RNA-Seq: a revolutionary tool for transcriptomics View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009-01

AUTHORS

Zhong Wang, Mark Gerstein, Michael Snyder

ABSTRACT

RNA-Seq is a recently developed approach to transcriptome profiling that uses deep-sequencing technologies. Studies using this method have already altered our view of the extent and complexity of eukaryotic transcriptomes. RNA-Seq also provides a far more precise measurement of levels of transcripts and their isoforms than other methods. This article describes the RNA-Seq approach, the challenges associated with its application, and the advances made so far in characterizing several eukaryote transcriptomes. More... »

PAGES

57-63

References to SciGraph publications

Journal

TITLE

Nature Reviews Genetics

ISSUE

1

VOLUME

10

Author Affiliations

Related Patents

  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Digital Counting Of Individual Molecules By Stochastic Attachment Of Diverse Labels
  • Transformation Of Algae For Increasing Lipid Production
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Digital Counting Of Individual Molecules By Stochastic Attachment Of Diverse Labels
  • Efficient Production Of Steviol Glycosides In Recombinant Hosts
  • Methods And Systems For Digitally Counting Features On Arrays
  • Methods And Systems For Digitally Counting Features On Arrays
  • Systems And Methods For Smart Tools In Sequence Pipelines
  • Digital Counting Of Individual Molecules By Stochastic Attachment Of Diverse Labels
  • Means For Diagnosing, Predicting Or Monitoring Pneumocystis Pneumonia
  • Systems And Methods For Using Paired-End Data In Directed Acyclic Structure
  • Methods Of Treating Cancer With Farnesyltransferase Inhibitors
  • Digital Counting Of Individual Molecules By Stochastic Attachment Of Diverse Labels
  • Biomarkers And Methods Of Treatment
  • Methods For Diagnosing And Treating Refractory Celiac Disease Type 2
  • Methods And Materials For Assessing Response To Plasmablast- And Plasma Cell-Depleting Therapies
  • Massively Parallel Single Cell Analysis
  • Immunogenic Mutant Peptide Screening Platform
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Digital Counting Of Individual Molecules By Stochastic Attachment Of Diverse Label-Tags
  • Systems And Methods For Analyzing Sequence Data
  • Spatially Addressable Molecular Barcoding
  • Chronic Lymphocytic Leukemia (Cll) Biomarkers
  • Spatially Addressable Molecular Barcoding
  • Diterpene Synthases And Method For Producing Diterpenoids
  • Quantitative Nuclease Protection Assay (Qnpa) And Sequencing (Qnps) Improvements
  • Methods And Genes For Normalization Of Gene Expression
  • Methods And Systems For Detecting Genetic Variants
  • Digital Counting Of Individual Molecules By Stochastic Attachment Of Diverse Labels
  • Method Of Sequencing And Identifying Rnas
  • Digital Counting Of Individual Molecules By Stochastic Attachment Of Diverse Labels
  • Digital Counting Of Individual Molecules By Stochastic Attachment Of Diverse Labels
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Combination Treatments Comprising C-Met Antagonists And B-Raf Antagonists
  • Digital Counting Of Individual Molecules By Stochastic Attachment Of Diverse Labels
  • Extracellular Vesicle-Based Diagnostics And Engineered Exosomes For Targeted Therapeutics Against Cancer
  • Massively Parallel Single Cell Analysis
  • Methods For Deconvolution Of Mixed Cell Populations Using Gene Expression Data
  • Diterpene Synthases And Method For Producing Diterpenoids
  • Massively Parallel Single Cell Analysis
  • Massively Parallel Single Cell Analysis
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nrg2484

    DOI

    http://dx.doi.org/10.1038/nrg2484

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1030687647

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/19015660


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Base Sequence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chromosome Mapping", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Exons", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Profiling", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Molecular Sequence Data", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "RNA", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sequence Analysis, RNA", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Transcription, Genetic", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Yale University", 
              "id": "https://www.grid.ac/institutes/grid.47100.32", 
              "name": [
                "Zhong Wang and Michael Snyder are at the Department of Molecular, Cellular and Developmental Biology, and Mark Gerstein is at the Department of Molecular, Biophysics and Biochemistry, Yale University, 219 Prospect Street, New Haven, Connecticut 06520, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Zhong", 
            "id": "sg:person.01273706575.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01273706575.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Yale University", 
              "id": "https://www.grid.ac/institutes/grid.47100.32", 
              "name": [
                "Zhong Wang and Michael Snyder are at the Department of Molecular, Cellular and Developmental Biology, and Mark Gerstein is at the Department of Molecular, Biophysics and Biochemistry, Yale University, 219 Prospect Street, New Haven, Connecticut 06520, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gerstein", 
            "givenName": "Mark", 
            "id": "sg:person.011677655217.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011677655217.83"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Yale University", 
              "id": "https://www.grid.ac/institutes/grid.47100.32", 
              "name": [
                "Zhong Wang and Michael Snyder are at the Department of Molecular, Cellular and Developmental Biology, and Mark Gerstein is at the Department of Molecular, Biophysics and Biochemistry, Yale University, 219 Prospect Street, New Haven, Connecticut 06520, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Snyder", 
            "givenName": "Michael", 
            "id": "sg:person.01031217667.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031217667.32"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nmeth0306-211", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000258165", 
              "https://doi.org/10.1038/nmeth0306-211"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth0306-211", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000258165", 
              "https://doi.org/10.1038/nmeth0306-211"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkm549", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000291441"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1179", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001773338", 
              "https://doi.org/10.1038/nmeth.1179"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth768", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006027429", 
              "https://doi.org/10.1038/nmeth768"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth768", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006027429", 
              "https://doi.org/10.1038/nmeth768"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth768", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006027429", 
              "https://doi.org/10.1038/nmeth768"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.196", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006977205", 
              "https://doi.org/10.1038/ng.196"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0076-6879(00)28418-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007243447"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0092-8674(00)80886-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009502047"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0601091103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010938923"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btn025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012266713"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bfgp/1.1.95", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016819765"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2008.03.029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020929996"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.2136655100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028529038"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/76469", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028559169", 
              "https://doi.org/10.1038/76469"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/76469", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028559169", 
              "https://doi.org/10.1038/76469"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-9-128", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029892891", 
              "https://doi.org/10.1186/1471-2105-9-128"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1875", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030326679", 
              "https://doi.org/10.1038/ng1875"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1875", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030326679", 
              "https://doi.org/10.1038/ng1875"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-7-276", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031404240", 
              "https://doi.org/10.1186/1471-2105-7-276"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/sqb.2006.71.037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035195601"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.073262.107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037655071"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.5145806", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040489760"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cub.2004.12.057", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041818870"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-294x.2008.03666.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042079631"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1103388", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042123507"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1160342", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042163407"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044718936", 
              "https://doi.org/10.1038/nature07002"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.2596504", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044936424"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1226", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045381177", 
              "https://doi.org/10.1038/nmeth.1226"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2229-8-43", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045604110", 
              "https://doi.org/10.1186/1471-2229-8-43"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-313x.2007.03193.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045656577"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.079558.108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045837493"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1108625", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046921907"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.128", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047246435", 
              "https://doi.org/10.1038/ng.128"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2008-9-1-r3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047316138", 
              "https://doi.org/10.1186/gb-2008-9-1-r3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.078212.108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047542880"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/46558", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048366482", 
              "https://doi.org/10.1038/46558"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/46558", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048366482", 
              "https://doi.org/10.1038/46558"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1223", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048586936", 
              "https://doi.org/10.1038/nmeth.1223"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.micro.59.031805.133833", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050170001"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.micro.59.031805.133833", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050170001"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1069415", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062445909"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1088305", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062448444"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1158441", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062457766"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.270.5235.484", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062551479"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.8091218", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062652223"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2144/000112900", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069095857"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1076998167", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2009-01", 
        "datePublishedReg": "2009-01-01", 
        "description": "RNA-Seq is a recently developed approach to transcriptome profiling that uses deep-sequencing technologies. Studies using this method have already altered our view of the extent and complexity of eukaryotic transcriptomes. RNA-Seq also provides a far more precise measurement of levels of transcripts and their isoforms than other methods. This article describes the RNA-Seq approach, the challenges associated with its application, and the advances made so far in characterizing several eukaryote transcriptomes.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nrg2484", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2440601", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2473683", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1023607", 
            "issn": [
              "1471-0056", 
              "1471-0064"
            ], 
            "name": "Nature Reviews Genetics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "10"
          }
        ], 
        "name": "RNA-Seq: a revolutionary tool for transcriptomics", 
        "pagination": "57-63", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "92311658f34754ecf0fbb4e2994dda8d3decc03f5df1e1e0250ebd5035f2f9c1"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "19015660"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "100962779"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nrg2484"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1030687647"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nrg2484", 
          "https://app.dimensions.ai/details/publication/pub.1030687647"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T01:46", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000425.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/articles/nrg2484"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nrg2484'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nrg2484'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nrg2484'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nrg2484'


     

    This table displays all metadata directly associated to this object as RDF triples.

    274 TRIPLES      21 PREDICATES      83 URIs      32 LITERALS      20 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nrg2484 schema:about N0886f91e6d954126b0de1acd58f9de31
    2 N08e45fd1f032484aa9f93feab7dadcbc
    3 N0bf0ca6e4c5e4aea830ab91eef3803eb
    4 N2f0fb591b9b04dcdb4fec2b113958f5c
    5 N6b60b52c869f40b6a58b5cf245ca2cf1
    6 N7d3a29c87aaf40b09eddd4a57c582150
    7 N80dddec6e7634260b258de62df221635
    8 N98389110522041159b675933e645cdf6
    9 Nbcfefb5b1b704a969903e70ed953c015
    10 Ncd78726489d045f4b762225b44972212
    11 Nd7242b7b1b0b430087c7afab9043fafc
    12 anzsrc-for:06
    13 anzsrc-for:0604
    14 schema:author N28273fc292af42bba2c71f11a58cb097
    15 schema:citation sg:pub.10.1038/46558
    16 sg:pub.10.1038/76469
    17 sg:pub.10.1038/nature07002
    18 sg:pub.10.1038/ng.128
    19 sg:pub.10.1038/ng.196
    20 sg:pub.10.1038/ng1875
    21 sg:pub.10.1038/nmeth.1179
    22 sg:pub.10.1038/nmeth.1223
    23 sg:pub.10.1038/nmeth.1226
    24 sg:pub.10.1038/nmeth0306-211
    25 sg:pub.10.1038/nmeth768
    26 sg:pub.10.1186/1471-2105-7-276
    27 sg:pub.10.1186/1471-2105-9-128
    28 sg:pub.10.1186/1471-2229-8-43
    29 sg:pub.10.1186/gb-2008-9-1-r3
    30 https://app.dimensions.ai/details/publication/pub.1076998167
    31 https://doi.org/10.1016/j.cell.2008.03.029
    32 https://doi.org/10.1016/j.cub.2004.12.057
    33 https://doi.org/10.1016/s0076-6879(00)28418-8
    34 https://doi.org/10.1016/s0092-8674(00)80886-7
    35 https://doi.org/10.1073/pnas.0601091103
    36 https://doi.org/10.1073/pnas.2136655100
    37 https://doi.org/10.1093/bfgp/1.1.95
    38 https://doi.org/10.1093/bioinformatics/btn025
    39 https://doi.org/10.1093/nar/gkm549
    40 https://doi.org/10.1101/gr.073262.107
    41 https://doi.org/10.1101/gr.078212.108
    42 https://doi.org/10.1101/gr.079558.108
    43 https://doi.org/10.1101/gr.2596504
    44 https://doi.org/10.1101/gr.5145806
    45 https://doi.org/10.1101/sqb.2006.71.037
    46 https://doi.org/10.1111/j.1365-294x.2008.03666.x
    47 https://doi.org/10.1111/j.1365-313x.2007.03193.x
    48 https://doi.org/10.1126/science.1069415
    49 https://doi.org/10.1126/science.1088305
    50 https://doi.org/10.1126/science.1103388
    51 https://doi.org/10.1126/science.1108625
    52 https://doi.org/10.1126/science.1158441
    53 https://doi.org/10.1126/science.1160342
    54 https://doi.org/10.1126/science.270.5235.484
    55 https://doi.org/10.1126/science.8091218
    56 https://doi.org/10.1146/annurev.micro.59.031805.133833
    57 https://doi.org/10.2144/000112900
    58 schema:datePublished 2009-01
    59 schema:datePublishedReg 2009-01-01
    60 schema:description RNA-Seq is a recently developed approach to transcriptome profiling that uses deep-sequencing technologies. Studies using this method have already altered our view of the extent and complexity of eukaryotic transcriptomes. RNA-Seq also provides a far more precise measurement of levels of transcripts and their isoforms than other methods. This article describes the RNA-Seq approach, the challenges associated with its application, and the advances made so far in characterizing several eukaryote transcriptomes.
    61 schema:genre research_article
    62 schema:inLanguage en
    63 schema:isAccessibleForFree true
    64 schema:isPartOf N0198c6cfc3844fbfbb287ffbb1f7ca03
    65 N4faf5b62c6fd44709d7f5f79e6105af7
    66 sg:journal.1023607
    67 schema:name RNA-Seq: a revolutionary tool for transcriptomics
    68 schema:pagination 57-63
    69 schema:productId N442530fc3eb34e119e1fbde71334bb47
    70 Nab5b436ce45541379ccabfc2d6df83de
    71 Nd19ec1dd09c04902ba54d0a85f2d9d5b
    72 Nd2bbf779be2946e68f07afbb6a655498
    73 Nfb9d489629ff4816aa632357d1f2a7e5
    74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030687647
    75 https://doi.org/10.1038/nrg2484
    76 schema:sdDatePublished 2019-04-11T01:46
    77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    78 schema:sdPublisher N37163bf6be3e4b42a6f48bf69d3db2e5
    79 schema:url http://www.nature.com/articles/nrg2484
    80 sgo:license sg:explorer/license/
    81 sgo:sdDataset articles
    82 rdf:type schema:ScholarlyArticle
    83 N0198c6cfc3844fbfbb287ffbb1f7ca03 schema:volumeNumber 10
    84 rdf:type schema:PublicationVolume
    85 N0886f91e6d954126b0de1acd58f9de31 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    86 schema:name Chromosome Mapping
    87 rdf:type schema:DefinedTerm
    88 N08e45fd1f032484aa9f93feab7dadcbc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    89 schema:name Base Sequence
    90 rdf:type schema:DefinedTerm
    91 N0bf0ca6e4c5e4aea830ab91eef3803eb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    92 schema:name Molecular Sequence Data
    93 rdf:type schema:DefinedTerm
    94 N28273fc292af42bba2c71f11a58cb097 rdf:first sg:person.01273706575.10
    95 rdf:rest Nef37f07a9d1642ebb50343cb74da6668
    96 N2f0fb591b9b04dcdb4fec2b113958f5c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    97 schema:name Sequence Analysis, RNA
    98 rdf:type schema:DefinedTerm
    99 N37163bf6be3e4b42a6f48bf69d3db2e5 schema:name Springer Nature - SN SciGraph project
    100 rdf:type schema:Organization
    101 N442530fc3eb34e119e1fbde71334bb47 schema:name readcube_id
    102 schema:value 92311658f34754ecf0fbb4e2994dda8d3decc03f5df1e1e0250ebd5035f2f9c1
    103 rdf:type schema:PropertyValue
    104 N4faf5b62c6fd44709d7f5f79e6105af7 schema:issueNumber 1
    105 rdf:type schema:PublicationIssue
    106 N6b60b52c869f40b6a58b5cf245ca2cf1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    107 schema:name Gene Expression Profiling
    108 rdf:type schema:DefinedTerm
    109 N7d3a29c87aaf40b09eddd4a57c582150 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    110 schema:name Transcription, Genetic
    111 rdf:type schema:DefinedTerm
    112 N80dddec6e7634260b258de62df221635 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    113 schema:name RNA
    114 rdf:type schema:DefinedTerm
    115 N98389110522041159b675933e645cdf6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    116 schema:name Models, Genetic
    117 rdf:type schema:DefinedTerm
    118 Nab5b436ce45541379ccabfc2d6df83de schema:name dimensions_id
    119 schema:value pub.1030687647
    120 rdf:type schema:PropertyValue
    121 Nbcfefb5b1b704a969903e70ed953c015 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    122 schema:name Humans
    123 rdf:type schema:DefinedTerm
    124 Ncd78726489d045f4b762225b44972212 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    125 schema:name Animals
    126 rdf:type schema:DefinedTerm
    127 Nd19ec1dd09c04902ba54d0a85f2d9d5b schema:name pubmed_id
    128 schema:value 19015660
    129 rdf:type schema:PropertyValue
    130 Nd2bbf779be2946e68f07afbb6a655498 schema:name nlm_unique_id
    131 schema:value 100962779
    132 rdf:type schema:PropertyValue
    133 Nd7242b7b1b0b430087c7afab9043fafc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    134 schema:name Exons
    135 rdf:type schema:DefinedTerm
    136 Nef37f07a9d1642ebb50343cb74da6668 rdf:first sg:person.011677655217.83
    137 rdf:rest Nf1064661f6db4317b2f70340d4acf440
    138 Nf1064661f6db4317b2f70340d4acf440 rdf:first sg:person.01031217667.32
    139 rdf:rest rdf:nil
    140 Nfb9d489629ff4816aa632357d1f2a7e5 schema:name doi
    141 schema:value 10.1038/nrg2484
    142 rdf:type schema:PropertyValue
    143 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    144 schema:name Biological Sciences
    145 rdf:type schema:DefinedTerm
    146 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    147 schema:name Genetics
    148 rdf:type schema:DefinedTerm
    149 sg:grant.2440601 http://pending.schema.org/fundedItem sg:pub.10.1038/nrg2484
    150 rdf:type schema:MonetaryGrant
    151 sg:grant.2473683 http://pending.schema.org/fundedItem sg:pub.10.1038/nrg2484
    152 rdf:type schema:MonetaryGrant
    153 sg:journal.1023607 schema:issn 1471-0056
    154 1471-0064
    155 schema:name Nature Reviews Genetics
    156 rdf:type schema:Periodical
    157 sg:person.01031217667.32 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
    158 schema:familyName Snyder
    159 schema:givenName Michael
    160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031217667.32
    161 rdf:type schema:Person
    162 sg:person.011677655217.83 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
    163 schema:familyName Gerstein
    164 schema:givenName Mark
    165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011677655217.83
    166 rdf:type schema:Person
    167 sg:person.01273706575.10 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
    168 schema:familyName Wang
    169 schema:givenName Zhong
    170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01273706575.10
    171 rdf:type schema:Person
    172 sg:pub.10.1038/46558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048366482
    173 https://doi.org/10.1038/46558
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1038/76469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028559169
    176 https://doi.org/10.1038/76469
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1038/nature07002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044718936
    179 https://doi.org/10.1038/nature07002
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1038/ng.128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047246435
    182 https://doi.org/10.1038/ng.128
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1038/ng.196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006977205
    185 https://doi.org/10.1038/ng.196
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1038/ng1875 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030326679
    188 https://doi.org/10.1038/ng1875
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1038/nmeth.1179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001773338
    191 https://doi.org/10.1038/nmeth.1179
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1038/nmeth.1223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048586936
    194 https://doi.org/10.1038/nmeth.1223
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1038/nmeth.1226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045381177
    197 https://doi.org/10.1038/nmeth.1226
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1038/nmeth0306-211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000258165
    200 https://doi.org/10.1038/nmeth0306-211
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1038/nmeth768 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006027429
    203 https://doi.org/10.1038/nmeth768
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1186/1471-2105-7-276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031404240
    206 https://doi.org/10.1186/1471-2105-7-276
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1186/1471-2105-9-128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029892891
    209 https://doi.org/10.1186/1471-2105-9-128
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1186/1471-2229-8-43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045604110
    212 https://doi.org/10.1186/1471-2229-8-43
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1186/gb-2008-9-1-r3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047316138
    215 https://doi.org/10.1186/gb-2008-9-1-r3
    216 rdf:type schema:CreativeWork
    217 https://app.dimensions.ai/details/publication/pub.1076998167 schema:CreativeWork
    218 https://doi.org/10.1016/j.cell.2008.03.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020929996
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1016/j.cub.2004.12.057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041818870
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1016/s0076-6879(00)28418-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007243447
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1016/s0092-8674(00)80886-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009502047
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1073/pnas.0601091103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010938923
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1073/pnas.2136655100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028529038
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1093/bfgp/1.1.95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016819765
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1093/bioinformatics/btn025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012266713
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1093/nar/gkm549 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000291441
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1101/gr.073262.107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037655071
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1101/gr.078212.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047542880
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1101/gr.079558.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045837493
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1101/gr.2596504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044936424
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1101/gr.5145806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040489760
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1101/sqb.2006.71.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035195601
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1111/j.1365-294x.2008.03666.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1042079631
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1111/j.1365-313x.2007.03193.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045656577
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1126/science.1069415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062445909
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1126/science.1088305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062448444
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.1126/science.1103388 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042123507
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.1126/science.1108625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046921907
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.1126/science.1158441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062457766
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.1126/science.1160342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042163407
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.1126/science.270.5235.484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062551479
    265 rdf:type schema:CreativeWork
    266 https://doi.org/10.1126/science.8091218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062652223
    267 rdf:type schema:CreativeWork
    268 https://doi.org/10.1146/annurev.micro.59.031805.133833 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050170001
    269 rdf:type schema:CreativeWork
    270 https://doi.org/10.2144/000112900 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069095857
    271 rdf:type schema:CreativeWork
    272 https://www.grid.ac/institutes/grid.47100.32 schema:alternateName Yale University
    273 schema:name Zhong Wang and Michael Snyder are at the Department of Molecular, Cellular and Developmental Biology, and Mark Gerstein is at the Department of Molecular, Biophysics and Biochemistry, Yale University, 219 Prospect Street, New Haven, Connecticut 06520, USA.
    274 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...