Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-06-01

AUTHORS

Santiago F. Elena, Richard E. Lenski

ABSTRACT

Key PointsMicroorganisms are well-suited for experimental studies of evolution owing to their rapid generations and large populations, as well as the wealth of molecular and genomic data that are available for many species.Genetic adaptation is especially rapid when microbial populations are introduced into new environments, although they may continue to improve indefinitely, even under a constant regime.Genetic comparisons of ancestral and experimentally evolved microbes provide some striking examples of parallel molecular evolution in replicate populations, including examples of adaptive mutations in genes that encode important global regulators.Genetic adaptation to one environment is often, although not always, associated with fitness loss in other environments, and antagonistic pleiotropy often seems to be responsible for these tradeoffs.Asexual populations that are rapidly adapting to new or changing environments provide opportunities for hypermutable genotypes to hitchhike with the beneficial mutations that they may generate, although the emergence of mutators does not always greatly accelerate adaptive evolution.Very small populations, including those that experience repeated bottlenecks, do not improve over time, but instead suffer genetic decay because the random processes of mutation and drift overwhelm the capacity of selection to retain well-adapted genotypes. More... »

PAGES

457-469

References to SciGraph publications

  • 1997-06. Evolution of high mutation rates in experimental populations of E. coli in NATURE
  • 2002-08-22. Long-term experimental evolution in Escherichia coli. X. Quantifying the fundamental and realized niche in BMC ECOLOGY AND EVOLUTION
  • 2002-11. Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth in NATURE
  • 2003-04. Rates of DNA Sequence Evolution in Experimental Populations of Escherichia coli During 20,000 Generations in JOURNAL OF MOLECULAR EVOLUTION
  • 1992-01. The population biology and evolutionary significance of Ty elements in Saccharomyces cerevisiae in GENETICA
  • 1998. The fate of competing beneficial mutations in an asexual population in GENETICA
  • 2002-10-30. Long-term experimental evolution in Escherichia coli. XI. Rejection of non-transitive interactions as cause of declining rate of adaptation in BMC ECOLOGY AND EVOLUTION
  • 1997-06. Role of mutator alleles in adaptive evolution in NATURE
  • 1990-11. Fitness of RNA virus decreased by Muller's ratchet in NATURE
  • 2002-05. GroEL buffers against deleterious mutations in NATURE
  • 1988-12. Deleterious mutations and the evolution of sexual reproduction in NATURE
  • 1997-05. Experimental evolution in Chlamydomonas. III. Evolution of specialist and generalist types in environments that vary in space and time in HEREDITY
  • 2000-08. Evolvability of an RNA virus is determined by its mutational neighbourhood in NATURE
  • 2001-07. Evolution of digital organisms at high mutation rates leads to survival of the flattest in NATURE
  • 2003-05. The evolutionary origin of complex features in NATURE
  • 1983-06. Transposable elements as mutator genes in evolution in NATURE
  • 1996-06. Estimate of the genomic mutation rate deleterious to overall fitness in E. coll in NATURE
  • 1953-10. Evolution Observed in SCIENTIFIC AMERICAN
  • 2000-10. The population genetics of ecological specialization in evolving Escherichia coli populations in NATURE
  • 1997. Selection, The Mechanism of Evolution in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nrg1088

    DOI

    http://dx.doi.org/10.1038/nrg1088

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1008567554

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/12776215


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0603", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Evolutionary Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Microbiology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adaptation, Biological", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biological Evolution", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Drift", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Variation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetics, Microbial", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mutation", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Instituto de Biolog\u00eda Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cient\u00edficas, 46022, Valencia, Spain", 
              "id": "http://www.grid.ac/institutes/grid.465545.3", 
              "name": [
                "Instituto de Biolog\u00eda Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cient\u00edficas, 46022, Valencia, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Elena", 
            "givenName": "Santiago F.", 
            "id": "sg:person.0606700061.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0606700061.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Microbiology and Molecular Genetics, Michigan State University, 48824, East Lansing, Michigan, USA", 
              "id": "http://www.grid.ac/institutes/grid.17088.36", 
              "name": [
                "Department of Microbiology and Molecular Genetics, Michigan State University, 48824, East Lansing, Michigan, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lenski", 
            "givenName": "Richard E.", 
            "id": "sg:person.0645431711.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645431711.10"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/417398a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041794037", 
              "https://doi.org/10.1038/417398a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature01568", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005784902", 
              "https://doi.org/10.1038/nature01568"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/348454a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015111735", 
              "https://doi.org/10.1038/348454a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4615-5977-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000814092", 
              "https://doi.org/10.1007/978-1-4615-5977-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/hdy.1997.79", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006955314", 
              "https://doi.org/10.1038/hdy.1997.79"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00239-002-2423-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039351573", 
              "https://doi.org/10.1007/s00239-002-2423-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/336435a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013651461", 
              "https://doi.org/10.1038/336435a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1017067816551", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024191122", 
              "https://doi.org/10.1023/a:1017067816551"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/42696", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031812288", 
              "https://doi.org/10.1038/42696"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35020564", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027058848", 
              "https://doi.org/10.1038/35020564"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/381694a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023148220", 
              "https://doi.org/10.1038/381694a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35037572", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025175626", 
              "https://doi.org/10.1038/35037572"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00133718", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020115455", 
              "https://doi.org/10.1007/bf00133718"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/303633a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015136214", 
              "https://doi.org/10.1038/303633a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35085569", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022714469", 
              "https://doi.org/10.1038/35085569"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2148-2-12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034463092", 
              "https://doi.org/10.1186/1471-2148-2-12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/42701", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005597935", 
              "https://doi.org/10.1038/42701"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2148-2-19", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030137210", 
              "https://doi.org/10.1186/1471-2148-2-19"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature01149", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025902533", 
              "https://doi.org/10.1038/nature01149"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/scientificamerican1053-78", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056615529", 
              "https://doi.org/10.1038/scientificamerican1053-78"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2003-06-01", 
        "datePublishedReg": "2003-06-01", 
        "description": "Key PointsMicroorganisms are well-suited for experimental studies of evolution owing to their rapid generations and large populations, as well as the wealth of molecular and genomic data that are available for many species.Genetic adaptation is especially rapid when microbial populations are introduced into new environments, although they may continue to improve indefinitely, even under a constant regime.Genetic comparisons of ancestral and experimentally evolved microbes provide some striking examples of parallel molecular evolution in replicate populations, including examples of adaptive mutations in genes that encode important global regulators.Genetic adaptation to one environment is often, although not always, associated with fitness loss in other environments, and antagonistic pleiotropy often seems to be responsible for these tradeoffs.Asexual populations that are rapidly adapting to new or changing environments provide opportunities for hypermutable genotypes to hitchhike with the beneficial mutations that they may generate, although the emergence of mutators does not always greatly accelerate adaptive evolution.Very small populations, including those that experience repeated bottlenecks, do not improve over time, but instead suffer genetic decay because the random processes of mutation and drift overwhelm the capacity of selection to retain well-adapted genotypes.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/nrg1088", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1023607", 
            "issn": [
              "1471-0056", 
              "1471-0064"
            ], 
            "name": "Nature Reviews Genetics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "4"
          }
        ], 
        "keywords": [
          "genetic adaptation", 
          "parallel molecular evolution", 
          "emergence of mutators", 
          "important global regulator", 
          "genetic decay", 
          "adaptive evolution", 
          "replicate populations", 
          "Key PointsMicroorganisms", 
          "molecular evolution", 
          "asexual populations", 
          "global regulator", 
          "antagonistic pleiotropy", 
          "beneficial mutations", 
          "fitness loss", 
          "capacity of selection", 
          "evolution experiments", 
          "genetic basis", 
          "genomic data", 
          "genetic comparison", 
          "microbial populations", 
          "adaptive mutations", 
          "small population", 
          "mutations", 
          "striking example", 
          "rapid generation", 
          "constant regime", 
          "new environment", 
          "adaptation", 
          "genotypes", 
          "pleiotropy", 
          "mutator", 
          "genes", 
          "microbes", 
          "evolution", 
          "large population", 
          "population", 
          "regulator", 
          "species", 
          "microorganisms", 
          "environment", 
          "selection", 
          "bottleneck", 
          "emergence", 
          "dynamics", 
          "drift", 
          "loss", 
          "basis", 
          "generation", 
          "process", 
          "experiments", 
          "wealth", 
          "capacity", 
          "study", 
          "example", 
          "data", 
          "comparison", 
          "random process", 
          "opportunities", 
          "decay", 
          "regime", 
          "time", 
          "tradeoff", 
          "experimental study", 
          "experience"
        ], 
        "name": "Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation", 
        "pagination": "457-469", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1008567554"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nrg1088"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "12776215"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nrg1088", 
          "https://app.dimensions.ai/details/publication/pub.1008567554"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:32", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_366.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/nrg1088"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nrg1088'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nrg1088'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nrg1088'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nrg1088'


     

    This table displays all metadata directly associated to this object as RDF triples.

    247 TRIPLES      21 PREDICATES      117 URIs      87 LITERALS      13 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nrg1088 schema:about N1125eeb9a4274b78b15ac950527f44cb
    2 N19b850352d514db1844da4ee6a3002ee
    3 N1f1918d0c8984a18a31db7281fe82c17
    4 N236ff9b22bf74f3f8fc44eb2ee64d681
    5 Na880051bc0004d09a33b538fbe345abe
    6 Nad2d36803561486cbac1035238d4300c
    7 anzsrc-for:06
    8 anzsrc-for:0603
    9 anzsrc-for:0604
    10 anzsrc-for:0605
    11 schema:author N0b5769e113bf42ddba0327eadb59da9a
    12 schema:citation sg:pub.10.1007/978-1-4615-5977-1
    13 sg:pub.10.1007/bf00133718
    14 sg:pub.10.1007/s00239-002-2423-0
    15 sg:pub.10.1023/a:1017067816551
    16 sg:pub.10.1038/303633a0
    17 sg:pub.10.1038/336435a0
    18 sg:pub.10.1038/348454a0
    19 sg:pub.10.1038/35020564
    20 sg:pub.10.1038/35037572
    21 sg:pub.10.1038/35085569
    22 sg:pub.10.1038/381694a0
    23 sg:pub.10.1038/417398a
    24 sg:pub.10.1038/42696
    25 sg:pub.10.1038/42701
    26 sg:pub.10.1038/hdy.1997.79
    27 sg:pub.10.1038/nature01149
    28 sg:pub.10.1038/nature01568
    29 sg:pub.10.1038/scientificamerican1053-78
    30 sg:pub.10.1186/1471-2148-2-12
    31 sg:pub.10.1186/1471-2148-2-19
    32 schema:datePublished 2003-06-01
    33 schema:datePublishedReg 2003-06-01
    34 schema:description Key PointsMicroorganisms are well-suited for experimental studies of evolution owing to their rapid generations and large populations, as well as the wealth of molecular and genomic data that are available for many species.Genetic adaptation is especially rapid when microbial populations are introduced into new environments, although they may continue to improve indefinitely, even under a constant regime.Genetic comparisons of ancestral and experimentally evolved microbes provide some striking examples of parallel molecular evolution in replicate populations, including examples of adaptive mutations in genes that encode important global regulators.Genetic adaptation to one environment is often, although not always, associated with fitness loss in other environments, and antagonistic pleiotropy often seems to be responsible for these tradeoffs.Asexual populations that are rapidly adapting to new or changing environments provide opportunities for hypermutable genotypes to hitchhike with the beneficial mutations that they may generate, although the emergence of mutators does not always greatly accelerate adaptive evolution.Very small populations, including those that experience repeated bottlenecks, do not improve over time, but instead suffer genetic decay because the random processes of mutation and drift overwhelm the capacity of selection to retain well-adapted genotypes.
    35 schema:genre article
    36 schema:isAccessibleForFree false
    37 schema:isPartOf N758d71cfea434b1a9f5f363afe0dfbde
    38 Na03146bf492241da8703cbf3b31fff4c
    39 sg:journal.1023607
    40 schema:keywords Key PointsMicroorganisms
    41 adaptation
    42 adaptive evolution
    43 adaptive mutations
    44 antagonistic pleiotropy
    45 asexual populations
    46 basis
    47 beneficial mutations
    48 bottleneck
    49 capacity
    50 capacity of selection
    51 comparison
    52 constant regime
    53 data
    54 decay
    55 drift
    56 dynamics
    57 emergence
    58 emergence of mutators
    59 environment
    60 evolution
    61 evolution experiments
    62 example
    63 experience
    64 experimental study
    65 experiments
    66 fitness loss
    67 generation
    68 genes
    69 genetic adaptation
    70 genetic basis
    71 genetic comparison
    72 genetic decay
    73 genomic data
    74 genotypes
    75 global regulator
    76 important global regulator
    77 large population
    78 loss
    79 microbes
    80 microbial populations
    81 microorganisms
    82 molecular evolution
    83 mutations
    84 mutator
    85 new environment
    86 opportunities
    87 parallel molecular evolution
    88 pleiotropy
    89 population
    90 process
    91 random process
    92 rapid generation
    93 regime
    94 regulator
    95 replicate populations
    96 selection
    97 small population
    98 species
    99 striking example
    100 study
    101 time
    102 tradeoff
    103 wealth
    104 schema:name Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation
    105 schema:pagination 457-469
    106 schema:productId N3443bb3f5e704c37b3fd18c66545d22b
    107 N6cbd60395c714050b77f1cb1a2c39348
    108 Nff0017acd64d4e9fb969acb94548f1f5
    109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008567554
    110 https://doi.org/10.1038/nrg1088
    111 schema:sdDatePublished 2022-10-01T06:32
    112 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    113 schema:sdPublisher N75557755e08b492197639c8f0d679a06
    114 schema:url https://doi.org/10.1038/nrg1088
    115 sgo:license sg:explorer/license/
    116 sgo:sdDataset articles
    117 rdf:type schema:ScholarlyArticle
    118 N0b5769e113bf42ddba0327eadb59da9a rdf:first sg:person.0606700061.16
    119 rdf:rest Nccb6c45b9ac14f9a8f0334921ba11e98
    120 N1125eeb9a4274b78b15ac950527f44cb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    121 schema:name Genetics, Microbial
    122 rdf:type schema:DefinedTerm
    123 N19b850352d514db1844da4ee6a3002ee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    124 schema:name Biological Evolution
    125 rdf:type schema:DefinedTerm
    126 N1f1918d0c8984a18a31db7281fe82c17 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    127 schema:name Genetic Drift
    128 rdf:type schema:DefinedTerm
    129 N236ff9b22bf74f3f8fc44eb2ee64d681 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    130 schema:name Mutation
    131 rdf:type schema:DefinedTerm
    132 N3443bb3f5e704c37b3fd18c66545d22b schema:name dimensions_id
    133 schema:value pub.1008567554
    134 rdf:type schema:PropertyValue
    135 N6cbd60395c714050b77f1cb1a2c39348 schema:name doi
    136 schema:value 10.1038/nrg1088
    137 rdf:type schema:PropertyValue
    138 N75557755e08b492197639c8f0d679a06 schema:name Springer Nature - SN SciGraph project
    139 rdf:type schema:Organization
    140 N758d71cfea434b1a9f5f363afe0dfbde schema:volumeNumber 4
    141 rdf:type schema:PublicationVolume
    142 Na03146bf492241da8703cbf3b31fff4c schema:issueNumber 6
    143 rdf:type schema:PublicationIssue
    144 Na880051bc0004d09a33b538fbe345abe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    145 schema:name Adaptation, Biological
    146 rdf:type schema:DefinedTerm
    147 Nad2d36803561486cbac1035238d4300c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    148 schema:name Genetic Variation
    149 rdf:type schema:DefinedTerm
    150 Nccb6c45b9ac14f9a8f0334921ba11e98 rdf:first sg:person.0645431711.10
    151 rdf:rest rdf:nil
    152 Nff0017acd64d4e9fb969acb94548f1f5 schema:name pubmed_id
    153 schema:value 12776215
    154 rdf:type schema:PropertyValue
    155 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    156 schema:name Biological Sciences
    157 rdf:type schema:DefinedTerm
    158 anzsrc-for:0603 schema:inDefinedTermSet anzsrc-for:
    159 schema:name Evolutionary Biology
    160 rdf:type schema:DefinedTerm
    161 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    162 schema:name Genetics
    163 rdf:type schema:DefinedTerm
    164 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
    165 schema:name Microbiology
    166 rdf:type schema:DefinedTerm
    167 sg:journal.1023607 schema:issn 1471-0056
    168 1471-0064
    169 schema:name Nature Reviews Genetics
    170 schema:publisher Springer Nature
    171 rdf:type schema:Periodical
    172 sg:person.0606700061.16 schema:affiliation grid-institutes:grid.465545.3
    173 schema:familyName Elena
    174 schema:givenName Santiago F.
    175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0606700061.16
    176 rdf:type schema:Person
    177 sg:person.0645431711.10 schema:affiliation grid-institutes:grid.17088.36
    178 schema:familyName Lenski
    179 schema:givenName Richard E.
    180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645431711.10
    181 rdf:type schema:Person
    182 sg:pub.10.1007/978-1-4615-5977-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000814092
    183 https://doi.org/10.1007/978-1-4615-5977-1
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1007/bf00133718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020115455
    186 https://doi.org/10.1007/bf00133718
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1007/s00239-002-2423-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039351573
    189 https://doi.org/10.1007/s00239-002-2423-0
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1023/a:1017067816551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024191122
    192 https://doi.org/10.1023/a:1017067816551
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1038/303633a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015136214
    195 https://doi.org/10.1038/303633a0
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1038/336435a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013651461
    198 https://doi.org/10.1038/336435a0
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1038/348454a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015111735
    201 https://doi.org/10.1038/348454a0
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1038/35020564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027058848
    204 https://doi.org/10.1038/35020564
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1038/35037572 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025175626
    207 https://doi.org/10.1038/35037572
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1038/35085569 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022714469
    210 https://doi.org/10.1038/35085569
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1038/381694a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023148220
    213 https://doi.org/10.1038/381694a0
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1038/417398a schema:sameAs https://app.dimensions.ai/details/publication/pub.1041794037
    216 https://doi.org/10.1038/417398a
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1038/42696 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031812288
    219 https://doi.org/10.1038/42696
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1038/42701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005597935
    222 https://doi.org/10.1038/42701
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1038/hdy.1997.79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006955314
    225 https://doi.org/10.1038/hdy.1997.79
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1038/nature01149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025902533
    228 https://doi.org/10.1038/nature01149
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1038/nature01568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005784902
    231 https://doi.org/10.1038/nature01568
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1038/scientificamerican1053-78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056615529
    234 https://doi.org/10.1038/scientificamerican1053-78
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1186/1471-2148-2-12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034463092
    237 https://doi.org/10.1186/1471-2148-2-12
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1186/1471-2148-2-19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030137210
    240 https://doi.org/10.1186/1471-2148-2-19
    241 rdf:type schema:CreativeWork
    242 grid-institutes:grid.17088.36 schema:alternateName Department of Microbiology and Molecular Genetics, Michigan State University, 48824, East Lansing, Michigan, USA
    243 schema:name Department of Microbiology and Molecular Genetics, Michigan State University, 48824, East Lansing, Michigan, USA
    244 rdf:type schema:Organization
    245 grid-institutes:grid.465545.3 schema:alternateName Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, 46022, Valencia, Spain
    246 schema:name Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, 46022, Valencia, Spain
    247 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...