Metagenomics: DNA sequencing of environmental samples View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2005-10-11

AUTHORS

Susannah Green Tringe, Edward M. Rubin

ABSTRACT

Key PointsDNA sequencing can provide insights into organisms that are difficult to study because they are inaccessible by conventional methods such as laboratory culture.Isolation and sequencing of DNA from mixed communities of organisms (metagenomics) has revealed surprising insights into diversity and evolution.Genomic DNA sequence, and even complete genomes in some cases, has been generated from organisms that exist only in tight association with other organisms, including various obligate symbionts and pathogens, members of natural microbial consortia and an extinct cave bear.Partially assembled or unassembled genomic sequence from complex microbial communities has revealed the existence of novel and environment-specific genes.Advances in DNA sequencing technology and computational methods promise to accelerate progress in metagenomics. More... »

PAGES

805-814

References to SciGraph publications

  • 1998-11. The genome sequence of Rickettsia prowazekii and the origin of mitochondria in NATURE
  • 2001-05-01. Endosymbiotic sulphate-reducing and sulphide-oxidizing bacteria in an oligochaete worm in NATURE
  • 2004-05. Advanced sequencing technologies: methods and goals in NATURE REVIEWS GENETICS
  • 2000-09. Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS in NATURE
  • 2002-09-03. Genome sequence of the endocellular obligate symbiont of tsetse flies, Wigglesworthia glossinidia in NATURE GENETICS
  • 2004-10-26. TETRA: a web-service and a stand-alone program for the analysis and comparison of tetranucleotide usage patterns in DNA sequences in BMC BIOINFORMATICS
  • 1990-05. Genetic diversity in Sargasso Sea bacterioplankton in NATURE
  • 2001-02. Complete mitochondrial genome sequences of two extinct moas clarify ratite evolution in NATURE
  • 2005-07-31. Genome sequencing in microfabricated high-density picolitre reactors in NATURE
  • 2004-06. Comparative genomics at the vertebrate extremes in NATURE REVIEWS GENETICS
  • 2003-12-07. Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma in NATURE GENETICS
  • 2001-05. Ancient DNA in NATURE REVIEWS GENETICS
  • 2005-03-08. New method to characterize microbial diversity using flow cytometry in JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY
  • 2005-05-10. Stable isotope probing — linking microbial identity to function in NATURE REVIEWS MICROBIOLOGY
  • 2001-06. The Closest BLAST Hit Is Often Not the Nearest Neighbor in JOURNAL OF MOLECULAR EVOLUTION
  • 2005-05-10. Microbial community genomics in the ocean in NATURE REVIEWS MICROBIOLOGY
  • 2004-02-01. Community structure and metabolism through reconstruction of microbial genomes from the environment in NATURE
  • 2005-06. Community genomics in microbial ecology and evolution in NATURE REVIEWS MICROBIOLOGY
  • 2001-01. Archaeal dominance in the mesopelagic zone of the Pacific Ocean in NATURE
  • 2001-02. Massive gene decay in the leprosy bacillus in NATURE
  • 2005-02-22. Serendipitous discovery of Wolbachia genomes in multiple Drosophilaspecies in GENOME BIOLOGY
  • Journal

    TITLE

    Nature Reviews Genetics

    ISSUE

    11

    VOLUME

    6

    Related Patents

  • Nucleic Acid Sequencing And Process
  • Random Array Dna Analysis By Hybridization
  • Single Molecule Arrays For Genetic And Chemical Analysis
  • Reducing Gc Bias In Dna Sequencing Using Nucleotide Analogs
  • Two-Adaptor Library For High-Throughput Sequencing On Dna Arrays
  • Single Molecule Arrays For Genetic And Chemical Analysis
  • Efficient Arrays Of Amplified Polynucleotides
  • Efficient Base Determination In Sequencing Reactions
  • Processing And Analysis Of Complex Nucleic Acid Sequence Data
  • Random Array Dna Analysis By Hybridization
  • Self-Assembled Single Molecule Arrays And Uses Thereof
  • Single Molecule Arrays For Genetic And Chemical Analysis
  • Methods And Compositions For Efficient Base Calling In Sequencing Reactions
  • Methods And Compositions For Large-Scale Analysis Of Nucleic Acids Using Dna Deletions
  • Method For Sequencing Polynucleotides By Forming Separate Fragment Mixtures
  • Methods Of Preparing A Library Of Nucleic Acid Fragments Tagged With Oligonucleotide Bar Code Sequences
  • Using Non-Overlapping Fragments For Nucleic Acid Sequencing
  • Single Molecule Arrays For Genetic And Chemical Analysis
  • Methods And Compositions For Long Fragment Read Sequencing
  • Random Array Dna Analysis By Hybridization
  • Nucleotide Sequence From Amplicon Subfragments
  • Methods And Compositions For Efficient Base Calling In Sequencing Reactions
  • Sequence Analysis Using Decorated Nucleic Acids
  • Methods For Making Single Molecule Arrays
  • Genome Sequence Analysis Using Tagged Amplicons
  • Preparing A Dna Fragment Library For Sequencing Using Tagged Primers
  • Self-Assembled Single Molecule Arrays And Uses Thereof
  • Methods And Oligonucleotide Designs For Insertion Of Multiple Adaptors Into Library Constructs
  • Efficient Arrays Of Amplified Polynucleotides
  • High Throughput Genome Sequencing On Dna Arrays
  • Efficient Shotgun Sequencing Methods
  • Methods And Compositions For Nucleic Acid Sequencing
  • Methods And Compositions For Efficient Base Calling In Sequencing Reactions
  • Efficient Shotgun Sequencing Methods
  • Methods And Oligonucleotide Designs For Insertion Of Multiple Adaptors Employing Selective Methylation
  • Methods And Compositions For Efficient Base Calling In Sequencing Reactions
  • Efficient Base Determination In Sequencing Reactions
  • Sequencing; Allow The Generation Of Additional Information About The Location Of Short Sequence Reads In A Genome
  • Random Array Dna Analysis By Hybridization
  • Methods For Dna Sequencing And Analysis Using Multiple Tiers Of Aliquots
  • Efficient Base Determination In Sequencing Reactions
  • Dna Sequencing From High Density Dna Arrays Using Asynchronous Reactions
  • High Throughput Genome Sequencing On Dna Arrays
  • Efficient Arrays Of Amplified Polynucleotides
  • High Density Dna Array
  • Nucleic Acid Analysis By Random Mixtures Of Non-Overlapping Fragments
  • Sequencing Using A Predetermined Coverage Amount Of Polynucleotide Fragments
  • Random Array Dna Analysis By Hybridization
  • Nucleic Acid Sequence Analysis From Combined Mixtures Of Amplified Fragments
  • Methods And Compositions For Efficient Base Calling In Sequencing Reactions
  • Tagged Fragment Library Configured For Genome Or Cdna Sequence Analysis
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nrg1709

    DOI

    http://dx.doi.org/10.1038/nrg1709

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1017719492

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/16304596


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Microbiology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Base Sequence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Environmental Microbiology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetics, Microbial", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genomics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sequence Analysis, DNA", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Energy Joint Genome Institute, 2800 Mitchell Drive, 94598, Walnut Creek, California, USA", 
              "id": "http://www.grid.ac/institutes/grid.451309.a", 
              "name": [
                "Department of Energy Joint Genome Institute, 2800 Mitchell Drive, 94598, Walnut Creek, California, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tringe", 
            "givenName": "Susannah Green", 
            "id": "sg:person.01340300137.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340300137.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Energy Joint Genome Institute, 2800 Mitchell Drive, 94598, Walnut Creek, California, USA", 
              "id": "http://www.grid.ac/institutes/grid.451309.a", 
              "name": [
                "Department of Energy Joint Genome Institute, 2800 Mitchell Drive, 94598, Walnut Creek, California, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rubin", 
            "givenName": "Edward M.", 
            "id": "sg:person.015553561057.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015553561057.95"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10295-005-0208-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006717072", 
              "https://doi.org/10.1007/s10295-005-0208-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-5-163", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017298406", 
              "https://doi.org/10.1186/1471-2105-5-163"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35072071", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037967401", 
              "https://doi.org/10.1038/35072071"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03959", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021574562", 
              "https://doi.org/10.1038/nature03959"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35077067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032555608", 
              "https://doi.org/10.1038/35077067"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35059006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012234486", 
              "https://doi.org/10.1038/35059006"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35055536", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042248501", 
              "https://doi.org/10.1038/35055536"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng986", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017944907", 
              "https://doi.org/10.1038/ng986"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2005-6-3-r23", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016781371", 
              "https://doi.org/10.1186/gb-2005-6-3-r23"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02340", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023089166", 
              "https://doi.org/10.1038/nature02340"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35054051", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000389432", 
              "https://doi.org/10.1038/35054051"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg1350", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049911084", 
              "https://doi.org/10.1038/nrg1350"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro1157", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020289704", 
              "https://doi.org/10.1038/nrmicro1157"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1277", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026031487", 
              "https://doi.org/10.1038/ng1277"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro1162", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033711747", 
              "https://doi.org/10.1038/nrmicro1162"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg1325", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041884975", 
              "https://doi.org/10.1038/nrg1325"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/24094", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045605598", 
              "https://doi.org/10.1038/24094"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35024074", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016095729", 
              "https://doi.org/10.1038/35024074"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro1158", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035689669", 
              "https://doi.org/10.1038/nrmicro1158"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/345060a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024140999", 
              "https://doi.org/10.1038/345060a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002390010184", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045143895", 
              "https://doi.org/10.1007/s002390010184"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2005-10-11", 
        "datePublishedReg": "2005-10-11", 
        "description": "Key PointsDNA sequencing can provide insights into organisms that are difficult to study because they are inaccessible by conventional methods such as laboratory culture.Isolation and sequencing of DNA from mixed communities of organisms (metagenomics) has revealed surprising insights into diversity and evolution.Genomic DNA sequence, and even complete genomes in some cases, has been generated from organisms that exist only in tight association with other organisms, including various obligate symbionts and pathogens, members of natural microbial consortia and an extinct cave bear.Partially assembled or unassembled genomic sequence from complex microbial communities has revealed the existence of novel and environment-specific genes.Advances in DNA sequencing technology and computational methods promise to accelerate progress in metagenomics.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/nrg1709", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1023607", 
            "issn": [
              "1471-0056", 
              "1471-0064"
            ], 
            "name": "Nature Reviews Genetics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "11", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "6"
          }
        ], 
        "keywords": [
          "complex microbial communities", 
          "genomic DNA sequences", 
          "environment-specific genes", 
          "extinct cave bear", 
          "DNA sequencing technologies", 
          "natural microbial consortia", 
          "sequencing of DNA", 
          "obligate symbionts", 
          "microbial communities", 
          "genomic sequences", 
          "complete genome", 
          "DNA sequences", 
          "sequencing technologies", 
          "microbial consortia", 
          "mixed communities", 
          "tight association", 
          "laboratory cultures", 
          "DNA sequencing", 
          "organisms", 
          "sequencing", 
          "cave bears", 
          "existence of novel", 
          "surprising insights", 
          "sequence", 
          "environmental samples", 
          "symbionts", 
          "genome", 
          "metagenomics", 
          "computational methods", 
          "genes", 
          "DNA", 
          "diversity", 
          "insights", 
          "pathogens", 
          "community", 
          "bears", 
          "isolation", 
          "members", 
          "consortium", 
          "evolution", 
          "culture", 
          "advances", 
          "association", 
          "progress", 
          "novel", 
          "existence", 
          "samples", 
          "conventional methods", 
          "method", 
          "technology", 
          "cases"
        ], 
        "name": "Metagenomics: DNA sequencing of environmental samples", 
        "pagination": "805-814", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1017719492"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nrg1709"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "16304596"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nrg1709", 
          "https://app.dimensions.ai/details/publication/pub.1017719492"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:25", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_395.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/nrg1709"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nrg1709'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nrg1709'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nrg1709'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nrg1709'


     

    This table displays all metadata directly associated to this object as RDF triples.

    235 TRIPLES      21 PREDICATES      105 URIs      75 LITERALS      14 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nrg1709 schema:about N1cf8b80bde6a4af8b3e3b62a40838946
    2 N25e6f1a1690d4338b5882540bf8018a9
    3 N3e82896ad3dc484ca495bfbef0dfd79d
    4 N4e36e279f293456da3123a4555db68b7
    5 Nd8b0c5bbb5174500a57f2dbf7f3b6ca7
    6 Ndc1e8fb4a0494371a2bcca2e25a1c74f
    7 Ne55ff8ad6e244bb4a29ae0a51db979f1
    8 anzsrc-for:06
    9 anzsrc-for:0604
    10 anzsrc-for:0605
    11 schema:author Nb880a9902e044050ac1f0e097d2a533f
    12 schema:citation sg:pub.10.1007/s002390010184
    13 sg:pub.10.1007/s10295-005-0208-3
    14 sg:pub.10.1038/24094
    15 sg:pub.10.1038/345060a0
    16 sg:pub.10.1038/35024074
    17 sg:pub.10.1038/35054051
    18 sg:pub.10.1038/35055536
    19 sg:pub.10.1038/35059006
    20 sg:pub.10.1038/35072071
    21 sg:pub.10.1038/35077067
    22 sg:pub.10.1038/nature02340
    23 sg:pub.10.1038/nature03959
    24 sg:pub.10.1038/ng1277
    25 sg:pub.10.1038/ng986
    26 sg:pub.10.1038/nrg1325
    27 sg:pub.10.1038/nrg1350
    28 sg:pub.10.1038/nrmicro1157
    29 sg:pub.10.1038/nrmicro1158
    30 sg:pub.10.1038/nrmicro1162
    31 sg:pub.10.1186/1471-2105-5-163
    32 sg:pub.10.1186/gb-2005-6-3-r23
    33 schema:datePublished 2005-10-11
    34 schema:datePublishedReg 2005-10-11
    35 schema:description Key PointsDNA sequencing can provide insights into organisms that are difficult to study because they are inaccessible by conventional methods such as laboratory culture.Isolation and sequencing of DNA from mixed communities of organisms (metagenomics) has revealed surprising insights into diversity and evolution.Genomic DNA sequence, and even complete genomes in some cases, has been generated from organisms that exist only in tight association with other organisms, including various obligate symbionts and pathogens, members of natural microbial consortia and an extinct cave bear.Partially assembled or unassembled genomic sequence from complex microbial communities has revealed the existence of novel and environment-specific genes.Advances in DNA sequencing technology and computational methods promise to accelerate progress in metagenomics.
    36 schema:genre article
    37 schema:isAccessibleForFree true
    38 schema:isPartOf N936d580707424c02a23f795c23524753
    39 Nd7fc5bc304774111aa5a2c16ecc1c048
    40 sg:journal.1023607
    41 schema:keywords DNA
    42 DNA sequences
    43 DNA sequencing
    44 DNA sequencing technologies
    45 advances
    46 association
    47 bears
    48 cases
    49 cave bears
    50 community
    51 complete genome
    52 complex microbial communities
    53 computational methods
    54 consortium
    55 conventional methods
    56 culture
    57 diversity
    58 environment-specific genes
    59 environmental samples
    60 evolution
    61 existence
    62 existence of novel
    63 extinct cave bear
    64 genes
    65 genome
    66 genomic DNA sequences
    67 genomic sequences
    68 insights
    69 isolation
    70 laboratory cultures
    71 members
    72 metagenomics
    73 method
    74 microbial communities
    75 microbial consortia
    76 mixed communities
    77 natural microbial consortia
    78 novel
    79 obligate symbionts
    80 organisms
    81 pathogens
    82 progress
    83 samples
    84 sequence
    85 sequencing
    86 sequencing of DNA
    87 sequencing technologies
    88 surprising insights
    89 symbionts
    90 technology
    91 tight association
    92 schema:name Metagenomics: DNA sequencing of environmental samples
    93 schema:pagination 805-814
    94 schema:productId N278bfca3ae5d468197ff3f35ef0d26ba
    95 N9814dde2342d44879537a27e44edaee8
    96 Nf21df3f42eb8404583cb20c86a3d73a5
    97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017719492
    98 https://doi.org/10.1038/nrg1709
    99 schema:sdDatePublished 2022-12-01T06:25
    100 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    101 schema:sdPublisher Na0fff4658f7d4a42b6dfd23dd92bad9e
    102 schema:url https://doi.org/10.1038/nrg1709
    103 sgo:license sg:explorer/license/
    104 sgo:sdDataset articles
    105 rdf:type schema:ScholarlyArticle
    106 N1cf8b80bde6a4af8b3e3b62a40838946 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    107 schema:name Environmental Microbiology
    108 rdf:type schema:DefinedTerm
    109 N25e6f1a1690d4338b5882540bf8018a9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    110 schema:name Base Sequence
    111 rdf:type schema:DefinedTerm
    112 N278bfca3ae5d468197ff3f35ef0d26ba schema:name dimensions_id
    113 schema:value pub.1017719492
    114 rdf:type schema:PropertyValue
    115 N3e82896ad3dc484ca495bfbef0dfd79d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    116 schema:name Genomics
    117 rdf:type schema:DefinedTerm
    118 N4e36e279f293456da3123a4555db68b7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    119 schema:name Humans
    120 rdf:type schema:DefinedTerm
    121 N71c71bd632dc4594a7888ea2048ca645 rdf:first sg:person.015553561057.95
    122 rdf:rest rdf:nil
    123 N936d580707424c02a23f795c23524753 schema:issueNumber 11
    124 rdf:type schema:PublicationIssue
    125 N9814dde2342d44879537a27e44edaee8 schema:name doi
    126 schema:value 10.1038/nrg1709
    127 rdf:type schema:PropertyValue
    128 Na0fff4658f7d4a42b6dfd23dd92bad9e schema:name Springer Nature - SN SciGraph project
    129 rdf:type schema:Organization
    130 Nb880a9902e044050ac1f0e097d2a533f rdf:first sg:person.01340300137.52
    131 rdf:rest N71c71bd632dc4594a7888ea2048ca645
    132 Nd7fc5bc304774111aa5a2c16ecc1c048 schema:volumeNumber 6
    133 rdf:type schema:PublicationVolume
    134 Nd8b0c5bbb5174500a57f2dbf7f3b6ca7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    135 schema:name Animals
    136 rdf:type schema:DefinedTerm
    137 Ndc1e8fb4a0494371a2bcca2e25a1c74f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    138 schema:name Genetics, Microbial
    139 rdf:type schema:DefinedTerm
    140 Ne55ff8ad6e244bb4a29ae0a51db979f1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    141 schema:name Sequence Analysis, DNA
    142 rdf:type schema:DefinedTerm
    143 Nf21df3f42eb8404583cb20c86a3d73a5 schema:name pubmed_id
    144 schema:value 16304596
    145 rdf:type schema:PropertyValue
    146 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    147 schema:name Biological Sciences
    148 rdf:type schema:DefinedTerm
    149 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    150 schema:name Genetics
    151 rdf:type schema:DefinedTerm
    152 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
    153 schema:name Microbiology
    154 rdf:type schema:DefinedTerm
    155 sg:journal.1023607 schema:issn 1471-0056
    156 1471-0064
    157 schema:name Nature Reviews Genetics
    158 schema:publisher Springer Nature
    159 rdf:type schema:Periodical
    160 sg:person.01340300137.52 schema:affiliation grid-institutes:grid.451309.a
    161 schema:familyName Tringe
    162 schema:givenName Susannah Green
    163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340300137.52
    164 rdf:type schema:Person
    165 sg:person.015553561057.95 schema:affiliation grid-institutes:grid.451309.a
    166 schema:familyName Rubin
    167 schema:givenName Edward M.
    168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015553561057.95
    169 rdf:type schema:Person
    170 sg:pub.10.1007/s002390010184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045143895
    171 https://doi.org/10.1007/s002390010184
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1007/s10295-005-0208-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006717072
    174 https://doi.org/10.1007/s10295-005-0208-3
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1038/24094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045605598
    177 https://doi.org/10.1038/24094
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1038/345060a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024140999
    180 https://doi.org/10.1038/345060a0
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1038/35024074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016095729
    183 https://doi.org/10.1038/35024074
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1038/35054051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000389432
    186 https://doi.org/10.1038/35054051
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1038/35055536 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042248501
    189 https://doi.org/10.1038/35055536
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1038/35059006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012234486
    192 https://doi.org/10.1038/35059006
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1038/35072071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037967401
    195 https://doi.org/10.1038/35072071
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1038/35077067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032555608
    198 https://doi.org/10.1038/35077067
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1038/nature02340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023089166
    201 https://doi.org/10.1038/nature02340
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1038/nature03959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021574562
    204 https://doi.org/10.1038/nature03959
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1038/ng1277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026031487
    207 https://doi.org/10.1038/ng1277
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1038/ng986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017944907
    210 https://doi.org/10.1038/ng986
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1038/nrg1325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041884975
    213 https://doi.org/10.1038/nrg1325
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1038/nrg1350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049911084
    216 https://doi.org/10.1038/nrg1350
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1038/nrmicro1157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020289704
    219 https://doi.org/10.1038/nrmicro1157
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1038/nrmicro1158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035689669
    222 https://doi.org/10.1038/nrmicro1158
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1038/nrmicro1162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033711747
    225 https://doi.org/10.1038/nrmicro1162
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1186/1471-2105-5-163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017298406
    228 https://doi.org/10.1186/1471-2105-5-163
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1186/gb-2005-6-3-r23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016781371
    231 https://doi.org/10.1186/gb-2005-6-3-r23
    232 rdf:type schema:CreativeWork
    233 grid-institutes:grid.451309.a schema:alternateName Department of Energy Joint Genome Institute, 2800 Mitchell Drive, 94598, Walnut Creek, California, USA
    234 schema:name Department of Energy Joint Genome Institute, 2800 Mitchell Drive, 94598, Walnut Creek, California, USA
    235 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...