RNA-based gene duplication: mechanistic and evolutionary insights View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009-01

AUTHORS

Henrik Kaessmann, Nicolas Vinckenbosch, Manyuan Long

ABSTRACT

Key PointsThe enzymatic machinery encoded by certain retrotransposons enables genes to duplicate via an RNA intermediate, a mechanism termed retroposition or retroduplication. In mammals, retroposition has produced thousands of gene copies, termed retrocopies.Retrocopies are expected to lack promoter sequences and were long regarded as pseudogenes with no functional relevance. However, cases of functional retrocopies, termed retrogenes, have accumulated in the literature, implying that retrocopies can be transcribed.Recent large-scale studies indicate that transcribed retrocopies are widespread. Retrocopies can become transcribed in various ways. For example, they can use promoters of other genes or retrotransposable elements in their vicinity, but they can (unexpectedly) also inherit promoters from their parental source genes.Retrocopies and retrogenes are frequently functionally transcribed in the testis, which is probably due to the permissive transcriptional state of chromatin during and after meiosis.Several 'out-of-the-X' autosomal retrogenes have been shown to functionally substitute their X-linked parental genes during and after meiotic sex-chromosome inactivation.Phylogenetic dating of out-of-the-X retrogenes in mammals has led to the reassessment of the age of our sex chromosomes.Detailed functional studies of young retrogenes have provided novel insights pertaining to the origin of new genes. For example, analyses of recent primate genes revealed that new gene functions can arise through changes in the localization of encoded proteins in the cell during evolution, whereas studies in Drosophila melanogaster uncovered the first example of a new gene with a behavioral phenotype.Studies of the process of retroposition have not only shed light on the origin of new genes, but have also provided other general insights pertaining to the evolution of mammalian genomes. For example, retrocopies have served as unique 'genomic archives' of mammalian transcriptomes, revealing extinct transcripts and gene expression activity during evolution.Gene copies originating from segmental duplication and retroposition have distinct features (such as the presence or absence of inherited regulatory sequences and introns) that profoundly influence their evolutionary fate. Studying RNA-based gene duplication is therefore a useful alternative to further enhance our understanding of the emergence of new genes and their functions. More... »

PAGES

19-31

References to SciGraph publications

  • 2004-08. The structure and evolution of centromeric transition regions within the human genome in NATURE
  • 2008-04-10. Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes in NATURE
  • 1982-03. Processed genes: a dispersed human immunoglobulin gene bearing evidence of RNA-type processing in NATURE
  • 2006-03. The evolution of spliceosomal introns: patterns, puzzles and progress in NATURE REVIEWS GENETICS
  • 2003-03. Molecular evolution meets the genomics revolution in NATURE GENETICS
  • 2008-05. Genome analysis of the platypus reveals unique signatures of evolution in NATURE
  • 2002-11-01. Splitting pairs: the diverging fates of duplicated genes in NATURE REVIEWS GENETICS
  • 2008-05-22. Evolutionary origin of regulatory regions of retrogenes in Drosophila in BMC GENOMICS
  • 2004-09-19. Birth and adaptive evolution of a hominoid gene that supports high neurotransmitter flux in NATURE GENETICS
  • 2003-06. The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes in NATURE
  • 2003-10-28. Whole-genome screening indicates a possible burst of formation of processed pseudogenes and Alu repeats by particular L1 subfamilies in ancestral primates in GENOME BIOLOGY
  • 2008-03-12. Functional diversification of duplicate genes through subcellular adaptation of encoded proteins in GENOME BIOLOGY
  • 2006-06-13. Primate segmental duplications: crucibles of evolution, diversity and disease in NATURE REVIEWS GENETICS
  • 1987-04-01. Human testis-specific PGK gene lacks introns and possesses characteristics of a processed gene in NATURE
  • 2003-11. The origin of new genes: glimpses from the young and old in NATURE REVIEWS GENETICS
  • 1997-11. Tail-to-Head Arrangement of a Partial Chicken Glyceraldehyde-3-Phosphate Dehydrogenase Processed Pseudogene in JOURNAL OF MOLECULAR EVOLUTION
  • 2007-11. Demasculinization of X chromosomes in the Drosophila genus in NATURE
  • 2007-05-08. Mammalian RNA polymerase II core promoters: insights from genome-wide studies in NATURE REVIEWS GENETICS
  • 2004-07-07. Cyclophilin A retrotransposition into TRIM5 explains owl monkey resistance to HIV-1 in NATURE
  • 2004-12-09. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution in NATURE
  • 2005-03. The DNA sequence of the human X chromosome in NATURE
  • 1970. Evolution by Gene Duplication in NONE
  • 1996-11. High intrinsic rate of DNA loss in Drosophila in NATURE
  • 2000-04. Human LINE retrotransposons generate processed pseudogenes in NATURE GENETICS
  • 2008-04-10. Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes in NATURE
  • 2004-07-18. An X-to-autosome retrogene is required for spermatogenesis in mice in NATURE GENETICS
  • 1982-10. Human metallothionein genes—primary structure of the metallothionein-II gene and a related processed gene in NATURE
  • 2007-01-18. Comparative genomics reveals a constant rate of origination and convergent acquisition of functional retrogenes in Drosophila in GENOME BIOLOGY
  • 2007-11-16. The multiple sex chromosomes of platypus and echidna are not completely identical and several share homology with the avian Z in GENOME BIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nrg2487

    DOI

    http://dx.doi.org/10.1038/nrg2487

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1023394776

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/19030023


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Evolution, Molecular", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Duplication", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genes, Duplicate", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phylogeny", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "RNA", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "RNA, Messenger", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Regulatory Elements, Transcriptional", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Retroelements", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sex Chromosomes", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Center for Integrative Genomics, University of Lausanne, CH-1015, Genopode, Lausanne, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.9851.5", 
              "name": [
                "Center for Integrative Genomics, University of Lausanne, CH-1015, Genopode, Lausanne, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kaessmann", 
            "givenName": "Henrik", 
            "id": "sg:person.011271050047.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011271050047.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Center for Integrative Genomics, University of Lausanne, CH-1015, Genopode, Lausanne, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.9851.5", 
              "name": [
                "Center for Integrative Genomics, University of Lausanne, CH-1015, Genopode, Lausanne, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vinckenbosch", 
            "givenName": "Nicolas", 
            "id": "sg:person.01353222747.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353222747.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Ecology and Evolution, The University of Chicago, 1101 East 57th Street, 60637, Chicago, Illinois, USA", 
              "id": "http://www.grid.ac/institutes/grid.170205.1", 
              "name": [
                "Department of Ecology and Evolution, The University of Chicago, 1101 East 57th Street, 60637, Chicago, Illinois, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Long", 
            "givenName": "Manyuan", 
            "id": "sg:person.01217127453.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217127453.95"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/gb-2003-4-11-r74", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036654845", 
              "https://doi.org/10.1186/gb-2003-4-11-r74"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-9-241", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028044489", 
              "https://doi.org/10.1186/1471-2164-9-241"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06936", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011001281", 
              "https://doi.org/10.1038/nature06936"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature01722", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032168678", 
              "https://doi.org/10.1038/nature01722"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1390", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011004228", 
              "https://doi.org/10.1038/ng1390"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06904", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003435334", 
              "https://doi.org/10.1038/nature06904"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02806", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025178904", 
              "https://doi.org/10.1038/nature02806"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg928", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036730624", 
              "https://doi.org/10.1038/nrg928"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/pl00006260", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028888270", 
              "https://doi.org/10.1007/pl00006260"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03154", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006367901", 
              "https://doi.org/10.1038/nature03154"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg1807", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032279500", 
              "https://doi.org/10.1038/nrg1807"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2008-9-3-r54", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035266476", 
              "https://doi.org/10.1186/gb-2008-9-3-r54"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1431", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028302883", 
              "https://doi.org/10.1038/ng1431"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03440", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026661886", 
              "https://doi.org/10.1038/nature03440"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/296321a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049130435", 
              "https://doi.org/10.1038/296321a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1088", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052187594", 
              "https://doi.org/10.1038/ng1088"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/299797a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017688081", 
              "https://doi.org/10.1038/299797a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006861692", 
              "https://doi.org/10.1038/nrg2026"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-86659-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006433795", 
              "https://doi.org/10.1007/978-3-642-86659-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2007-8-1-r11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039170189", 
              "https://doi.org/10.1186/gb-2007-8-1-r11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02777", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009831127", 
              "https://doi.org/10.1038/nature02777"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg1895", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017304465", 
              "https://doi.org/10.1038/nrg1895"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/384346a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050549639", 
              "https://doi.org/10.1038/384346a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06908", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022822409", 
              "https://doi.org/10.1038/nature06908"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2007-8-11-r243", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019445729", 
              "https://doi.org/10.1186/gb-2007-8-11-r243"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/326501a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035884192", 
              "https://doi.org/10.1038/326501a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06330", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036885212", 
              "https://doi.org/10.1038/nature06330"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg1204", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012883354", 
              "https://doi.org/10.1038/nrg1204"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/74184", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025724156", 
              "https://doi.org/10.1038/74184"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2009-01", 
        "datePublishedReg": "2009-01-01", 
        "description": "Key PointsThe enzymatic machinery encoded by certain retrotransposons enables genes to duplicate via an RNA intermediate, a mechanism termed retroposition or retroduplication. In mammals, retroposition has produced thousands of gene copies, termed retrocopies.Retrocopies are expected to lack promoter sequences and were long regarded as pseudogenes with no functional relevance. However, cases of functional retrocopies, termed retrogenes, have accumulated in the literature, implying that retrocopies can be transcribed.Recent large-scale studies indicate that transcribed retrocopies are widespread. Retrocopies can become transcribed in various ways. For example, they can use promoters of other genes or retrotransposable elements in their vicinity, but they can (unexpectedly) also inherit promoters from their parental source genes.Retrocopies and retrogenes are frequently functionally transcribed in the testis, which is probably due to the permissive transcriptional state of chromatin during and after meiosis.Several 'out-of-the-X' autosomal retrogenes have been shown to functionally substitute their X-linked parental genes during and after meiotic sex-chromosome inactivation.Phylogenetic dating of out-of-the-X retrogenes in mammals has led to the reassessment of the age of our sex chromosomes.Detailed functional studies of young retrogenes have provided novel insights pertaining to the origin of new genes. For example, analyses of recent primate genes revealed that new gene functions can arise through changes in the localization of encoded proteins in the cell during evolution, whereas studies in Drosophila melanogaster uncovered the first example of a new gene with a behavioral phenotype.Studies of the process of retroposition have not only shed light on the origin of new genes, but have also provided other general insights pertaining to the evolution of mammalian genomes. For example, retrocopies have served as unique 'genomic archives' of mammalian transcriptomes, revealing extinct transcripts and gene expression activity during evolution.Gene copies originating from segmental duplication and retroposition have distinct features (such as the presence or absence of inherited regulatory sequences and introns) that profoundly influence their evolutionary fate. Studying RNA-based gene duplication is therefore a useful alternative to further enhance our understanding of the emergence of new genes and their functions.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/nrg2487", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2519221", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1023607", 
            "issn": [
              "1471-0056", 
              "1471-0064"
            ], 
            "name": "Nature Reviews Genetics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "10"
          }
        ], 
        "keywords": [
          "new genes", 
          "gene duplication", 
          "gene copies", 
          "meiotic sex chromosome inactivation", 
          "new gene functions", 
          "sex chromosome inactivation", 
          "detailed functional studies", 
          "gene expression activity", 
          "functional retrocopies", 
          "young retrogenes", 
          "autosomal retrogenes", 
          "evolutionary fate", 
          "mammalian genomes", 
          "mammalian transcriptome", 
          "evolutionary insights", 
          "parental genes", 
          "transcriptional states", 
          "certain retrotransposons", 
          "gene function", 
          "Drosophila melanogaster", 
          "primate genes", 
          "segmental duplications", 
          "retrotransposable elements", 
          "sex chromosomes", 
          "retrocopies", 
          "source genes", 
          "phylogenetic dating", 
          "retrogenes", 
          "promoter sequences", 
          "enzymatic machinery", 
          "RNA intermediate", 
          "genomic archive", 
          "retroposition", 
          "recent large-scale studies", 
          "genes", 
          "expression activity", 
          "functional studies", 
          "functional relevance", 
          "novel insights", 
          "duplication", 
          "mammals", 
          "promoter", 
          "RNA", 
          "behavioral phenotypes", 
          "copies", 
          "retroduplication", 
          "melanogaster", 
          "retrotransposons", 
          "pseudogenes", 
          "transcriptome", 
          "chromatin", 
          "general insights", 
          "genome", 
          "meiosis", 
          "chromosomes", 
          "evolution", 
          "transcripts", 
          "machinery", 
          "insights", 
          "protein", 
          "phenotype", 
          "first example", 
          "sequence", 
          "inactivation", 
          "fate", 
          "origin", 
          "cells", 
          "testis", 
          "localization", 
          "distinct features", 
          "function", 
          "large-scale studies", 
          "mechanism", 
          "intermediates", 
          "thousands", 
          "activity", 
          "understanding", 
          "study", 
          "emergence", 
          "light", 
          "changes", 
          "analysis", 
          "elements", 
          "example", 
          "relevance", 
          "process", 
          "reassessment", 
          "vicinity", 
          "useful alternative", 
          "features", 
          "state", 
          "dating", 
          "way", 
          "alternative", 
          "archives", 
          "age", 
          "cases", 
          "literature"
        ], 
        "name": "RNA-based gene duplication: mechanistic and evolutionary insights", 
        "pagination": "19-31", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1023394776"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nrg2487"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "19030023"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nrg2487", 
          "https://app.dimensions.ai/details/publication/pub.1023394776"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:27", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_480.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/nrg2487"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nrg2487'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nrg2487'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nrg2487'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nrg2487'


     

    This table displays all metadata directly associated to this object as RDF triples.

    342 TRIPLES      21 PREDICATES      165 URIs      128 LITERALS      19 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nrg2487 schema:about N0d68bacdb92040b4a40945c3bf951703
    2 N1874c3ffa79048f8b9adf7472b76d169
    3 N468d2a1d119e4f2b8e4f11c91ed62c7b
    4 N4a7c188758c140d18f1ce38ec751ed52
    5 N4c41e0b8295e493d9ff8a6a89f80291a
    6 N66192ebda679452f958140334f39a388
    7 N805661baf0304b6e8c971decb81554f2
    8 N86bc22e3737448bf9116ae999bf03f8a
    9 Nc44681724e79491e873d31966f12915e
    10 Nd5dd4def92bf4ba39c034fc0302d565b
    11 Nddc089d651fa40aa846fca44e03c4149
    12 Ne5a117ce00394337a6559b125469524a
    13 anzsrc-for:06
    14 anzsrc-for:0604
    15 schema:author N130de53fa359445081c821d835e1ab74
    16 schema:citation sg:pub.10.1007/978-3-642-86659-3
    17 sg:pub.10.1007/pl00006260
    18 sg:pub.10.1038/296321a0
    19 sg:pub.10.1038/299797a0
    20 sg:pub.10.1038/326501a0
    21 sg:pub.10.1038/384346a0
    22 sg:pub.10.1038/74184
    23 sg:pub.10.1038/nature01722
    24 sg:pub.10.1038/nature02777
    25 sg:pub.10.1038/nature02806
    26 sg:pub.10.1038/nature03154
    27 sg:pub.10.1038/nature03440
    28 sg:pub.10.1038/nature06330
    29 sg:pub.10.1038/nature06904
    30 sg:pub.10.1038/nature06908
    31 sg:pub.10.1038/nature06936
    32 sg:pub.10.1038/ng1088
    33 sg:pub.10.1038/ng1390
    34 sg:pub.10.1038/ng1431
    35 sg:pub.10.1038/nrg1204
    36 sg:pub.10.1038/nrg1807
    37 sg:pub.10.1038/nrg1895
    38 sg:pub.10.1038/nrg2026
    39 sg:pub.10.1038/nrg928
    40 sg:pub.10.1186/1471-2164-9-241
    41 sg:pub.10.1186/gb-2003-4-11-r74
    42 sg:pub.10.1186/gb-2007-8-1-r11
    43 sg:pub.10.1186/gb-2007-8-11-r243
    44 sg:pub.10.1186/gb-2008-9-3-r54
    45 schema:datePublished 2009-01
    46 schema:datePublishedReg 2009-01-01
    47 schema:description Key PointsThe enzymatic machinery encoded by certain retrotransposons enables genes to duplicate via an RNA intermediate, a mechanism termed retroposition or retroduplication. In mammals, retroposition has produced thousands of gene copies, termed retrocopies.Retrocopies are expected to lack promoter sequences and were long regarded as pseudogenes with no functional relevance. However, cases of functional retrocopies, termed retrogenes, have accumulated in the literature, implying that retrocopies can be transcribed.Recent large-scale studies indicate that transcribed retrocopies are widespread. Retrocopies can become transcribed in various ways. For example, they can use promoters of other genes or retrotransposable elements in their vicinity, but they can (unexpectedly) also inherit promoters from their parental source genes.Retrocopies and retrogenes are frequently functionally transcribed in the testis, which is probably due to the permissive transcriptional state of chromatin during and after meiosis.Several 'out-of-the-X' autosomal retrogenes have been shown to functionally substitute their X-linked parental genes during and after meiotic sex-chromosome inactivation.Phylogenetic dating of out-of-the-X retrogenes in mammals has led to the reassessment of the age of our sex chromosomes.Detailed functional studies of young retrogenes have provided novel insights pertaining to the origin of new genes. For example, analyses of recent primate genes revealed that new gene functions can arise through changes in the localization of encoded proteins in the cell during evolution, whereas studies in Drosophila melanogaster uncovered the first example of a new gene with a behavioral phenotype.Studies of the process of retroposition have not only shed light on the origin of new genes, but have also provided other general insights pertaining to the evolution of mammalian genomes. For example, retrocopies have served as unique 'genomic archives' of mammalian transcriptomes, revealing extinct transcripts and gene expression activity during evolution.Gene copies originating from segmental duplication and retroposition have distinct features (such as the presence or absence of inherited regulatory sequences and introns) that profoundly influence their evolutionary fate. Studying RNA-based gene duplication is therefore a useful alternative to further enhance our understanding of the emergence of new genes and their functions.
    48 schema:genre article
    49 schema:isAccessibleForFree true
    50 schema:isPartOf Na1d220222a7544749c47a2b364b86a0c
    51 Nb3b211756b614da38bb0e37464494624
    52 sg:journal.1023607
    53 schema:keywords Drosophila melanogaster
    54 RNA
    55 RNA intermediate
    56 activity
    57 age
    58 alternative
    59 analysis
    60 archives
    61 autosomal retrogenes
    62 behavioral phenotypes
    63 cases
    64 cells
    65 certain retrotransposons
    66 changes
    67 chromatin
    68 chromosomes
    69 copies
    70 dating
    71 detailed functional studies
    72 distinct features
    73 duplication
    74 elements
    75 emergence
    76 enzymatic machinery
    77 evolution
    78 evolutionary fate
    79 evolutionary insights
    80 example
    81 expression activity
    82 fate
    83 features
    84 first example
    85 function
    86 functional relevance
    87 functional retrocopies
    88 functional studies
    89 gene copies
    90 gene duplication
    91 gene expression activity
    92 gene function
    93 general insights
    94 genes
    95 genome
    96 genomic archive
    97 inactivation
    98 insights
    99 intermediates
    100 large-scale studies
    101 light
    102 literature
    103 localization
    104 machinery
    105 mammalian genomes
    106 mammalian transcriptome
    107 mammals
    108 mechanism
    109 meiosis
    110 meiotic sex chromosome inactivation
    111 melanogaster
    112 new gene functions
    113 new genes
    114 novel insights
    115 origin
    116 parental genes
    117 phenotype
    118 phylogenetic dating
    119 primate genes
    120 process
    121 promoter
    122 promoter sequences
    123 protein
    124 pseudogenes
    125 reassessment
    126 recent large-scale studies
    127 relevance
    128 retrocopies
    129 retroduplication
    130 retrogenes
    131 retroposition
    132 retrotransposable elements
    133 retrotransposons
    134 segmental duplications
    135 sequence
    136 sex chromosome inactivation
    137 sex chromosomes
    138 source genes
    139 state
    140 study
    141 testis
    142 thousands
    143 transcriptional states
    144 transcriptome
    145 transcripts
    146 understanding
    147 useful alternative
    148 vicinity
    149 way
    150 young retrogenes
    151 schema:name RNA-based gene duplication: mechanistic and evolutionary insights
    152 schema:pagination 19-31
    153 schema:productId N3c2a7219b87f4ab0bb13ebe596df60c2
    154 N93ab234583614dadafd1bc340d80db1e
    155 Nf5f01defcf234660858eccb61b90b065
    156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023394776
    157 https://doi.org/10.1038/nrg2487
    158 schema:sdDatePublished 2022-12-01T06:27
    159 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    160 schema:sdPublisher N2d8564e3910640f69132e19552459568
    161 schema:url https://doi.org/10.1038/nrg2487
    162 sgo:license sg:explorer/license/
    163 sgo:sdDataset articles
    164 rdf:type schema:ScholarlyArticle
    165 N0d68bacdb92040b4a40945c3bf951703 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    166 schema:name Gene Duplication
    167 rdf:type schema:DefinedTerm
    168 N130de53fa359445081c821d835e1ab74 rdf:first sg:person.011271050047.43
    169 rdf:rest N356826ddfa594f50b4b6c1a035963312
    170 N1874c3ffa79048f8b9adf7472b76d169 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    171 schema:name Genes, Duplicate
    172 rdf:type schema:DefinedTerm
    173 N2d8564e3910640f69132e19552459568 schema:name Springer Nature - SN SciGraph project
    174 rdf:type schema:Organization
    175 N356826ddfa594f50b4b6c1a035963312 rdf:first sg:person.01353222747.30
    176 rdf:rest N451d4a44c7514ef39b673d43b1969888
    177 N3c2a7219b87f4ab0bb13ebe596df60c2 schema:name dimensions_id
    178 schema:value pub.1023394776
    179 rdf:type schema:PropertyValue
    180 N451d4a44c7514ef39b673d43b1969888 rdf:first sg:person.01217127453.95
    181 rdf:rest rdf:nil
    182 N468d2a1d119e4f2b8e4f11c91ed62c7b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    183 schema:name Animals
    184 rdf:type schema:DefinedTerm
    185 N4a7c188758c140d18f1ce38ec751ed52 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    186 schema:name Regulatory Elements, Transcriptional
    187 rdf:type schema:DefinedTerm
    188 N4c41e0b8295e493d9ff8a6a89f80291a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    189 schema:name Retroelements
    190 rdf:type schema:DefinedTerm
    191 N66192ebda679452f958140334f39a388 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    192 schema:name Phylogeny
    193 rdf:type schema:DefinedTerm
    194 N805661baf0304b6e8c971decb81554f2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    195 schema:name RNA, Messenger
    196 rdf:type schema:DefinedTerm
    197 N86bc22e3737448bf9116ae999bf03f8a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    198 schema:name Humans
    199 rdf:type schema:DefinedTerm
    200 N93ab234583614dadafd1bc340d80db1e schema:name pubmed_id
    201 schema:value 19030023
    202 rdf:type schema:PropertyValue
    203 Na1d220222a7544749c47a2b364b86a0c schema:volumeNumber 10
    204 rdf:type schema:PublicationVolume
    205 Nb3b211756b614da38bb0e37464494624 schema:issueNumber 1
    206 rdf:type schema:PublicationIssue
    207 Nc44681724e79491e873d31966f12915e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    208 schema:name RNA
    209 rdf:type schema:DefinedTerm
    210 Nd5dd4def92bf4ba39c034fc0302d565b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    211 schema:name Evolution, Molecular
    212 rdf:type schema:DefinedTerm
    213 Nddc089d651fa40aa846fca44e03c4149 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    214 schema:name Models, Genetic
    215 rdf:type schema:DefinedTerm
    216 Ne5a117ce00394337a6559b125469524a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    217 schema:name Sex Chromosomes
    218 rdf:type schema:DefinedTerm
    219 Nf5f01defcf234660858eccb61b90b065 schema:name doi
    220 schema:value 10.1038/nrg2487
    221 rdf:type schema:PropertyValue
    222 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    223 schema:name Biological Sciences
    224 rdf:type schema:DefinedTerm
    225 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    226 schema:name Genetics
    227 rdf:type schema:DefinedTerm
    228 sg:grant.2519221 http://pending.schema.org/fundedItem sg:pub.10.1038/nrg2487
    229 rdf:type schema:MonetaryGrant
    230 sg:journal.1023607 schema:issn 1471-0056
    231 1471-0064
    232 schema:name Nature Reviews Genetics
    233 schema:publisher Springer Nature
    234 rdf:type schema:Periodical
    235 sg:person.011271050047.43 schema:affiliation grid-institutes:grid.9851.5
    236 schema:familyName Kaessmann
    237 schema:givenName Henrik
    238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011271050047.43
    239 rdf:type schema:Person
    240 sg:person.01217127453.95 schema:affiliation grid-institutes:grid.170205.1
    241 schema:familyName Long
    242 schema:givenName Manyuan
    243 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217127453.95
    244 rdf:type schema:Person
    245 sg:person.01353222747.30 schema:affiliation grid-institutes:grid.9851.5
    246 schema:familyName Vinckenbosch
    247 schema:givenName Nicolas
    248 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353222747.30
    249 rdf:type schema:Person
    250 sg:pub.10.1007/978-3-642-86659-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006433795
    251 https://doi.org/10.1007/978-3-642-86659-3
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1007/pl00006260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028888270
    254 https://doi.org/10.1007/pl00006260
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1038/296321a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049130435
    257 https://doi.org/10.1038/296321a0
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1038/299797a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017688081
    260 https://doi.org/10.1038/299797a0
    261 rdf:type schema:CreativeWork
    262 sg:pub.10.1038/326501a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035884192
    263 https://doi.org/10.1038/326501a0
    264 rdf:type schema:CreativeWork
    265 sg:pub.10.1038/384346a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050549639
    266 https://doi.org/10.1038/384346a0
    267 rdf:type schema:CreativeWork
    268 sg:pub.10.1038/74184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025724156
    269 https://doi.org/10.1038/74184
    270 rdf:type schema:CreativeWork
    271 sg:pub.10.1038/nature01722 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032168678
    272 https://doi.org/10.1038/nature01722
    273 rdf:type schema:CreativeWork
    274 sg:pub.10.1038/nature02777 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009831127
    275 https://doi.org/10.1038/nature02777
    276 rdf:type schema:CreativeWork
    277 sg:pub.10.1038/nature02806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025178904
    278 https://doi.org/10.1038/nature02806
    279 rdf:type schema:CreativeWork
    280 sg:pub.10.1038/nature03154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006367901
    281 https://doi.org/10.1038/nature03154
    282 rdf:type schema:CreativeWork
    283 sg:pub.10.1038/nature03440 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026661886
    284 https://doi.org/10.1038/nature03440
    285 rdf:type schema:CreativeWork
    286 sg:pub.10.1038/nature06330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036885212
    287 https://doi.org/10.1038/nature06330
    288 rdf:type schema:CreativeWork
    289 sg:pub.10.1038/nature06904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003435334
    290 https://doi.org/10.1038/nature06904
    291 rdf:type schema:CreativeWork
    292 sg:pub.10.1038/nature06908 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022822409
    293 https://doi.org/10.1038/nature06908
    294 rdf:type schema:CreativeWork
    295 sg:pub.10.1038/nature06936 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011001281
    296 https://doi.org/10.1038/nature06936
    297 rdf:type schema:CreativeWork
    298 sg:pub.10.1038/ng1088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052187594
    299 https://doi.org/10.1038/ng1088
    300 rdf:type schema:CreativeWork
    301 sg:pub.10.1038/ng1390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011004228
    302 https://doi.org/10.1038/ng1390
    303 rdf:type schema:CreativeWork
    304 sg:pub.10.1038/ng1431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028302883
    305 https://doi.org/10.1038/ng1431
    306 rdf:type schema:CreativeWork
    307 sg:pub.10.1038/nrg1204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012883354
    308 https://doi.org/10.1038/nrg1204
    309 rdf:type schema:CreativeWork
    310 sg:pub.10.1038/nrg1807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032279500
    311 https://doi.org/10.1038/nrg1807
    312 rdf:type schema:CreativeWork
    313 sg:pub.10.1038/nrg1895 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017304465
    314 https://doi.org/10.1038/nrg1895
    315 rdf:type schema:CreativeWork
    316 sg:pub.10.1038/nrg2026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006861692
    317 https://doi.org/10.1038/nrg2026
    318 rdf:type schema:CreativeWork
    319 sg:pub.10.1038/nrg928 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036730624
    320 https://doi.org/10.1038/nrg928
    321 rdf:type schema:CreativeWork
    322 sg:pub.10.1186/1471-2164-9-241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028044489
    323 https://doi.org/10.1186/1471-2164-9-241
    324 rdf:type schema:CreativeWork
    325 sg:pub.10.1186/gb-2003-4-11-r74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036654845
    326 https://doi.org/10.1186/gb-2003-4-11-r74
    327 rdf:type schema:CreativeWork
    328 sg:pub.10.1186/gb-2007-8-1-r11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039170189
    329 https://doi.org/10.1186/gb-2007-8-1-r11
    330 rdf:type schema:CreativeWork
    331 sg:pub.10.1186/gb-2007-8-11-r243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019445729
    332 https://doi.org/10.1186/gb-2007-8-11-r243
    333 rdf:type schema:CreativeWork
    334 sg:pub.10.1186/gb-2008-9-3-r54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035266476
    335 https://doi.org/10.1186/gb-2008-9-3-r54
    336 rdf:type schema:CreativeWork
    337 grid-institutes:grid.170205.1 schema:alternateName Department of Ecology and Evolution, The University of Chicago, 1101 East 57th Street, 60637, Chicago, Illinois, USA
    338 schema:name Department of Ecology and Evolution, The University of Chicago, 1101 East 57th Street, 60637, Chicago, Illinois, USA
    339 rdf:type schema:Organization
    340 grid-institutes:grid.9851.5 schema:alternateName Center for Integrative Genomics, University of Lausanne, CH-1015, Genopode, Lausanne, Switzerland
    341 schema:name Center for Integrative Genomics, University of Lausanne, CH-1015, Genopode, Lausanne, Switzerland
    342 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...