162 rdf:type schema:PublicationIssue
    163 Ndd758425cc3c47d1b87eed3698ef500b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    164 schema:name Inflammation
    165 rdf:type schema:DefinedTerm
    166 Neb28ac1ff09a43f38602f620ceeb60af schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    167 schema:name Infections
    168 rdf:type schema:DefinedTerm
    169 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    170 schema:name Medical and Health Sciences
    171 rdf:type schema:DefinedTerm
    172 anzsrc-for:1107 schema:inDefinedTermSet anzsrc-for:
    173 schema:name Immunology
    174 rdf:type schema:DefinedTerm
    175 sg:journal.1029717 schema:issn 1474-1733
    176 1474-1741
    177 schema:name Nature Reviews Immunology
    178 schema:publisher Springer Nature
    179 rdf:type schema:Periodical
    180 sg:person.0610224120.91 schema:affiliation grid-institutes:grid.168010.e
    181 schema:familyName Monack
    182 schema:givenName Denise M.
    183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610224120.91
    184 rdf:type schema:Person
    185 sg:person.0653762550.34 schema:affiliation grid-institutes:grid.418158.1
    186 schema:familyName Mariathasan
    187 schema:givenName Sanjeev
    188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653762550.34
    189 rdf:type schema:Person
    190 sg:pub.10.1038/nature02664 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002716731
    191 https://doi.org/10.1038/nature02664
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1038/nature04515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025852033
    194 https://doi.org/10.1038/nature04515
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1038/nature04516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039236419
    197 https://doi.org/10.1038/nature04516
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1038/nature04517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042379672
    200 https://doi.org/10.1038/nature04517
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1038/nature04656 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002509840
    203 https://doi.org/10.1038/nature04656
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1038/nature04946 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007730336
    206 https://doi.org/10.1038/nature04946
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1038/ng1065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046683186
    209 https://doi.org/10.1038/ng1065
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1038/ng1724 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015154248
    212 https://doi.org/10.1038/ng1724
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1038/ng756 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015613080
    215 https://doi.org/10.1038/ng756
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1038/ni1131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030144801
    218 https://doi.org/10.1038/ni1131
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1038/ni1305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014396392
    221 https://doi.org/10.1038/ni1305
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1038/ni1344 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039911850
    224 https://doi.org/10.1038/ni1344
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1038/ni1346 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033803512
    227 https://doi.org/10.1038/ni1346
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1038/nri1391 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023753307
    230 https://doi.org/10.1038/nri1391
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1038/nri1747 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049921864
    233 https://doi.org/10.1038/nri1747
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1038/nri1788 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000970329
    236 https://doi.org/10.1038/nri1788
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1038/sj.cdd.4400881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033448689
    239 https://doi.org/10.1038/sj.cdd.4400881
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1038/sj.cdd.4401734 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035235524
    242 https://doi.org/10.1038/sj.cdd.4401734
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1038/sj.cdd.4402038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024454646
    245 https://doi.org/10.1038/sj.cdd.4402038
    246 rdf:type schema:CreativeWork
    247 grid-institutes:grid.168010.e schema:alternateName Department of Microbiology and Immunology, Stanford University, 94305, Stanford, California, USA
    248 schema:name Department of Microbiology and Immunology, Stanford University, 94305, Stanford, California, USA
    249 rdf:type schema:Organization
    250 grid-institutes:grid.418158.1 schema:alternateName Department of Translational Oncology, Genentech, 1 DNA Way, 94080, South San Francisco, California, USA
    251 schema:name Department of Translational Oncology, Genentech, 1 DNA Way, 94080, South San Francisco, California, USA
    252 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...