Gene–environment interactions in human diseases View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-04

AUTHORS

David J. Hunter

ABSTRACT

Key PointsComplex diseases are thought to involve the interaction between environmental and lifestyle factors, and inherited susceptibility.The increasing number of disease-associated alleles of both high and low penetrance that have been described allows us to assess whether allele penetrance is modified by environmental factors.There are many models that describe the precise nature of the risks associated with combinations of genetic and environmental risk factors. This introduces an additional element of multiple comparisons into the already large matrix of potential genetic and environmental risk factors.All the main epidemiological study designs can be used to detect gene–environment interactions. The optimal study design depends on the interaction that is being examined.The sample sizes that are required to detect gene–environment or gene–gene interactions are much larger than those necessary to detect genetic or environmental factors in isolation.Many studies that have been carried out do not have adequate sample sizes to address gene–environment interactions.Creating common databases of results, and pooling results across consortia could mitigate the problem of sample size. Pre-planned pooling of results will be more efficient than post-hoc pooling, as the increasing use of haplotype-tagging SNPs might mean that different research groups choose different gene variants.Finding the common variants associated with risk of common diseases will be just the beginning of applying knowledge of gene variation to human disease. Dissecting the interaction of genes with environment will be necessary to assess their public-health and clinical relevance, and will present many challenges. More... »

PAGES

287-298

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nrg1578

DOI

http://dx.doi.org/10.1038/nrg1578

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009349283

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15803198


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Environment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Epidemiologic Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Predisposition to Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sample Size", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Channing Laboratory, Brigham and Women's Hospital, 02115, Boston, Massachusetts, USA", 
          "id": "http://www.grid.ac/institutes/grid.62560.37", 
          "name": [
            "Department of Epidemiology, Program in Molecular and Genetic Epidemiology, Harvard School of Public Health, 677 Huntington Avenue, 02115, Boston, Massachusetts, USA", 
            "Channing Laboratory, Brigham and Women's Hospital, 02115, Boston, Massachusetts, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hunter", 
        "givenName": "David J.", 
        "id": "sg:person.01067450370.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067450370.54"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1024173909401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035343417", 
          "https://doi.org/10.1023/a:1024173909401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35049567", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037957524", 
          "https://doi.org/10.1038/35049567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02628", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034424510", 
          "https://doi.org/10.1038/nature02628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011014033", 
          "https://doi.org/10.1038/ng1333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02267057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019866995", 
          "https://doi.org/10.1007/bf02267057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047189229", 
          "https://doi.org/10.1038/nrg1229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011765109", 
          "https://doi.org/10.1038/nrg1403"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-04", 
    "datePublishedReg": "2005-04-01", 
    "description": "Key PointsComplex diseases are thought to involve the interaction between environmental and lifestyle factors, and inherited susceptibility.The increasing number of disease-associated alleles of both high and low penetrance that have been described allows us to assess whether allele penetrance is modified by environmental factors.There are many models that describe the precise nature of the risks associated with combinations of genetic and environmental risk factors. This introduces an additional element of multiple comparisons into the already large matrix of potential genetic and environmental risk factors.All the main epidemiological study designs can be used to detect gene\u2013environment interactions. The optimal study design depends on the interaction that is being examined.The sample sizes that are required to detect gene\u2013environment or gene\u2013gene interactions are much larger than those necessary to detect genetic or environmental factors in isolation.Many studies that have been carried out do not have adequate sample sizes to address gene\u2013environment interactions.Creating common databases of results, and pooling results across consortia could mitigate the problem of sample size. Pre-planned pooling of results will be more efficient than post-hoc pooling, as the increasing use of haplotype-tagging SNPs might mean that different research groups choose different gene variants.Finding the common variants associated with risk of common diseases will be just the beginning of applying knowledge of gene variation to human disease. Dissecting the interaction of genes with environment will be necessary to assess their public-health and clinical relevance, and will present many challenges.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/nrg1578", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1023607", 
        "issn": [
          "1471-0056", 
          "1471-0064"
        ], 
        "name": "Nature Reviews Genetics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "keywords": [
      "environmental risk factors", 
      "gene-environment interactions", 
      "risk factors", 
      "study design", 
      "epidemiological study designs", 
      "lifestyle factors", 
      "adequate sample size", 
      "sample size", 
      "human diseases", 
      "clinical relevance", 
      "optimal study design", 
      "common disease", 
      "disease", 
      "haplotype-tagging SNPs", 
      "gene variants", 
      "disease-associated alleles", 
      "low penetrance", 
      "different gene variants", 
      "multiple comparisons", 
      "gene variation", 
      "common variants", 
      "gene-gene interactions", 
      "environmental factors", 
      "risk", 
      "penetrance", 
      "factors", 
      "interaction of genes", 
      "precise nature", 
      "variants", 
      "group", 
      "pooling", 
      "susceptibility", 
      "alleles", 
      "research groups", 
      "different research groups", 
      "study", 
      "database", 
      "genes", 
      "results", 
      "common database", 
      "SNPs", 
      "relevance", 
      "use", 
      "combination", 
      "isolation", 
      "size", 
      "interaction", 
      "number", 
      "consortium", 
      "knowledge", 
      "comparison", 
      "challenges", 
      "beginning", 
      "design", 
      "model", 
      "additional elements", 
      "variation", 
      "nature", 
      "problem", 
      "environment", 
      "elements", 
      "matrix", 
      "large matrices", 
      "Key PointsComplex diseases", 
      "PointsComplex diseases", 
      "allele penetrance", 
      "main epidemiological study designs", 
      "Pre-planned pooling", 
      "post-hoc pooling"
    ], 
    "name": "Gene\u2013environment interactions in human diseases", 
    "pagination": "287-298", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009349283"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nrg1578"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15803198"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nrg1578", 
      "https://app.dimensions.ai/details/publication/pub.1009349283"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_406.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/nrg1578"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nrg1578'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nrg1578'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nrg1578'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nrg1578'


 

This table displays all metadata directly associated to this object as RDF triples.

200 TRIPLES      22 PREDICATES      113 URIs      98 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nrg1578 schema:about N17b4b99b755144a7b0bd2adf40968c77
2 N1b178140857f4e77a56f94217666196c
3 N1bab51ddf57b411fa004856b74e8e378
4 N4103ad688ae44fdfa640a7a7ee73fe37
5 N4c389445ab7f40b6aa0e209ec8ec6e0f
6 N66e12f4a74cb4f3bb3b4c8337fc6811e
7 N6d1fa5c9274748f39e2eacb1b5b70dd0
8 Ne45da1ee02c24f01822eb433a9026cbd
9 Nf3d61fc74b4849f9a962181354f27a77
10 Nfabdedb6544046e5bd0ea88b66628db7
11 anzsrc-for:06
12 anzsrc-for:0604
13 schema:author N65dd812ff9544db2a6e30808ec02bf4b
14 schema:citation sg:pub.10.1007/bf02267057
15 sg:pub.10.1023/a:1024173909401
16 sg:pub.10.1038/35049567
17 sg:pub.10.1038/nature02628
18 sg:pub.10.1038/ng1333
19 sg:pub.10.1038/nrg1229
20 sg:pub.10.1038/nrg1403
21 schema:datePublished 2005-04
22 schema:datePublishedReg 2005-04-01
23 schema:description Key PointsComplex diseases are thought to involve the interaction between environmental and lifestyle factors, and inherited susceptibility.The increasing number of disease-associated alleles of both high and low penetrance that have been described allows us to assess whether allele penetrance is modified by environmental factors.There are many models that describe the precise nature of the risks associated with combinations of genetic and environmental risk factors. This introduces an additional element of multiple comparisons into the already large matrix of potential genetic and environmental risk factors.All the main epidemiological study designs can be used to detect gene–environment interactions. The optimal study design depends on the interaction that is being examined.The sample sizes that are required to detect gene–environment or gene–gene interactions are much larger than those necessary to detect genetic or environmental factors in isolation.Many studies that have been carried out do not have adequate sample sizes to address gene–environment interactions.Creating common databases of results, and pooling results across consortia could mitigate the problem of sample size. Pre-planned pooling of results will be more efficient than post-hoc pooling, as the increasing use of haplotype-tagging SNPs might mean that different research groups choose different gene variants.Finding the common variants associated with risk of common diseases will be just the beginning of applying knowledge of gene variation to human disease. Dissecting the interaction of genes with environment will be necessary to assess their public-health and clinical relevance, and will present many challenges.
24 schema:genre article
25 schema:inLanguage en
26 schema:isAccessibleForFree false
27 schema:isPartOf Nbaaf0d906aeb4e8a8ace7ec174327747
28 Ne454e82e3e28485e9621378e8c079c9e
29 sg:journal.1023607
30 schema:keywords Key PointsComplex diseases
31 PointsComplex diseases
32 Pre-planned pooling
33 SNPs
34 additional elements
35 adequate sample size
36 allele penetrance
37 alleles
38 beginning
39 challenges
40 clinical relevance
41 combination
42 common database
43 common disease
44 common variants
45 comparison
46 consortium
47 database
48 design
49 different gene variants
50 different research groups
51 disease
52 disease-associated alleles
53 elements
54 environment
55 environmental factors
56 environmental risk factors
57 epidemiological study designs
58 factors
59 gene variants
60 gene variation
61 gene-environment interactions
62 gene-gene interactions
63 genes
64 group
65 haplotype-tagging SNPs
66 human diseases
67 interaction
68 interaction of genes
69 isolation
70 knowledge
71 large matrices
72 lifestyle factors
73 low penetrance
74 main epidemiological study designs
75 matrix
76 model
77 multiple comparisons
78 nature
79 number
80 optimal study design
81 penetrance
82 pooling
83 post-hoc pooling
84 precise nature
85 problem
86 relevance
87 research groups
88 results
89 risk
90 risk factors
91 sample size
92 size
93 study
94 study design
95 susceptibility
96 use
97 variants
98 variation
99 schema:name Gene–environment interactions in human diseases
100 schema:pagination 287-298
101 schema:productId N4b209c4d4b7041ba906937e2b74dcce8
102 N92d312c1ece54d68a49f382e0384c0ee
103 Nab91b8daa91a41f39819b7b445afcd46
104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009349283
105 https://doi.org/10.1038/nrg1578
106 schema:sdDatePublished 2022-01-01T18:14
107 schema:sdLicense https://scigraph.springernature.com/explorer/license/
108 schema:sdPublisher Ne2fffe1666894f86a4d15a6509d5739f
109 schema:url https://doi.org/10.1038/nrg1578
110 sgo:license sg:explorer/license/
111 sgo:sdDataset articles
112 rdf:type schema:ScholarlyArticle
113 N17b4b99b755144a7b0bd2adf40968c77 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Epidemiologic Studies
115 rdf:type schema:DefinedTerm
116 N1b178140857f4e77a56f94217666196c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Genetic Predisposition to Disease
118 rdf:type schema:DefinedTerm
119 N1bab51ddf57b411fa004856b74e8e378 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Risk Factors
121 rdf:type schema:DefinedTerm
122 N4103ad688ae44fdfa640a7a7ee73fe37 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Reproducibility of Results
124 rdf:type schema:DefinedTerm
125 N4b209c4d4b7041ba906937e2b74dcce8 schema:name pubmed_id
126 schema:value 15803198
127 rdf:type schema:PropertyValue
128 N4c389445ab7f40b6aa0e209ec8ec6e0f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Humans
130 rdf:type schema:DefinedTerm
131 N65dd812ff9544db2a6e30808ec02bf4b rdf:first sg:person.01067450370.54
132 rdf:rest rdf:nil
133 N66e12f4a74cb4f3bb3b4c8337fc6811e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Models, Genetic
135 rdf:type schema:DefinedTerm
136 N6d1fa5c9274748f39e2eacb1b5b70dd0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Sample Size
138 rdf:type schema:DefinedTerm
139 N92d312c1ece54d68a49f382e0384c0ee schema:name doi
140 schema:value 10.1038/nrg1578
141 rdf:type schema:PropertyValue
142 Nab91b8daa91a41f39819b7b445afcd46 schema:name dimensions_id
143 schema:value pub.1009349283
144 rdf:type schema:PropertyValue
145 Nbaaf0d906aeb4e8a8ace7ec174327747 schema:volumeNumber 6
146 rdf:type schema:PublicationVolume
147 Ne2fffe1666894f86a4d15a6509d5739f schema:name Springer Nature - SN SciGraph project
148 rdf:type schema:Organization
149 Ne454e82e3e28485e9621378e8c079c9e schema:issueNumber 4
150 rdf:type schema:PublicationIssue
151 Ne45da1ee02c24f01822eb433a9026cbd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Genotype
153 rdf:type schema:DefinedTerm
154 Nf3d61fc74b4849f9a962181354f27a77 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Environment
156 rdf:type schema:DefinedTerm
157 Nfabdedb6544046e5bd0ea88b66628db7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Prospective Studies
159 rdf:type schema:DefinedTerm
160 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
161 schema:name Biological Sciences
162 rdf:type schema:DefinedTerm
163 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
164 schema:name Genetics
165 rdf:type schema:DefinedTerm
166 sg:journal.1023607 schema:issn 1471-0056
167 1471-0064
168 schema:name Nature Reviews Genetics
169 schema:publisher Springer Nature
170 rdf:type schema:Periodical
171 sg:person.01067450370.54 schema:affiliation grid-institutes:grid.62560.37
172 schema:familyName Hunter
173 schema:givenName David J.
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067450370.54
175 rdf:type schema:Person
176 sg:pub.10.1007/bf02267057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019866995
177 https://doi.org/10.1007/bf02267057
178 rdf:type schema:CreativeWork
179 sg:pub.10.1023/a:1024173909401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035343417
180 https://doi.org/10.1023/a:1024173909401
181 rdf:type schema:CreativeWork
182 sg:pub.10.1038/35049567 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037957524
183 https://doi.org/10.1038/35049567
184 rdf:type schema:CreativeWork
185 sg:pub.10.1038/nature02628 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034424510
186 https://doi.org/10.1038/nature02628
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/ng1333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011014033
189 https://doi.org/10.1038/ng1333
190 rdf:type schema:CreativeWork
191 sg:pub.10.1038/nrg1229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047189229
192 https://doi.org/10.1038/nrg1229
193 rdf:type schema:CreativeWork
194 sg:pub.10.1038/nrg1403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011765109
195 https://doi.org/10.1038/nrg1403
196 rdf:type schema:CreativeWork
197 grid-institutes:grid.62560.37 schema:alternateName Channing Laboratory, Brigham and Women's Hospital, 02115, Boston, Massachusetts, USA
198 schema:name Channing Laboratory, Brigham and Women's Hospital, 02115, Boston, Massachusetts, USA
199 Department of Epidemiology, Program in Molecular and Genetic Epidemiology, Harvard School of Public Health, 677 Huntington Avenue, 02115, Boston, Massachusetts, USA
200 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...