The genetic basis of flowering responses to seasonal cues View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-08-17

AUTHORS

Fernando Andrés, George Coupland

ABSTRACT

Key PointsDay length and temperature are the major seasonal cues that regulate flowering, and molecular pathways conferring these responses have been defined in Arabidopsis thaliana and several other species.Day length is measured in the leaves, and in all species examined it causes expression of highly conserved genes similar to FT of A. thaliana.In many species, a graft-transmissible signal that includes the FT protein is made in the leaves in response to day length and is transported to the shoot apical meristem, where it induces the floral transition.Seasonal flowering is also controlled by extended exposure to low winter temperatures (vernalization) that confers competence to flower in response to day length the following summer and spring.Genetic networks that confer vernalization appear to have evolved independently in different plant families and are therefore an example of convergent evolution.In contrast to annual plants, perennial plants flower multiple times during their lifespan. Recently developed genetic models for perennial species have identified floral repressors that are regulated by environmental signals and differentially expressed compared with closely related annual species. More... »

PAGES

627-639

References to SciGraph publications

  • 2010-06-13. A pair of floral regulators sets critical day length for Hd3a florigen expression in rice in NATURE GENETICS
  • 2001-01. Floral quartets in NATURE
  • 1997-03. A Polycomb-group gene regulates homeotic gene expression in Arabidopsis in NATURE
  • 2003-11. FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis in NATURE
  • 2012-03-21. PHYTOCHROME INTERACTING FACTOR4 controls the thermosensory activation of flowering in NATURE
  • 2008-05-04. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice in NATURE GENETICS
  • 2001-04. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis in NATURE
  • 2011-07-24. A Polycomb-based switch underlying quantitative epigenetic memory in NATURE
  • 2008-11-09. Flowering-time genes modulate meristem determinacy and growth form in Arabidopsis thaliana in NATURE GENETICS
  • 2011-07-31. 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen in NATURE
  • 2009-12. Cold-induced silencing by long antisense transcripts of an Arabidopsis Polycomb target in NATURE
  • 2003-04. Adaptation of photoperiodic control pathways produces short-day flowering in rice in NATURE
  • 2009-04-15. PEP1 regulates perennial flowering in Arabis alpina in NATURE
  • 2011-09-25. Control of flowering and storage organ formation in potato by FLOWERING LOCUS T in NATURE
  • 1991-09. A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana in MOLECULAR GENETICS AND GENOMICS
  • 2009-02-01. The nature of selection during plant domestication in NATURE
  • 2008-12-10. Next-generation genetics in plants in NATURE
  • 2004-01. Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3 in NATURE
  • 2006-03. Effect of Photoperiod on the Regulation of Wheat Vernalization Genes VRN1 and VRN2 in PLANT MOLECULAR BIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nrg3291

    DOI

    http://dx.doi.org/10.1038/nrg3291

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1036188096

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/22898651


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0607", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Plant Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Arabidopsis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Flowers", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Regulation, Plant", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Photoperiod", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Seasons", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Signal Transduction", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Max Planck Institute for Plant Breeding Research, Carl von Linne Weg 10,, D-50829, Cologne, Germany", 
              "id": "http://www.grid.ac/institutes/grid.419498.9", 
              "name": [
                "Max Planck Institute for Plant Breeding Research, Carl von Linne Weg 10,, D-50829, Cologne, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Andr\u00e9s", 
            "givenName": "Fernando", 
            "id": "sg:person.01207371122.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207371122.04"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Max Planck Institute for Plant Breeding Research, Carl von Linne Weg 10,, D-50829, Cologne, Germany", 
              "id": "http://www.grid.ac/institutes/grid.419498.9", 
              "name": [
                "Max Planck Institute for Plant Breeding Research, Carl von Linne Weg 10,, D-50829, Cologne, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Coupland", 
            "givenName": "George", 
            "id": "sg:person.01117343601.78", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117343601.78"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nature10431", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046483452", 
              "https://doi.org/10.1038/nature10431"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/386044a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014093586", 
              "https://doi.org/10.1038/386044a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07988", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052343443", 
              "https://doi.org/10.1038/nature07988"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11103-005-4814-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008412917", 
              "https://doi.org/10.1007/s11103-005-4814-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature10928", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046743918", 
              "https://doi.org/10.1038/nature10928"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02195", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047083063", 
              "https://doi.org/10.1038/nature02195"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07629", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045229853", 
              "https://doi.org/10.1038/nature07629"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature10272", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020106583", 
              "https://doi.org/10.1038/nature10272"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.143", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005635967", 
              "https://doi.org/10.1038/ng.143"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35054172", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019032998", 
              "https://doi.org/10.1038/35054172"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.606", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053657285", 
              "https://doi.org/10.1038/ng.606"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00264213", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032748019", 
              "https://doi.org/10.1007/bf00264213"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature10241", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027524172", 
              "https://doi.org/10.1038/nature10241"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.253", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008223390", 
              "https://doi.org/10.1038/ng.253"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35074138", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023584455", 
              "https://doi.org/10.1038/35074138"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08618", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036815892", 
              "https://doi.org/10.1038/nature08618"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02090", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017361921", 
              "https://doi.org/10.1038/nature02090"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature01549", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038150219", 
              "https://doi.org/10.1038/nature01549"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07895", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028110311", 
              "https://doi.org/10.1038/nature07895"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2012-08-17", 
        "datePublishedReg": "2012-08-17", 
        "description": "Key PointsDay length and temperature are the major seasonal cues that regulate flowering, and molecular pathways conferring these responses have been defined in Arabidopsis thaliana and several other species.Day length is measured in the leaves, and in all species examined it causes expression of highly conserved genes similar to FT of A. thaliana.In many species, a graft-transmissible signal that includes the FT protein is made in the leaves in response to day length and is transported to the shoot apical meristem, where it induces the floral transition.Seasonal flowering is also controlled by extended exposure to low winter temperatures (vernalization) that confers competence to flower in response to day length the following summer and spring.Genetic networks that confer vernalization appear to have evolved independently in different plant families and are therefore an example of convergent evolution.In contrast to annual plants, perennial plants flower multiple times during their lifespan. Recently developed genetic models for perennial species have identified floral repressors that are regulated by environmental signals and differentially expressed compared with closely related annual species.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/nrg3291", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1023607", 
            "issn": [
              "1471-0056", 
              "1471-0064"
            ], 
            "name": "Nature Reviews Genetics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "9", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "13"
          }
        ], 
        "keywords": [
          "seasonal cues", 
          "day length", 
          "graft-transmissible signal", 
          "shoot apical meristem", 
          "different plant families", 
          "major seasonal cues", 
          "low winter temperatures", 
          "FT protein", 
          "floral repressor", 
          "Arabidopsis thaliana", 
          "floral transition", 
          "convergent evolution", 
          "seasonal flowering", 
          "perennial species", 
          "annual species", 
          "apical meristem", 
          "plant families", 
          "environmental signals", 
          "annual plants", 
          "genetic networks", 
          "genetic basis", 
          "molecular pathways", 
          "species", 
          "thaliana", 
          "winter temperatures", 
          "genetic model", 
          "leaves", 
          "meristem", 
          "repressor", 
          "vernalization", 
          "multiple times", 
          "genes", 
          "flowering", 
          "flowers", 
          "plants", 
          "protein", 
          "cues", 
          "pathway", 
          "expression", 
          "response", 
          "lifespan", 
          "extended exposure", 
          "family", 
          "signals", 
          "evolution", 
          "spring", 
          "summer", 
          "length", 
          "contrast", 
          "basis", 
          "exposure", 
          "transition", 
          "temperature", 
          "network", 
          "ft", 
          "example", 
          "competence", 
          "time", 
          "model", 
          "Key PointsDay length", 
          "PointsDay length", 
          "perennial plants flower multiple times", 
          "plants flower multiple times", 
          "flower multiple times", 
          "related annual species"
        ], 
        "name": "The genetic basis of flowering responses to seasonal cues", 
        "pagination": "627-639", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1036188096"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nrg3291"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "22898651"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nrg3291", 
          "https://app.dimensions.ai/details/publication/pub.1036188096"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:28", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_583.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/nrg3291"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nrg3291'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nrg3291'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nrg3291'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nrg3291'


     

    This table displays all metadata directly associated to this object as RDF triples.

    238 TRIPLES      22 PREDICATES      117 URIs      89 LITERALS      13 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nrg3291 schema:about N3e52d0be7a5c4609bdc21714edfb1320
    2 N5729ba9f99a941b78a24ff7748cd1b13
    3 N7ca18940daee4e1dbeae8b5c88a5bde1
    4 Nb473532420da45cbbb75debede8014c7
    5 Nd16a75ef0b00447e80a628bd4a93f485
    6 Ne42631c54f4248d392675fcfa89f1fc7
    7 anzsrc-for:06
    8 anzsrc-for:0604
    9 anzsrc-for:0607
    10 schema:author Nc501e11d1e0d42419270d79599b9748b
    11 schema:citation sg:pub.10.1007/bf00264213
    12 sg:pub.10.1007/s11103-005-4814-2
    13 sg:pub.10.1038/35054172
    14 sg:pub.10.1038/35074138
    15 sg:pub.10.1038/386044a0
    16 sg:pub.10.1038/nature01549
    17 sg:pub.10.1038/nature02090
    18 sg:pub.10.1038/nature02195
    19 sg:pub.10.1038/nature07629
    20 sg:pub.10.1038/nature07895
    21 sg:pub.10.1038/nature07988
    22 sg:pub.10.1038/nature08618
    23 sg:pub.10.1038/nature10241
    24 sg:pub.10.1038/nature10272
    25 sg:pub.10.1038/nature10431
    26 sg:pub.10.1038/nature10928
    27 sg:pub.10.1038/ng.143
    28 sg:pub.10.1038/ng.253
    29 sg:pub.10.1038/ng.606
    30 schema:datePublished 2012-08-17
    31 schema:datePublishedReg 2012-08-17
    32 schema:description Key PointsDay length and temperature are the major seasonal cues that regulate flowering, and molecular pathways conferring these responses have been defined in Arabidopsis thaliana and several other species.Day length is measured in the leaves, and in all species examined it causes expression of highly conserved genes similar to FT of A. thaliana.In many species, a graft-transmissible signal that includes the FT protein is made in the leaves in response to day length and is transported to the shoot apical meristem, where it induces the floral transition.Seasonal flowering is also controlled by extended exposure to low winter temperatures (vernalization) that confers competence to flower in response to day length the following summer and spring.Genetic networks that confer vernalization appear to have evolved independently in different plant families and are therefore an example of convergent evolution.In contrast to annual plants, perennial plants flower multiple times during their lifespan. Recently developed genetic models for perennial species have identified floral repressors that are regulated by environmental signals and differentially expressed compared with closely related annual species.
    33 schema:genre article
    34 schema:inLanguage en
    35 schema:isAccessibleForFree false
    36 schema:isPartOf N102ffe2bed7a489ca9221696955e2e96
    37 N98a1a9182e634359b73a7cc6dd5eaabd
    38 sg:journal.1023607
    39 schema:keywords Arabidopsis thaliana
    40 FT protein
    41 Key PointsDay length
    42 PointsDay length
    43 annual plants
    44 annual species
    45 apical meristem
    46 basis
    47 competence
    48 contrast
    49 convergent evolution
    50 cues
    51 day length
    52 different plant families
    53 environmental signals
    54 evolution
    55 example
    56 exposure
    57 expression
    58 extended exposure
    59 family
    60 floral repressor
    61 floral transition
    62 flower multiple times
    63 flowering
    64 flowers
    65 ft
    66 genes
    67 genetic basis
    68 genetic model
    69 genetic networks
    70 graft-transmissible signal
    71 leaves
    72 length
    73 lifespan
    74 low winter temperatures
    75 major seasonal cues
    76 meristem
    77 model
    78 molecular pathways
    79 multiple times
    80 network
    81 pathway
    82 perennial plants flower multiple times
    83 perennial species
    84 plant families
    85 plants
    86 plants flower multiple times
    87 protein
    88 related annual species
    89 repressor
    90 response
    91 seasonal cues
    92 seasonal flowering
    93 shoot apical meristem
    94 signals
    95 species
    96 spring
    97 summer
    98 temperature
    99 thaliana
    100 time
    101 transition
    102 vernalization
    103 winter temperatures
    104 schema:name The genetic basis of flowering responses to seasonal cues
    105 schema:pagination 627-639
    106 schema:productId N65a6eaed445f4ed1b0385c0013771d96
    107 N7bb396cf1db84eb288683c876d3e239f
    108 Nbea095e8854b4149a2a1b23fa3c725bd
    109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036188096
    110 https://doi.org/10.1038/nrg3291
    111 schema:sdDatePublished 2022-01-01T18:28
    112 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    113 schema:sdPublisher Nd77ff53db8844ba584552112e2052ec0
    114 schema:url https://doi.org/10.1038/nrg3291
    115 sgo:license sg:explorer/license/
    116 sgo:sdDataset articles
    117 rdf:type schema:ScholarlyArticle
    118 N102ffe2bed7a489ca9221696955e2e96 schema:issueNumber 9
    119 rdf:type schema:PublicationIssue
    120 N3e52d0be7a5c4609bdc21714edfb1320 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    121 schema:name Gene Expression Regulation, Plant
    122 rdf:type schema:DefinedTerm
    123 N5729ba9f99a941b78a24ff7748cd1b13 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    124 schema:name Seasons
    125 rdf:type schema:DefinedTerm
    126 N65a6eaed445f4ed1b0385c0013771d96 schema:name dimensions_id
    127 schema:value pub.1036188096
    128 rdf:type schema:PropertyValue
    129 N7bb396cf1db84eb288683c876d3e239f schema:name doi
    130 schema:value 10.1038/nrg3291
    131 rdf:type schema:PropertyValue
    132 N7ca18940daee4e1dbeae8b5c88a5bde1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    133 schema:name Signal Transduction
    134 rdf:type schema:DefinedTerm
    135 N98a1a9182e634359b73a7cc6dd5eaabd schema:volumeNumber 13
    136 rdf:type schema:PublicationVolume
    137 N99e430165730418985524dfb2101f5b7 rdf:first sg:person.01117343601.78
    138 rdf:rest rdf:nil
    139 Nb473532420da45cbbb75debede8014c7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    140 schema:name Photoperiod
    141 rdf:type schema:DefinedTerm
    142 Nbea095e8854b4149a2a1b23fa3c725bd schema:name pubmed_id
    143 schema:value 22898651
    144 rdf:type schema:PropertyValue
    145 Nc501e11d1e0d42419270d79599b9748b rdf:first sg:person.01207371122.04
    146 rdf:rest N99e430165730418985524dfb2101f5b7
    147 Nd16a75ef0b00447e80a628bd4a93f485 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    148 schema:name Arabidopsis
    149 rdf:type schema:DefinedTerm
    150 Nd77ff53db8844ba584552112e2052ec0 schema:name Springer Nature - SN SciGraph project
    151 rdf:type schema:Organization
    152 Ne42631c54f4248d392675fcfa89f1fc7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    153 schema:name Flowers
    154 rdf:type schema:DefinedTerm
    155 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    156 schema:name Biological Sciences
    157 rdf:type schema:DefinedTerm
    158 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    159 schema:name Genetics
    160 rdf:type schema:DefinedTerm
    161 anzsrc-for:0607 schema:inDefinedTermSet anzsrc-for:
    162 schema:name Plant Biology
    163 rdf:type schema:DefinedTerm
    164 sg:journal.1023607 schema:issn 1471-0056
    165 1471-0064
    166 schema:name Nature Reviews Genetics
    167 schema:publisher Springer Nature
    168 rdf:type schema:Periodical
    169 sg:person.01117343601.78 schema:affiliation grid-institutes:grid.419498.9
    170 schema:familyName Coupland
    171 schema:givenName George
    172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117343601.78
    173 rdf:type schema:Person
    174 sg:person.01207371122.04 schema:affiliation grid-institutes:grid.419498.9
    175 schema:familyName Andrés
    176 schema:givenName Fernando
    177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207371122.04
    178 rdf:type schema:Person
    179 sg:pub.10.1007/bf00264213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032748019
    180 https://doi.org/10.1007/bf00264213
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1007/s11103-005-4814-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008412917
    183 https://doi.org/10.1007/s11103-005-4814-2
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1038/35054172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019032998
    186 https://doi.org/10.1038/35054172
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1038/35074138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023584455
    189 https://doi.org/10.1038/35074138
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1038/386044a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014093586
    192 https://doi.org/10.1038/386044a0
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1038/nature01549 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038150219
    195 https://doi.org/10.1038/nature01549
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1038/nature02090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017361921
    198 https://doi.org/10.1038/nature02090
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1038/nature02195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047083063
    201 https://doi.org/10.1038/nature02195
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1038/nature07629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045229853
    204 https://doi.org/10.1038/nature07629
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1038/nature07895 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028110311
    207 https://doi.org/10.1038/nature07895
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1038/nature07988 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052343443
    210 https://doi.org/10.1038/nature07988
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1038/nature08618 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036815892
    213 https://doi.org/10.1038/nature08618
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1038/nature10241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027524172
    216 https://doi.org/10.1038/nature10241
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1038/nature10272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020106583
    219 https://doi.org/10.1038/nature10272
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1038/nature10431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046483452
    222 https://doi.org/10.1038/nature10431
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1038/nature10928 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046743918
    225 https://doi.org/10.1038/nature10928
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1038/ng.143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005635967
    228 https://doi.org/10.1038/ng.143
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1038/ng.253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008223390
    231 https://doi.org/10.1038/ng.253
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1038/ng.606 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053657285
    234 https://doi.org/10.1038/ng.606
    235 rdf:type schema:CreativeWork
    236 grid-institutes:grid.419498.9 schema:alternateName Max Planck Institute for Plant Breeding Research, Carl von Linne Weg 10,, D-50829, Cologne, Germany
    237 schema:name Max Planck Institute for Plant Breeding Research, Carl von Linne Weg 10,, D-50829, Cologne, Germany
    238 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...