Metagenomics: DNA sequencing of environmental samples View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2005-10-11

AUTHORS

Susannah Green Tringe, Edward M. Rubin

ABSTRACT

Key PointsDNA sequencing can provide insights into organisms that are difficult to study because they are inaccessible by conventional methods such as laboratory culture.Isolation and sequencing of DNA from mixed communities of organisms (metagenomics) has revealed surprising insights into diversity and evolution.Genomic DNA sequence, and even complete genomes in some cases, has been generated from organisms that exist only in tight association with other organisms, including various obligate symbionts and pathogens, members of natural microbial consortia and an extinct cave bear.Partially assembled or unassembled genomic sequence from complex microbial communities has revealed the existence of novel and environment-specific genes.Advances in DNA sequencing technology and computational methods promise to accelerate progress in metagenomics. More... »

PAGES

805-814

References to SciGraph publications

  • 1998-11. The genome sequence of Rickettsia prowazekii and the origin of mitochondria in NATURE
  • 2001-05-01. Endosymbiotic sulphate-reducing and sulphide-oxidizing bacteria in an oligochaete worm in NATURE
  • 2005-05-10. Microbial community genomics in the ocean in NATURE REVIEWS MICROBIOLOGY
  • 2004-05. Advanced sequencing technologies: methods and goals in NATURE REVIEWS GENETICS
  • 2000-09. Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS in NATURE
  • 2002-09-03. Genome sequence of the endocellular obligate symbiont of tsetse flies, Wigglesworthia glossinidia in NATURE GENETICS
  • 2004-10-26. TETRA: a web-service and a stand-alone program for the analysis and comparison of tetranucleotide usage patterns in DNA sequences in BMC BIOINFORMATICS
  • 1990-05. Genetic diversity in Sargasso Sea bacterioplankton in NATURE
  • 2001-02. Complete mitochondrial genome sequences of two extinct moas clarify ratite evolution in NATURE
  • 2005-07-31. Genome sequencing in microfabricated high-density picolitre reactors in NATURE
  • 2004-06. Comparative genomics at the vertebrate extremes in NATURE REVIEWS GENETICS
  • 2003-12-07. Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma in NATURE GENETICS
  • 2001-05. Ancient DNA in NATURE REVIEWS GENETICS
  • 2005-03-08. New method to characterize microbial diversity using flow cytometry in JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY
  • 2005-05-10. Stable isotope probing — linking microbial identity to function in NATURE REVIEWS MICROBIOLOGY
  • 2001-06. The Closest BLAST Hit Is Often Not the Nearest Neighbor in JOURNAL OF MOLECULAR EVOLUTION
  • 2005-06. Community genomics in microbial ecology and evolution in NATURE REVIEWS MICROBIOLOGY
  • 2004-02-01. Community structure and metabolism through reconstruction of microbial genomes from the environment in NATURE
  • 2001-01. Archaeal dominance in the mesopelagic zone of the Pacific Ocean in NATURE
  • 2001-02. Massive gene decay in the leprosy bacillus in NATURE
  • 2005-02-22. Serendipitous discovery of Wolbachia genomes in multiple Drosophila species in GENOME BIOLOGY
  • Journal

    TITLE

    Nature Reviews Genetics

    ISSUE

    11

    VOLUME

    6

    Related Patents

  • Efficient Arrays Of Amplified Polynucleotides
  • Single Molecule Arrays For Genetic And Chemical Analysis
  • Random Array Dna Analysis By Hybridization
  • Nucleic Acid Sequencing And Process
  • Two-Adaptor Library For High-Throughput Sequencing On Dna Arrays
  • Single Molecule Arrays For Genetic And Chemical Analysis
  • Reducing Gc Bias In Dna Sequencing Using Nucleotide Analogs
  • Using Non-Overlapping Fragments For Nucleic Acid Sequencing
  • Random Array Dna Analysis By Hybridization
  • Methods And Compositions For Efficient Base Calling In Sequencing Reactions
  • Self-Assembled Single Molecule Arrays And Uses Thereof
  • Processing And Analysis Of Complex Nucleic Acid Sequence Data
  • Efficient Base Determination In Sequencing Reactions
  • Methods And Compositions For Large-Scale Analysis Of Nucleic Acids Using Dna Deletions
  • Single Molecule Arrays For Genetic And Chemical Analysis
  • Single Molecule Arrays For Genetic And Chemical Analysis
  • Method For Sequencing Polynucleotides By Forming Separate Fragment Mixtures
  • Genome Sequence Analysis Using Tagged Amplicons
  • Nucleotide Sequence From Amplicon Subfragments
  • Methods And Compositions For Long Fragment Read Sequencing
  • Preparing A Dna Fragment Library For Sequencing Using Tagged Primers
  • Random Array Dna Analysis By Hybridization
  • Sequence Analysis Using Decorated Nucleic Acids
  • Methods And Compositions For Efficient Base Calling In Sequencing Reactions
  • Methods For Making Single Molecule Arrays
  • Efficient Base Determination In Sequencing Reactions
  • Self-Assembled Single Molecule Arrays And Uses Thereof
  • Methods And Oligonucleotide Designs For Insertion Of Multiple Adaptors Employing Selective Methylation
  • Efficient Arrays Of Amplified Polynucleotides
  • Efficient Shotgun Sequencing Methods
  • High Throughput Genome Sequencing On Dna Arrays
  • Efficient Shotgun Sequencing Methods
  • Methods And Compositions For Efficient Base Calling In Sequencing Reactions
  • Methods And Compositions For Efficient Base Calling In Sequencing Reactions
  • Methods And Oligonucleotide Designs For Insertion Of Multiple Adaptors Into Library Constructs
  • Nucleic Acid Analysis By Random Mixtures Of Non-Overlapping Fragments
  • Methods For Dna Sequencing And Analysis Using Multiple Tiers Of Aliquots
  • Tagged Fragment Library Configured For Genome Or Cdna Sequence Analysis
  • Random Array Dna Analysis By Hybridization
  • Random Array Dna Analysis By Hybridization
  • High Density Dna Array
  • Sequencing Using A Predetermined Coverage Amount Of Polynucleotide Fragments
  • High Throughput Genome Sequencing On Dna Arrays
  • Efficient Arrays Of Amplified Polynucleotides
  • Dna Sequencing From High Density Dna Arrays Using Asynchronous Reactions
  • Nucleic Acid Sequence Analysis From Combined Mixtures Of Amplified Fragments
  • Efficient Base Determination In Sequencing Reactions
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nrg1709

    DOI

    http://dx.doi.org/10.1038/nrg1709

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1017719492

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/16304596


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Microbiology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Base Sequence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Environmental Microbiology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetics, Microbial", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genomics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sequence Analysis, DNA", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Energy Joint Genome Institute, 2800 Mitchell Drive, 94598, Walnut Creek, California, USA", 
              "id": "http://www.grid.ac/institutes/grid.451309.a", 
              "name": [
                "Department of Energy Joint Genome Institute, 2800 Mitchell Drive, 94598, Walnut Creek, California, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tringe", 
            "givenName": "Susannah Green", 
            "id": "sg:person.01340300137.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340300137.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Energy Joint Genome Institute, 2800 Mitchell Drive, 94598, Walnut Creek, California, USA", 
              "id": "http://www.grid.ac/institutes/grid.451309.a", 
              "name": [
                "Department of Energy Joint Genome Institute, 2800 Mitchell Drive, 94598, Walnut Creek, California, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rubin", 
            "givenName": "Edward M.", 
            "id": "sg:person.015553561057.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015553561057.95"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nature02340", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023089166", 
              "https://doi.org/10.1038/nature02340"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro1162", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033711747", 
              "https://doi.org/10.1038/nrmicro1162"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/24094", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045605598", 
              "https://doi.org/10.1038/24094"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35072071", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037967401", 
              "https://doi.org/10.1038/35072071"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35024074", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016095729", 
              "https://doi.org/10.1038/35024074"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng986", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017944907", 
              "https://doi.org/10.1038/ng986"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/345060a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024140999", 
              "https://doi.org/10.1038/345060a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35054051", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000389432", 
              "https://doi.org/10.1038/35054051"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35059006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012234486", 
              "https://doi.org/10.1038/35059006"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35077067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032555608", 
              "https://doi.org/10.1038/35077067"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10295-005-0208-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006717072", 
              "https://doi.org/10.1007/s10295-005-0208-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002390010184", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045143895", 
              "https://doi.org/10.1007/s002390010184"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro1158", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035689669", 
              "https://doi.org/10.1038/nrmicro1158"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg1350", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049911084", 
              "https://doi.org/10.1038/nrg1350"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-5-163", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017298406", 
              "https://doi.org/10.1186/1471-2105-5-163"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1277", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026031487", 
              "https://doi.org/10.1038/ng1277"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35055536", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042248501", 
              "https://doi.org/10.1038/35055536"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro1157", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020289704", 
              "https://doi.org/10.1038/nrmicro1157"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03959", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021574562", 
              "https://doi.org/10.1038/nature03959"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2005-6-3-r23", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016781371", 
              "https://doi.org/10.1186/gb-2005-6-3-r23"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg1325", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041884975", 
              "https://doi.org/10.1038/nrg1325"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2005-10-11", 
        "datePublishedReg": "2005-10-11", 
        "description": "Key PointsDNA sequencing can provide insights into organisms that are difficult to study because they are inaccessible by conventional methods such as laboratory culture.Isolation and sequencing of DNA from mixed communities of organisms (metagenomics) has revealed surprising insights into diversity and evolution.Genomic DNA sequence, and even complete genomes in some cases, has been generated from organisms that exist only in tight association with other organisms, including various obligate symbionts and pathogens, members of natural microbial consortia and an extinct cave bear.Partially assembled or unassembled genomic sequence from complex microbial communities has revealed the existence of novel and environment-specific genes.Advances in DNA sequencing technology and computational methods promise to accelerate progress in metagenomics.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/nrg1709", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1023607", 
            "issn": [
              "1471-0056", 
              "1471-0064"
            ], 
            "name": "Nature Reviews Genetics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "11", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "6"
          }
        ], 
        "keywords": [
          "complex microbial communities", 
          "genomic DNA sequences", 
          "environment-specific genes", 
          "DNA sequencing technologies", 
          "extinct cave bear", 
          "natural microbial consortia", 
          "sequencing of DNA", 
          "obligate symbionts", 
          "genomic sequences", 
          "microbial communities", 
          "complete genome", 
          "DNA sequences", 
          "sequencing technologies", 
          "microbial consortium", 
          "mixed communities", 
          "tight association", 
          "DNA sequencing", 
          "laboratory cultures", 
          "organisms", 
          "sequencing", 
          "cave bears", 
          "surprising insights", 
          "sequence", 
          "environmental samples", 
          "symbionts", 
          "genome", 
          "metagenomics", 
          "genes", 
          "DNA", 
          "diversity", 
          "pathogens", 
          "insights", 
          "computational methods", 
          "community", 
          "isolation", 
          "members", 
          "bears", 
          "consortium", 
          "evolution", 
          "culture", 
          "advances", 
          "progress", 
          "novel", 
          "association", 
          "existence", 
          "existence of novel", 
          "samples", 
          "conventional methods", 
          "method", 
          "technology", 
          "cases", 
          "Key PointsDNA sequencing", 
          "PointsDNA sequencing"
        ], 
        "name": "Metagenomics: DNA sequencing of environmental samples", 
        "pagination": "805-814", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1017719492"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nrg1709"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "16304596"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nrg1709", 
          "https://app.dimensions.ai/details/publication/pub.1017719492"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:16", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_399.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/nrg1709"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nrg1709'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nrg1709'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nrg1709'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nrg1709'


     

    This table displays all metadata directly associated to this object as RDF triples.

    238 TRIPLES      22 PREDICATES      108 URIs      78 LITERALS      14 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nrg1709 schema:about N46b161c81c714a6f8d68460a2204ea4b
    2 N5e5de98f0c52469e813b0673967f2151
    3 N8594a8b626e24331863d7fcaed1e8f1f
    4 N8cfb520cea414503a3a46b961aae4ec9
    5 Na5684074ea7d4b9094a74f8ad6f5ac37
    6 Ncb318629b05e4756915c201e81ee0849
    7 Ndd3ab89bfa06411181e1f08ec560b7e9
    8 anzsrc-for:06
    9 anzsrc-for:0604
    10 anzsrc-for:0605
    11 schema:author N48063b82c69641afb554aecfe701fa67
    12 schema:citation sg:pub.10.1007/s002390010184
    13 sg:pub.10.1007/s10295-005-0208-3
    14 sg:pub.10.1038/24094
    15 sg:pub.10.1038/345060a0
    16 sg:pub.10.1038/35024074
    17 sg:pub.10.1038/35054051
    18 sg:pub.10.1038/35055536
    19 sg:pub.10.1038/35059006
    20 sg:pub.10.1038/35072071
    21 sg:pub.10.1038/35077067
    22 sg:pub.10.1038/nature02340
    23 sg:pub.10.1038/nature03959
    24 sg:pub.10.1038/ng1277
    25 sg:pub.10.1038/ng986
    26 sg:pub.10.1038/nrg1325
    27 sg:pub.10.1038/nrg1350
    28 sg:pub.10.1038/nrmicro1157
    29 sg:pub.10.1038/nrmicro1158
    30 sg:pub.10.1038/nrmicro1162
    31 sg:pub.10.1186/1471-2105-5-163
    32 sg:pub.10.1186/gb-2005-6-3-r23
    33 schema:datePublished 2005-10-11
    34 schema:datePublishedReg 2005-10-11
    35 schema:description Key PointsDNA sequencing can provide insights into organisms that are difficult to study because they are inaccessible by conventional methods such as laboratory culture.Isolation and sequencing of DNA from mixed communities of organisms (metagenomics) has revealed surprising insights into diversity and evolution.Genomic DNA sequence, and even complete genomes in some cases, has been generated from organisms that exist only in tight association with other organisms, including various obligate symbionts and pathogens, members of natural microbial consortia and an extinct cave bear.Partially assembled or unassembled genomic sequence from complex microbial communities has revealed the existence of novel and environment-specific genes.Advances in DNA sequencing technology and computational methods promise to accelerate progress in metagenomics.
    36 schema:genre article
    37 schema:inLanguage en
    38 schema:isAccessibleForFree true
    39 schema:isPartOf N4e6d173f46a64f33aedff73c785bdd66
    40 Nd0b13856aa104bf8bc7a1e6249b4177b
    41 sg:journal.1023607
    42 schema:keywords DNA
    43 DNA sequences
    44 DNA sequencing
    45 DNA sequencing technologies
    46 Key PointsDNA sequencing
    47 PointsDNA sequencing
    48 advances
    49 association
    50 bears
    51 cases
    52 cave bears
    53 community
    54 complete genome
    55 complex microbial communities
    56 computational methods
    57 consortium
    58 conventional methods
    59 culture
    60 diversity
    61 environment-specific genes
    62 environmental samples
    63 evolution
    64 existence
    65 existence of novel
    66 extinct cave bear
    67 genes
    68 genome
    69 genomic DNA sequences
    70 genomic sequences
    71 insights
    72 isolation
    73 laboratory cultures
    74 members
    75 metagenomics
    76 method
    77 microbial communities
    78 microbial consortium
    79 mixed communities
    80 natural microbial consortia
    81 novel
    82 obligate symbionts
    83 organisms
    84 pathogens
    85 progress
    86 samples
    87 sequence
    88 sequencing
    89 sequencing of DNA
    90 sequencing technologies
    91 surprising insights
    92 symbionts
    93 technology
    94 tight association
    95 schema:name Metagenomics: DNA sequencing of environmental samples
    96 schema:pagination 805-814
    97 schema:productId N387f64b35c274b2dafbfe0466f79965f
    98 N4180c46b383f4ce7968bf7869b7d52bc
    99 Nb0acbe9e486f4e1b92e236b43382516f
    100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017719492
    101 https://doi.org/10.1038/nrg1709
    102 schema:sdDatePublished 2021-12-01T19:16
    103 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    104 schema:sdPublisher N01c97075ccea46c3982764817e3e319a
    105 schema:url https://doi.org/10.1038/nrg1709
    106 sgo:license sg:explorer/license/
    107 sgo:sdDataset articles
    108 rdf:type schema:ScholarlyArticle
    109 N01c97075ccea46c3982764817e3e319a schema:name Springer Nature - SN SciGraph project
    110 rdf:type schema:Organization
    111 N387f64b35c274b2dafbfe0466f79965f schema:name dimensions_id
    112 schema:value pub.1017719492
    113 rdf:type schema:PropertyValue
    114 N3f56dd6455cb48eb9a89e2bea1b2c397 rdf:first sg:person.015553561057.95
    115 rdf:rest rdf:nil
    116 N4180c46b383f4ce7968bf7869b7d52bc schema:name pubmed_id
    117 schema:value 16304596
    118 rdf:type schema:PropertyValue
    119 N46b161c81c714a6f8d68460a2204ea4b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    120 schema:name Sequence Analysis, DNA
    121 rdf:type schema:DefinedTerm
    122 N48063b82c69641afb554aecfe701fa67 rdf:first sg:person.01340300137.52
    123 rdf:rest N3f56dd6455cb48eb9a89e2bea1b2c397
    124 N4e6d173f46a64f33aedff73c785bdd66 schema:issueNumber 11
    125 rdf:type schema:PublicationIssue
    126 N5e5de98f0c52469e813b0673967f2151 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    127 schema:name Base Sequence
    128 rdf:type schema:DefinedTerm
    129 N8594a8b626e24331863d7fcaed1e8f1f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    130 schema:name Environmental Microbiology
    131 rdf:type schema:DefinedTerm
    132 N8cfb520cea414503a3a46b961aae4ec9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    133 schema:name Genomics
    134 rdf:type schema:DefinedTerm
    135 Na5684074ea7d4b9094a74f8ad6f5ac37 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    136 schema:name Animals
    137 rdf:type schema:DefinedTerm
    138 Nb0acbe9e486f4e1b92e236b43382516f schema:name doi
    139 schema:value 10.1038/nrg1709
    140 rdf:type schema:PropertyValue
    141 Ncb318629b05e4756915c201e81ee0849 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    142 schema:name Humans
    143 rdf:type schema:DefinedTerm
    144 Nd0b13856aa104bf8bc7a1e6249b4177b schema:volumeNumber 6
    145 rdf:type schema:PublicationVolume
    146 Ndd3ab89bfa06411181e1f08ec560b7e9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    147 schema:name Genetics, Microbial
    148 rdf:type schema:DefinedTerm
    149 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    150 schema:name Biological Sciences
    151 rdf:type schema:DefinedTerm
    152 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    153 schema:name Genetics
    154 rdf:type schema:DefinedTerm
    155 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
    156 schema:name Microbiology
    157 rdf:type schema:DefinedTerm
    158 sg:journal.1023607 schema:issn 1471-0056
    159 1471-0064
    160 schema:name Nature Reviews Genetics
    161 schema:publisher Springer Nature
    162 rdf:type schema:Periodical
    163 sg:person.01340300137.52 schema:affiliation grid-institutes:grid.451309.a
    164 schema:familyName Tringe
    165 schema:givenName Susannah Green
    166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340300137.52
    167 rdf:type schema:Person
    168 sg:person.015553561057.95 schema:affiliation grid-institutes:grid.451309.a
    169 schema:familyName Rubin
    170 schema:givenName Edward M.
    171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015553561057.95
    172 rdf:type schema:Person
    173 sg:pub.10.1007/s002390010184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045143895
    174 https://doi.org/10.1007/s002390010184
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1007/s10295-005-0208-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006717072
    177 https://doi.org/10.1007/s10295-005-0208-3
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1038/24094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045605598
    180 https://doi.org/10.1038/24094
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1038/345060a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024140999
    183 https://doi.org/10.1038/345060a0
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1038/35024074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016095729
    186 https://doi.org/10.1038/35024074
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1038/35054051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000389432
    189 https://doi.org/10.1038/35054051
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1038/35055536 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042248501
    192 https://doi.org/10.1038/35055536
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1038/35059006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012234486
    195 https://doi.org/10.1038/35059006
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1038/35072071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037967401
    198 https://doi.org/10.1038/35072071
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1038/35077067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032555608
    201 https://doi.org/10.1038/35077067
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1038/nature02340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023089166
    204 https://doi.org/10.1038/nature02340
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1038/nature03959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021574562
    207 https://doi.org/10.1038/nature03959
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1038/ng1277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026031487
    210 https://doi.org/10.1038/ng1277
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1038/ng986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017944907
    213 https://doi.org/10.1038/ng986
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1038/nrg1325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041884975
    216 https://doi.org/10.1038/nrg1325
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1038/nrg1350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049911084
    219 https://doi.org/10.1038/nrg1350
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1038/nrmicro1157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020289704
    222 https://doi.org/10.1038/nrmicro1157
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1038/nrmicro1158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035689669
    225 https://doi.org/10.1038/nrmicro1158
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1038/nrmicro1162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033711747
    228 https://doi.org/10.1038/nrmicro1162
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1186/1471-2105-5-163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017298406
    231 https://doi.org/10.1186/1471-2105-5-163
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1186/gb-2005-6-3-r23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016781371
    234 https://doi.org/10.1186/gb-2005-6-3-r23
    235 rdf:type schema:CreativeWork
    236 grid-institutes:grid.451309.a schema:alternateName Department of Energy Joint Genome Institute, 2800 Mitchell Drive, 94598, Walnut Creek, California, USA
    237 schema:name Department of Energy Joint Genome Institute, 2800 Mitchell Drive, 94598, Walnut Creek, California, USA
    238 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...