Experimental and analytical tools for studying the human microbiome View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-12-16

AUTHORS

Justin Kuczynski, Christian L. Lauber, William A. Walters, Laura Wegener Parfrey, José C. Clemente, Dirk Gevers, Rob Knight

ABSTRACT

Key PointsNew sequencing technologies and open-source computational tools have enabled rapid progress in research into the human microbiota and the human microbiome.Most recent studies use 16S rDNA gene profiling to assess the organisms that are present in a sample or shotgun metagenomics to get a complete profile of gene content in a given habitat.Bacterial and archaeal communities are currently easy to profile using the 16S rDNA gene sequence: techniques for profiling eukaryotes and viruses are more challenging but are intense areas of interest.Both taxonomic and functional profiling are crucial for obtaining a full picture of the microbiota, although error rates both in sequencing and in functional and taxonomic assignment need to be considered when drawing conclusions.Time series studies are proving to be especially useful for understanding variation in the microbiome, as individuals can vary considerably in their microbiome composition. Thus far, developmental trajectories have only been studied in the gut, although it will be fascinating to extend these studies to other body habitats and to developmental disorders.Clustering sequences into taxonomic groups remains challenging, although the quality of current techniques is sufficient to observe clinically relevant differences among subjects.Public resources for functional annotation of metagenomic data are expanding rapidly; they are providing key enabling technology for large-scale projects, such as the Human Microbiome Project and the Earth Microbiome Project.Studies of the microbiome are rapidly moving from preliminary studies that observe differences among groups to mechanistic and longitudinal studies that allow us to see how and why these differences develop. Personalized culture collections will be especially important in this respect. More... »

PAGES

47-58

References to SciGraph publications

  • 2011-05-30. Moving pictures of the human microbiome in GENOME BIOLOGY
  • 2009-05. Metatranscriptomics reveals unique microbial small RNAs in the ocean’s water column in NATURE
  • 2008-07-24. The rational exploration of microbial diversity in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2010-09. Rapid denoising of pyrosequencing amplicon data: exploiting the rank-abundance distribution in NATURE METHODS
  • 2010-10-21. BIPES, a cost-effective high-throughput method for assessing microbial diversity in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2010-10-11. The Human Virome in METAGENOMICS OF THE HUMAN BODY
  • 2007-10-17. The Human Microbiome Project in NATURE
  • 2004-02-01. Community structure and metabolism through reconstruction of microbial genomes from the environment in NATURE
  • 2011-04-28. PhymmBL expanded: confidence scores, custom databases, parallelization and more in NATURE METHODS
  • 2011-04-20. Enterotypes of the human gut microbiome in NATURE
  • 2008-07-20. Blocking primers to enhance PCR amplification of rare sequences in mixed samples – a case study on prey DNA in Antarctic krill stomachs in FRONTIERS IN ZOOLOGY
  • 2010-04-11. QIIME allows analysis of high-throughput community sequencing data in NATURE METHODS
  • 2010. The Earth Microbiome Project: Meeting report of the “1st EMP meeting on sample selection and acquisition” at Argonne National Laboratory October 6th 2010. in ENVIRONMENTAL MICROBIOME
  • 2010. Meeting Report from the Genomic Standards Consortium (GSC) Workshop 10 in ENVIRONMENTAL MICROBIOME
  • 2010-03. A human gut microbial gene catalogue established by metagenomic sequencing in NATURE
  • 2008-11-30. A core gut microbiome in obese and lean twins in NATURE
  • 2010-07-09. ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases in BMC MICROBIOLOGY
  • 2011-03-04. Gut microbiome-host interactions in health and disease in GENOME MEDICINE
  • 2011-05-06. Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications in NATURE BIOTECHNOLOGY
  • 2011-07-21. Toll-Like Receptor 4 Region Genetic Variants are Associated with Susceptibility to Melioidosis in GENES & IMMUNITY
  • 2007-07-20. Accuracy and quality of massively parallel DNA pyrosequencing in GENOME BIOLOGY
  • 2010-07. Viruses in the fecal microbiota of monozygotic twins and their mothers in NATURE
  • 2010-07-30. Sampling and pyrosequencing methods for characterizing bacterial communities in the human gut using 16S sequence tags in BMC MICROBIOLOGY
  • 2011-06-24. Metagenomic biomarker discovery and explanation in GENOME BIOLOGY
  • 2011-01-28. Removing Noise From Pyrosequenced Amplicons in BMC BIOINFORMATICS
  • 2011-02-15. Functional analysis of metagenomes and metatranscriptomes using SEED and KEGG in BMC BIOINFORMATICS
  • 2011-04-28. MetaPath: identifying differentially abundant metabolic pathways in metagenomic datasets in BMC PROCEEDINGS
  • 2007-03-13. Metaproteomics: A New Approach for Studying Functional Microbial Ecology in MICROBIAL ECOLOGY
  • 2008-09-19. The metagenomics RAST server – a public resource for the automatic phylogenetic and functional analysis of metagenomes in BMC BIOINFORMATICS
  • 2010-09-05. Microbial community resemblance methods differ in their ability to detect biologically relevant patterns in NATURE METHODS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nrg3129

    DOI

    http://dx.doi.org/10.1038/nrg3129

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1019355616

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/22179717


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Algorithms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computational Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA Barcoding, Taxonomic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Databases, Nucleic Acid", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genomics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Metagenome", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mouth", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nucleic Acid Amplification Techniques", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "RNA, Ribosomal, 16S", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Skin", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Software", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, 347 UCB, 80309, Boulder, Colorado, USA", 
              "id": "http://www.grid.ac/institutes/grid.266190.a", 
              "name": [
                "Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, 347 UCB, 80309, Boulder, Colorado, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kuczynski", 
            "givenName": "Justin", 
            "id": "sg:person.01242576526.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242576526.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, 216 UCB, 80309, Boulder, Colorado, USA", 
              "id": "http://www.grid.ac/institutes/grid.464551.7", 
              "name": [
                "Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, 216 UCB, 80309, Boulder, Colorado, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lauber", 
            "givenName": "Christian L.", 
            "id": "sg:person.01172202331.77", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172202331.77"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, 347 UCB, 80309, Boulder, Colorado, USA", 
              "id": "http://www.grid.ac/institutes/grid.266190.a", 
              "name": [
                "Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, 347 UCB, 80309, Boulder, Colorado, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Walters", 
            "givenName": "William A.", 
            "id": "sg:person.015342544657.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015342544657.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Chemistry and Biochemistry, University of Colorado at Boulder, 215 UCB, 80309, Boulder, Colorado, USA", 
              "id": "http://www.grid.ac/institutes/grid.266190.a", 
              "name": [
                "Department of Chemistry and Biochemistry, University of Colorado at Boulder, 215 UCB, 80309, Boulder, Colorado, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Parfrey", 
            "givenName": "Laura Wegener", 
            "id": "sg:person.01131645153.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131645153.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Chemistry and Biochemistry, University of Colorado at Boulder, 215 UCB, 80309, Boulder, Colorado, USA", 
              "id": "http://www.grid.ac/institutes/grid.266190.a", 
              "name": [
                "Department of Chemistry and Biochemistry, University of Colorado at Boulder, 215 UCB, 80309, Boulder, Colorado, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Clemente", 
            "givenName": "Jos\u00e9 C.", 
            "id": "sg:person.01251750472.99", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251750472.99"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Microbial Systems & Communities, Genome Sequencing and Analysis Program, The Broad Institute, 7 Cambridge Center, 02142, Cambridge, Massachusetts, USA", 
              "id": "http://www.grid.ac/institutes/grid.66859.34", 
              "name": [
                "Microbial Systems & Communities, Genome Sequencing and Analysis Program, The Broad Institute, 7 Cambridge Center, 02142, Cambridge, Massachusetts, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gevers", 
            "givenName": "Dirk", 
            "id": "sg:person.01123602703.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123602703.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Howard Hughes Medical Institute, 215 UCB, 80309, Boulder, Colorado, USA", 
              "id": "http://www.grid.ac/institutes/grid.413575.1", 
              "name": [
                "Department of Chemistry and Biochemistry, University of Colorado at Boulder, 215 UCB, 80309, Boulder, Colorado, USA", 
                "Howard Hughes Medical Institute, 215 UCB, 80309, Boulder, Colorado, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Knight", 
            "givenName": "Rob", 
            "id": "sg:person.016311745377.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016311745377.96"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/gb-2011-12-6-r60", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000243423", 
              "https://doi.org/10.1186/gb-2011-12-6-r60"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2011-12-5-r50", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050643751", 
              "https://doi.org/10.1186/gb-2011-12-5-r50"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09944", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026204536", 
              "https://doi.org/10.1038/nature09944"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1753-6561-5-s2-s9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039262441", 
              "https://doi.org/10.1186/1753-6561-5-s2-s9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00248-006-9196-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052361666", 
              "https://doi.org/10.1007/s00248-006-9196-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07540", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030170002", 
              "https://doi.org/10.1038/nature07540"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth0511-367", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022956952", 
              "https://doi.org/10.1038/nmeth0511-367"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2180-10-206", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027026649", 
              "https://doi.org/10.1186/1471-2180-10-206"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-9-386", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006083026", 
              "https://doi.org/10.1186/1471-2105-9-386"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2010.160", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048299429", 
              "https://doi.org/10.1038/ismej.2010.160"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2180-10-189", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001541803", 
              "https://doi.org/10.1186/1471-2180-10-189"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02340", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023089166", 
              "https://doi.org/10.1038/nature02340"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/gene.2011.49", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015957962", 
              "https://doi.org/10.1038/gene.2011.49"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth0910-668b", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017522391", 
              "https://doi.org/10.1038/nmeth0910-668b"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gm228", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029672269", 
              "https://doi.org/10.1186/gm228"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2008.69", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037229201", 
              "https://doi.org/10.1038/ismej.2008.69"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1742-9994-5-12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048900105", 
              "https://doi.org/10.1186/1742-9994-5-12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08055", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029921262", 
              "https://doi.org/10.1038/nature08055"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.4056/aigs.1443528", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051440192", 
              "https://doi.org/10.4056/aigs.1443528"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-12-38", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014960196", 
              "https://doi.org/10.1186/1471-2105-12-38"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4419-7089-3_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052391751", 
              "https://doi.org/10.1007/978-1-4419-7089-3_4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.4056/sigs.1423520", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013711076", 
              "https://doi.org/10.4056/sigs.1423520"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08821", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050498034", 
              "https://doi.org/10.1038/nature08821"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.1823", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005906569", 
              "https://doi.org/10.1038/nbt.1823"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09199", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031776599", 
              "https://doi.org/10.1038/nature09199"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1499", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006708540", 
              "https://doi.org/10.1038/nmeth.1499"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2007-8-7-r143", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037510125", 
              "https://doi.org/10.1186/gb-2007-8-7-r143"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-12-s1-s21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010663373", 
              "https://doi.org/10.1186/1471-2105-12-s1-s21"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06244", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009917183", 
              "https://doi.org/10.1038/nature06244"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.f.303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009032055", 
              "https://doi.org/10.1038/nmeth.f.303"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011-12-16", 
        "datePublishedReg": "2011-12-16", 
        "description": "Key PointsNew sequencing technologies and open-source computational tools have enabled rapid progress in research into the human microbiota and the human microbiome.Most recent studies use 16S rDNA gene profiling to assess the organisms that are present in a sample or shotgun metagenomics to get a complete profile of gene content in a given habitat.Bacterial and archaeal communities are currently easy to profile using the 16S rDNA gene sequence: techniques for profiling eukaryotes and viruses are more challenging but are intense areas of interest.Both taxonomic and functional profiling are crucial for obtaining a full picture of the microbiota, although error rates both in sequencing and in functional and taxonomic assignment need to be considered when drawing conclusions.Time series studies are proving to be especially useful for understanding variation in the microbiome, as individuals can vary considerably in their microbiome composition. Thus far, developmental trajectories have only been studied in the gut, although it will be fascinating to extend these studies to other body habitats and to developmental disorders.Clustering sequences into taxonomic groups remains challenging, although the quality of current techniques is sufficient to observe clinically relevant differences among subjects.Public resources for functional annotation of metagenomic data are expanding rapidly; they are providing key enabling technology for large-scale projects, such as the Human Microbiome Project and the Earth Microbiome Project.Studies of the microbiome are rapidly moving from preliminary studies that observe differences among groups to mechanistic and longitudinal studies that allow us to see how and why these differences develop. Personalized culture collections will be especially important in this respect.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/nrg3129", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2684042", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2529347", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2436201", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.5475454", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2699346", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2699326", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1023607", 
            "issn": [
              "1471-0056", 
              "1471-0064"
            ], 
            "name": "Nature Reviews Genetics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "13"
          }
        ], 
        "keywords": [
          "Microbiome Project", 
          "human microbiome", 
          "Earth Microbiome Project", 
          "rDNA gene sequences", 
          "Human Microbiome Project", 
          "gene content", 
          "functional annotation", 
          "body habitats", 
          "taxonomic groups", 
          "functional profiling", 
          "archaeal communities", 
          "gene sequences", 
          "shotgun metagenomics", 
          "sequencing technologies", 
          "taxonomic assignment", 
          "metagenomic data", 
          "gene profiling", 
          "human microbiota", 
          "Culture Collection", 
          "microbiome", 
          "habitats", 
          "microbiome composition", 
          "open-source computational tools", 
          "profiling", 
          "Recent studies", 
          "sequence", 
          "microbiota", 
          "computational tools", 
          "eukaryotes", 
          "metagenomics", 
          "rapid progress", 
          "intense area", 
          "developmental disorders", 
          "organisms", 
          "sequencing", 
          "annotation", 
          "Most recent studies", 
          "complete profile", 
          "gut", 
          "virus", 
          "developmental trajectories", 
          "public resources", 
          "community", 
          "analytical tools", 
          "variation", 
          "full picture", 
          "composition", 
          "study", 
          "large-scale projects", 
          "differences", 
          "tool", 
          "individuals", 
          "profile", 
          "content", 
          "progress", 
          "collection", 
          "resources", 
          "assignment", 
          "group", 
          "current techniques", 
          "disorders", 
          "relevant differences", 
          "data", 
          "area", 
          "preliminary study", 
          "rate", 
          "interest", 
          "samples", 
          "technology", 
          "respect", 
          "research", 
          "picture", 
          "conclusion", 
          "time-series study", 
          "technique", 
          "trajectories", 
          "project", 
          "quality", 
          "error rate", 
          "subjects", 
          "series study", 
          "longitudinal study", 
          "Key PointsNew sequencing technologies", 
          "PointsNew sequencing technologies", 
          "rDNA gene profiling", 
          "Personalized culture collections"
        ], 
        "name": "Experimental and analytical tools for studying the human microbiome", 
        "pagination": "47-58", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1019355616"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nrg3129"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "22179717"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nrg3129", 
          "https://app.dimensions.ai/details/publication/pub.1019355616"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:25", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_546.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/nrg3129"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nrg3129'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nrg3129'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nrg3129'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nrg3129'


     

    This table displays all metadata directly associated to this object as RDF triples.

    386 TRIPLES      22 PREDICATES      155 URIs      117 LITERALS      20 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nrg3129 schema:about N2909c24166374903a9dfefba30b7be9c
    2 N2d466cec00b545dd8760bab4667fefc2
    3 N31fdf9c9d7d24aaabe2e7db216cafe01
    4 N4f84d466c39e4540b5ef23057f554a6a
    5 N57bf520af4a4459eac22880735f74737
    6 N6c1a6204201b44f1a04fdbbe528e5b6c
    7 N7f4fb9bffc534854adfb76a72ceecfe2
    8 Na07eed30761f46a4a86b8e5d8648c053
    9 Nbf6f44babc734bc0a09f9bd0cb5b143c
    10 Nd312557ceade45e2a2bead4a22e09df8
    11 Nd6d224aa09124435aaf19215244efdbf
    12 Ne3a331569ec04f26a4822ee0eb5d3ee4
    13 Neb6399ecc6d543a1bf11447acd9c51bc
    14 anzsrc-for:06
    15 anzsrc-for:0604
    16 schema:author N244a5e58cb5242b0b016759dfd53b682
    17 schema:citation sg:pub.10.1007/978-1-4419-7089-3_4
    18 sg:pub.10.1007/s00248-006-9196-8
    19 sg:pub.10.1038/gene.2011.49
    20 sg:pub.10.1038/ismej.2008.69
    21 sg:pub.10.1038/ismej.2010.160
    22 sg:pub.10.1038/nature02340
    23 sg:pub.10.1038/nature06244
    24 sg:pub.10.1038/nature07540
    25 sg:pub.10.1038/nature08055
    26 sg:pub.10.1038/nature08821
    27 sg:pub.10.1038/nature09199
    28 sg:pub.10.1038/nature09944
    29 sg:pub.10.1038/nbt.1823
    30 sg:pub.10.1038/nmeth.1499
    31 sg:pub.10.1038/nmeth.f.303
    32 sg:pub.10.1038/nmeth0511-367
    33 sg:pub.10.1038/nmeth0910-668b
    34 sg:pub.10.1186/1471-2105-12-38
    35 sg:pub.10.1186/1471-2105-12-s1-s21
    36 sg:pub.10.1186/1471-2105-9-386
    37 sg:pub.10.1186/1471-2180-10-189
    38 sg:pub.10.1186/1471-2180-10-206
    39 sg:pub.10.1186/1742-9994-5-12
    40 sg:pub.10.1186/1753-6561-5-s2-s9
    41 sg:pub.10.1186/gb-2007-8-7-r143
    42 sg:pub.10.1186/gb-2011-12-5-r50
    43 sg:pub.10.1186/gb-2011-12-6-r60
    44 sg:pub.10.1186/gm228
    45 sg:pub.10.4056/aigs.1443528
    46 sg:pub.10.4056/sigs.1423520
    47 schema:datePublished 2011-12-16
    48 schema:datePublishedReg 2011-12-16
    49 schema:description Key PointsNew sequencing technologies and open-source computational tools have enabled rapid progress in research into the human microbiota and the human microbiome.Most recent studies use 16S rDNA gene profiling to assess the organisms that are present in a sample or shotgun metagenomics to get a complete profile of gene content in a given habitat.Bacterial and archaeal communities are currently easy to profile using the 16S rDNA gene sequence: techniques for profiling eukaryotes and viruses are more challenging but are intense areas of interest.Both taxonomic and functional profiling are crucial for obtaining a full picture of the microbiota, although error rates both in sequencing and in functional and taxonomic assignment need to be considered when drawing conclusions.Time series studies are proving to be especially useful for understanding variation in the microbiome, as individuals can vary considerably in their microbiome composition. Thus far, developmental trajectories have only been studied in the gut, although it will be fascinating to extend these studies to other body habitats and to developmental disorders.Clustering sequences into taxonomic groups remains challenging, although the quality of current techniques is sufficient to observe clinically relevant differences among subjects.Public resources for functional annotation of metagenomic data are expanding rapidly; they are providing key enabling technology for large-scale projects, such as the Human Microbiome Project and the Earth Microbiome Project.Studies of the microbiome are rapidly moving from preliminary studies that observe differences among groups to mechanistic and longitudinal studies that allow us to see how and why these differences develop. Personalized culture collections will be especially important in this respect.
    50 schema:genre article
    51 schema:inLanguage en
    52 schema:isAccessibleForFree true
    53 schema:isPartOf N1453fc3154774b7b9e1d600e02537c83
    54 N4992224010404f7e956b74236f654566
    55 sg:journal.1023607
    56 schema:keywords Culture Collection
    57 Earth Microbiome Project
    58 Human Microbiome Project
    59 Key PointsNew sequencing technologies
    60 Microbiome Project
    61 Most recent studies
    62 Personalized culture collections
    63 PointsNew sequencing technologies
    64 Recent studies
    65 analytical tools
    66 annotation
    67 archaeal communities
    68 area
    69 assignment
    70 body habitats
    71 collection
    72 community
    73 complete profile
    74 composition
    75 computational tools
    76 conclusion
    77 content
    78 current techniques
    79 data
    80 developmental disorders
    81 developmental trajectories
    82 differences
    83 disorders
    84 error rate
    85 eukaryotes
    86 full picture
    87 functional annotation
    88 functional profiling
    89 gene content
    90 gene profiling
    91 gene sequences
    92 group
    93 gut
    94 habitats
    95 human microbiome
    96 human microbiota
    97 individuals
    98 intense area
    99 interest
    100 large-scale projects
    101 longitudinal study
    102 metagenomic data
    103 metagenomics
    104 microbiome
    105 microbiome composition
    106 microbiota
    107 open-source computational tools
    108 organisms
    109 picture
    110 preliminary study
    111 profile
    112 profiling
    113 progress
    114 project
    115 public resources
    116 quality
    117 rDNA gene profiling
    118 rDNA gene sequences
    119 rapid progress
    120 rate
    121 relevant differences
    122 research
    123 resources
    124 respect
    125 samples
    126 sequence
    127 sequencing
    128 sequencing technologies
    129 series study
    130 shotgun metagenomics
    131 study
    132 subjects
    133 taxonomic assignment
    134 taxonomic groups
    135 technique
    136 technology
    137 time-series study
    138 tool
    139 trajectories
    140 variation
    141 virus
    142 schema:name Experimental and analytical tools for studying the human microbiome
    143 schema:pagination 47-58
    144 schema:productId N5235c11e604845c591914e7da1bb6044
    145 N58ca1d4f3ca74e5098eccb00bd88d4a7
    146 N8e1a150437a14784b88f42c2ea600497
    147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019355616
    148 https://doi.org/10.1038/nrg3129
    149 schema:sdDatePublished 2021-12-01T19:25
    150 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    151 schema:sdPublisher Nd2e5d4c9d8d846fbba77e7bb4cafebd6
    152 schema:url https://doi.org/10.1038/nrg3129
    153 sgo:license sg:explorer/license/
    154 sgo:sdDataset articles
    155 rdf:type schema:ScholarlyArticle
    156 N107b88c6536a496aad7f7ec98f76f65d rdf:first sg:person.015342544657.49
    157 rdf:rest Nc92abff0166d4ff188bae302e93a9b74
    158 N1453fc3154774b7b9e1d600e02537c83 schema:volumeNumber 13
    159 rdf:type schema:PublicationVolume
    160 N1fdfc2d51ad54851bc64a1d95d173369 rdf:first sg:person.01251750472.99
    161 rdf:rest N415e560da7924d34bca9631caa3878a5
    162 N244a5e58cb5242b0b016759dfd53b682 rdf:first sg:person.01242576526.02
    163 rdf:rest Nb0af8beb71f3440fb90ac3f936ecf891
    164 N2909c24166374903a9dfefba30b7be9c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    165 schema:name RNA, Ribosomal, 16S
    166 rdf:type schema:DefinedTerm
    167 N2d466cec00b545dd8760bab4667fefc2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    168 schema:name DNA Barcoding, Taxonomic
    169 rdf:type schema:DefinedTerm
    170 N31fdf9c9d7d24aaabe2e7db216cafe01 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    171 schema:name Computational Biology
    172 rdf:type schema:DefinedTerm
    173 N415e560da7924d34bca9631caa3878a5 rdf:first sg:person.01123602703.16
    174 rdf:rest Nc9c9d156c33e41639f53897cfe9bbcec
    175 N4992224010404f7e956b74236f654566 schema:issueNumber 1
    176 rdf:type schema:PublicationIssue
    177 N4f84d466c39e4540b5ef23057f554a6a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    178 schema:name Genomics
    179 rdf:type schema:DefinedTerm
    180 N5235c11e604845c591914e7da1bb6044 schema:name pubmed_id
    181 schema:value 22179717
    182 rdf:type schema:PropertyValue
    183 N57bf520af4a4459eac22880735f74737 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    184 schema:name Mouth
    185 rdf:type schema:DefinedTerm
    186 N58ca1d4f3ca74e5098eccb00bd88d4a7 schema:name dimensions_id
    187 schema:value pub.1019355616
    188 rdf:type schema:PropertyValue
    189 N6c1a6204201b44f1a04fdbbe528e5b6c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    190 schema:name Databases, Nucleic Acid
    191 rdf:type schema:DefinedTerm
    192 N7f4fb9bffc534854adfb76a72ceecfe2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    193 schema:name Humans
    194 rdf:type schema:DefinedTerm
    195 N8e1a150437a14784b88f42c2ea600497 schema:name doi
    196 schema:value 10.1038/nrg3129
    197 rdf:type schema:PropertyValue
    198 Na07eed30761f46a4a86b8e5d8648c053 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    199 schema:name DNA
    200 rdf:type schema:DefinedTerm
    201 Nb0af8beb71f3440fb90ac3f936ecf891 rdf:first sg:person.01172202331.77
    202 rdf:rest N107b88c6536a496aad7f7ec98f76f65d
    203 Nbf6f44babc734bc0a09f9bd0cb5b143c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    204 schema:name Skin
    205 rdf:type schema:DefinedTerm
    206 Nc92abff0166d4ff188bae302e93a9b74 rdf:first sg:person.01131645153.07
    207 rdf:rest N1fdfc2d51ad54851bc64a1d95d173369
    208 Nc9c9d156c33e41639f53897cfe9bbcec rdf:first sg:person.016311745377.96
    209 rdf:rest rdf:nil
    210 Nd2e5d4c9d8d846fbba77e7bb4cafebd6 schema:name Springer Nature - SN SciGraph project
    211 rdf:type schema:Organization
    212 Nd312557ceade45e2a2bead4a22e09df8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    213 schema:name Metagenome
    214 rdf:type schema:DefinedTerm
    215 Nd6d224aa09124435aaf19215244efdbf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    216 schema:name Nucleic Acid Amplification Techniques
    217 rdf:type schema:DefinedTerm
    218 Ne3a331569ec04f26a4822ee0eb5d3ee4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    219 schema:name Software
    220 rdf:type schema:DefinedTerm
    221 Neb6399ecc6d543a1bf11447acd9c51bc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    222 schema:name Algorithms
    223 rdf:type schema:DefinedTerm
    224 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    225 schema:name Biological Sciences
    226 rdf:type schema:DefinedTerm
    227 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    228 schema:name Genetics
    229 rdf:type schema:DefinedTerm
    230 sg:grant.2436201 http://pending.schema.org/fundedItem sg:pub.10.1038/nrg3129
    231 rdf:type schema:MonetaryGrant
    232 sg:grant.2529347 http://pending.schema.org/fundedItem sg:pub.10.1038/nrg3129
    233 rdf:type schema:MonetaryGrant
    234 sg:grant.2684042 http://pending.schema.org/fundedItem sg:pub.10.1038/nrg3129
    235 rdf:type schema:MonetaryGrant
    236 sg:grant.2699326 http://pending.schema.org/fundedItem sg:pub.10.1038/nrg3129
    237 rdf:type schema:MonetaryGrant
    238 sg:grant.2699346 http://pending.schema.org/fundedItem sg:pub.10.1038/nrg3129
    239 rdf:type schema:MonetaryGrant
    240 sg:grant.5475454 http://pending.schema.org/fundedItem sg:pub.10.1038/nrg3129
    241 rdf:type schema:MonetaryGrant
    242 sg:journal.1023607 schema:issn 1471-0056
    243 1471-0064
    244 schema:name Nature Reviews Genetics
    245 schema:publisher Springer Nature
    246 rdf:type schema:Periodical
    247 sg:person.01123602703.16 schema:affiliation grid-institutes:grid.66859.34
    248 schema:familyName Gevers
    249 schema:givenName Dirk
    250 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123602703.16
    251 rdf:type schema:Person
    252 sg:person.01131645153.07 schema:affiliation grid-institutes:grid.266190.a
    253 schema:familyName Parfrey
    254 schema:givenName Laura Wegener
    255 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131645153.07
    256 rdf:type schema:Person
    257 sg:person.01172202331.77 schema:affiliation grid-institutes:grid.464551.7
    258 schema:familyName Lauber
    259 schema:givenName Christian L.
    260 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172202331.77
    261 rdf:type schema:Person
    262 sg:person.01242576526.02 schema:affiliation grid-institutes:grid.266190.a
    263 schema:familyName Kuczynski
    264 schema:givenName Justin
    265 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242576526.02
    266 rdf:type schema:Person
    267 sg:person.01251750472.99 schema:affiliation grid-institutes:grid.266190.a
    268 schema:familyName Clemente
    269 schema:givenName José C.
    270 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251750472.99
    271 rdf:type schema:Person
    272 sg:person.015342544657.49 schema:affiliation grid-institutes:grid.266190.a
    273 schema:familyName Walters
    274 schema:givenName William A.
    275 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015342544657.49
    276 rdf:type schema:Person
    277 sg:person.016311745377.96 schema:affiliation grid-institutes:grid.413575.1
    278 schema:familyName Knight
    279 schema:givenName Rob
    280 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016311745377.96
    281 rdf:type schema:Person
    282 sg:pub.10.1007/978-1-4419-7089-3_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052391751
    283 https://doi.org/10.1007/978-1-4419-7089-3_4
    284 rdf:type schema:CreativeWork
    285 sg:pub.10.1007/s00248-006-9196-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052361666
    286 https://doi.org/10.1007/s00248-006-9196-8
    287 rdf:type schema:CreativeWork
    288 sg:pub.10.1038/gene.2011.49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015957962
    289 https://doi.org/10.1038/gene.2011.49
    290 rdf:type schema:CreativeWork
    291 sg:pub.10.1038/ismej.2008.69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037229201
    292 https://doi.org/10.1038/ismej.2008.69
    293 rdf:type schema:CreativeWork
    294 sg:pub.10.1038/ismej.2010.160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048299429
    295 https://doi.org/10.1038/ismej.2010.160
    296 rdf:type schema:CreativeWork
    297 sg:pub.10.1038/nature02340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023089166
    298 https://doi.org/10.1038/nature02340
    299 rdf:type schema:CreativeWork
    300 sg:pub.10.1038/nature06244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009917183
    301 https://doi.org/10.1038/nature06244
    302 rdf:type schema:CreativeWork
    303 sg:pub.10.1038/nature07540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030170002
    304 https://doi.org/10.1038/nature07540
    305 rdf:type schema:CreativeWork
    306 sg:pub.10.1038/nature08055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029921262
    307 https://doi.org/10.1038/nature08055
    308 rdf:type schema:CreativeWork
    309 sg:pub.10.1038/nature08821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050498034
    310 https://doi.org/10.1038/nature08821
    311 rdf:type schema:CreativeWork
    312 sg:pub.10.1038/nature09199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031776599
    313 https://doi.org/10.1038/nature09199
    314 rdf:type schema:CreativeWork
    315 sg:pub.10.1038/nature09944 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026204536
    316 https://doi.org/10.1038/nature09944
    317 rdf:type schema:CreativeWork
    318 sg:pub.10.1038/nbt.1823 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005906569
    319 https://doi.org/10.1038/nbt.1823
    320 rdf:type schema:CreativeWork
    321 sg:pub.10.1038/nmeth.1499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006708540
    322 https://doi.org/10.1038/nmeth.1499
    323 rdf:type schema:CreativeWork
    324 sg:pub.10.1038/nmeth.f.303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009032055
    325 https://doi.org/10.1038/nmeth.f.303
    326 rdf:type schema:CreativeWork
    327 sg:pub.10.1038/nmeth0511-367 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022956952
    328 https://doi.org/10.1038/nmeth0511-367
    329 rdf:type schema:CreativeWork
    330 sg:pub.10.1038/nmeth0910-668b schema:sameAs https://app.dimensions.ai/details/publication/pub.1017522391
    331 https://doi.org/10.1038/nmeth0910-668b
    332 rdf:type schema:CreativeWork
    333 sg:pub.10.1186/1471-2105-12-38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014960196
    334 https://doi.org/10.1186/1471-2105-12-38
    335 rdf:type schema:CreativeWork
    336 sg:pub.10.1186/1471-2105-12-s1-s21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010663373
    337 https://doi.org/10.1186/1471-2105-12-s1-s21
    338 rdf:type schema:CreativeWork
    339 sg:pub.10.1186/1471-2105-9-386 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006083026
    340 https://doi.org/10.1186/1471-2105-9-386
    341 rdf:type schema:CreativeWork
    342 sg:pub.10.1186/1471-2180-10-189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001541803
    343 https://doi.org/10.1186/1471-2180-10-189
    344 rdf:type schema:CreativeWork
    345 sg:pub.10.1186/1471-2180-10-206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027026649
    346 https://doi.org/10.1186/1471-2180-10-206
    347 rdf:type schema:CreativeWork
    348 sg:pub.10.1186/1742-9994-5-12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048900105
    349 https://doi.org/10.1186/1742-9994-5-12
    350 rdf:type schema:CreativeWork
    351 sg:pub.10.1186/1753-6561-5-s2-s9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039262441
    352 https://doi.org/10.1186/1753-6561-5-s2-s9
    353 rdf:type schema:CreativeWork
    354 sg:pub.10.1186/gb-2007-8-7-r143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037510125
    355 https://doi.org/10.1186/gb-2007-8-7-r143
    356 rdf:type schema:CreativeWork
    357 sg:pub.10.1186/gb-2011-12-5-r50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050643751
    358 https://doi.org/10.1186/gb-2011-12-5-r50
    359 rdf:type schema:CreativeWork
    360 sg:pub.10.1186/gb-2011-12-6-r60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000243423
    361 https://doi.org/10.1186/gb-2011-12-6-r60
    362 rdf:type schema:CreativeWork
    363 sg:pub.10.1186/gm228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029672269
    364 https://doi.org/10.1186/gm228
    365 rdf:type schema:CreativeWork
    366 sg:pub.10.4056/aigs.1443528 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051440192
    367 https://doi.org/10.4056/aigs.1443528
    368 rdf:type schema:CreativeWork
    369 sg:pub.10.4056/sigs.1423520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013711076
    370 https://doi.org/10.4056/sigs.1423520
    371 rdf:type schema:CreativeWork
    372 grid-institutes:grid.266190.a schema:alternateName Department of Chemistry and Biochemistry, University of Colorado at Boulder, 215 UCB, 80309, Boulder, Colorado, USA
    373 Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, 347 UCB, 80309, Boulder, Colorado, USA
    374 schema:name Department of Chemistry and Biochemistry, University of Colorado at Boulder, 215 UCB, 80309, Boulder, Colorado, USA
    375 Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, 347 UCB, 80309, Boulder, Colorado, USA
    376 rdf:type schema:Organization
    377 grid-institutes:grid.413575.1 schema:alternateName Howard Hughes Medical Institute, 215 UCB, 80309, Boulder, Colorado, USA
    378 schema:name Department of Chemistry and Biochemistry, University of Colorado at Boulder, 215 UCB, 80309, Boulder, Colorado, USA
    379 Howard Hughes Medical Institute, 215 UCB, 80309, Boulder, Colorado, USA
    380 rdf:type schema:Organization
    381 grid-institutes:grid.464551.7 schema:alternateName Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, 216 UCB, 80309, Boulder, Colorado, USA
    382 schema:name Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, 216 UCB, 80309, Boulder, Colorado, USA
    383 rdf:type schema:Organization
    384 grid-institutes:grid.66859.34 schema:alternateName Microbial Systems & Communities, Genome Sequencing and Analysis Program, The Broad Institute, 7 Cambridge Center, 02142, Cambridge, Massachusetts, USA
    385 schema:name Microbial Systems & Communities, Genome Sequencing and Analysis Program, The Broad Institute, 7 Cambridge Center, 02142, Cambridge, Massachusetts, USA
    386 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...