PI3K and cancer: lessons, challenges and opportunities View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-01-31

AUTHORS

David A. Fruman, Christian Rommel

ABSTRACT

Key PointsMutations that activate the phosphoinositide 3-kinase (PI3K) signalling network are nearly ubiquitous in human cancer.PI3K activation has central physiological roles in many normal cells and tissues, including those of the immune system.Small molecules have been generated that selectively inhibit PI3K, AKT or mammalian target of rapamycin (mTOR) with good pharmacological properties.As single agents, most PI3K–AKT–mTOR inhibitors are cytostatic rather than cytotoxic to cancer cells.Early results from clinical trials show limited activity of these agents as monotherapies, but a striking exception is GS-1101, which is a selective inhibitor of p110δ.Now is the time to re-evaluate strategies to develop and apply PI3K pathway inhibitors for treating cancer.This Review proposes four priorities to guide future efforts in translational and clinical research.The first is biomarker identification, which involves using next-generation sequencing to identify genetic correlates for rare responders.The second is haematological malignancies; following on the success of GS-1101, clinical trials of leukaemia and lymphoma provide advantages for pharmacodynamic monitoring and for harnessing the effects of pathway inhibitors on the tumour microenvironment.The third is immune effects, which involves taking advantage of the cell-extrinsic effects of PI3K–mTOR inhibitors that can enhance antitumour immunity under certain conditions.The last is combination trials; it is likely that PI3K pathway inhibitors will be most effective when applied in combination with other targeted inhibitors. Many such combinations are discussed. More... »

PAGES

140-156

References to SciGraph publications

  • 2009-05-24. Inhibitor Hijacking of Akt Activation in NATURE CHEMICAL BIOLOGY
  • 2008-06-25. Essential roles of PI(3)K–p110β in cell growth, metabolism and tumorigenesis in NATURE
  • 2013-06-30. mTORC1 couples immune signals and metabolic programming to establish Treg cell function in NATURE
  • 2012-11-02. GS-1101: A Delta-Specific PI3K Inhibitor in Chronic Lymphocytic Leukemia in CURRENT HEMATOLOGIC MALIGNANCY REPORTS
  • 2013-07-29. PI3K in cancer–stroma interactions: bad in seed and ugly in soil in ONCOGENE
  • 2013-02-12. Development of PI3K inhibitors: lessons learned from early clinical trials in NATURE REVIEWS CLINICAL ONCOLOGY
  • 2009-08. Targeting PI3K signalling in cancer: opportunities, challenges and limitations in NATURE REVIEWS CANCER
  • 2013-04-08. Pancreatic tumours escape from translational control through 4E-BP1 loss in ONCOGENE
  • 2011-02-18. Targeted inhibition of mTORC1 and mTORC2 by active-site mTOR inhibitors has cytotoxic effects in T-cell acute lymphoblastic leukemia in LEUKEMIA
  • 2011-08-07. Oncogenic PIK3CA-driven mammary tumors frequently recur via PI3K pathway-dependent and -independent mechanisms in NATURE MEDICINE
  • 2008-02. Membrane recognition by phospholipid-binding domains in NATURE REVIEWS MOLECULAR CELL BIOLOGY
  • 2012-01-26. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR in NATURE
  • 2011-10-31. Rapamycin passes the torch: a new generation of mTOR inhibitors in NATURE REVIEWS DRUG DISCOVERY
  • 2010-05-04. PI3Ks in Lymphocyte Signaling and Development in PHOSPHOINOSITIDE 3-KINASE IN HEALTH AND DISEASE
  • 2009-10-27. Targeting tumorigenesis: development and use of mTOR inhibitors in cancer therapy in JOURNAL OF HEMATOLOGY & ONCOLOGY
  • 2012-03-22. Combining immunotherapy and targeted therapies in cancer treatment in NATURE REVIEWS CANCER
  • 2010-05-07. PI3K Signaling in Neutrophils in PHOSPHOINOSITIDE 3-KINASE IN HEALTH AND DISEASE
  • 2012-08-12. Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics in NATURE
  • 2008-11-30. Effective Use of PI3K and MEK Inhibitors to Treat Mutant K-Ras G12D and PIK3CA H1047R Murine Lung Cancers in NATURE MEDICINE
  • 2009-06-21. mTOR regulates memory CD8 T cell differentiation in NATURE
  • 2012-06-24. De novo somatic mutations in components of the PI3K-AKT3-mTOR pathway cause hemimegalencephaly in NATURE GENETICS
  • 1999-11. Structural insights into phosphoinositide 3-kinase catalysis and signalling in NATURE
  • 2012-02-22. The translational landscape of mTOR signalling steers cancer initiation and metastasis in NATURE
  • 2009-05. Immunoregulatory functions of mTOR inhibition in NATURE REVIEWS IMMUNOLOGY
  • 2008-09-15. Drug discovery approaches targeting the PI3K/Akt pathway in cancer in ONCOGENE
  • 2012-06-27. Acquired resistance mechanisms to tyrosine kinase inhibitors in lung cancer with activating epidermal growth factor receptor mutation—diversity, ductility, and destiny in CANCER AND METASTASIS REVIEWS
  • 2009-06-28. Essential function for the GTPase TC21 in homeostatic antigen receptor signaling in NATURE IMMUNOLOGY
  • 2011-08-03. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia in NATURE
  • 2006-08. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism in NATURE REVIEWS GENETICS
  • 2013-10-28. Dominant-activating germline mutations in the gene encoding the PI(3)K catalytic subunit p110δ result in T cell senescence and human immunodeficiency in NATURE IMMUNOLOGY
  • 2006-04-13. Notch 1 activation in the molecular pathogenesis of T-cell acute lymphoblastic leukaemia in NATURE REVIEWS CANCER
  • 2011-10-02. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia in NATURE
  • 2013-03-29. mTOR regulates DNA damage response through NF-κB-mediated FANCD2 pathway in hematopoietic cells in LEUKEMIA
  • 2010-01-13. Effective and selective targeting of leukemia cells using a TORC1/2 kinase inhibitor in NATURE MEDICINE
  • 2013-05-22. Small molecule inhibition of the KRAS–PDEδ interaction impairs oncogenic KRAS signalling in NATURE
  • 2010-03. B-cell-derived lymphotoxin promotes castration-resistant prostate cancer in NATURE
  • 2010-04-09. The emerging mechanisms of isoform-specific PI3K signalling in NATURE REVIEWS MOLECULAR CELL BIOLOGY
  • 2010-03. Erratum: Corrigendum: The p110δ structure: mechanisms for selectivity and potency of new PI(3)K inhibitors in NATURE CHEMICAL BIOLOGY
  • 2006-10-15. Gβγs and the Ras binding domain of p110γ are both important regulators of PI3Kγ signalling in neutrophils in NATURE CELL BIOLOGY
  • 2011-02-27. The mammalian Target of Rapamycin (mTOR) regulates T helper cell differentiation through the selective activation of mTORC1 and mTORC2 signaling in NATURE IMMUNOLOGY
  • 2012-06-24. Mosaic overgrowth with fibroadipose hyperplasia is caused by somatic activating mutations in PIK3CA in NATURE GENETICS
  • 2013-11-20. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions in NATURE
  • 2012-06-24. De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes in NATURE GENETICS
  • 2009-04-21. The emerging safety profile of mTOR inhibitors, a novel class of anticancer agents in TARGETED ONCOLOGY
  • 2012-04-04. The functions and regulation of the PTEN tumour suppressor in NATURE REVIEWS MOLECULAR CELL BIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nrd4204

    DOI

    http://dx.doi.org/10.1038/nrd4204

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1035315734

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/24481312


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Oncology and Carcinogenesis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Antineoplastic Agents", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Clinical Trials as Topic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Drug Discovery", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Enzyme Inhibitors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neoplasms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phosphoinositide-3 Kinase Inhibitors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Proto-Oncogene Proteins c-akt", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Receptor Cross-Talk", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Signal Transduction", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "TOR Serine-Threonine Kinases", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Molecular Biology & Biochemistry, and Institute for Immunology, University of California, Irvine, 3242 McGaugh Hall, 92697, Irvine, California, USA", 
              "id": "http://www.grid.ac/institutes/grid.266093.8", 
              "name": [
                "Department of Molecular Biology & Biochemistry, and Institute for Immunology, University of California, Irvine, 3242 McGaugh Hall, 92697, Irvine, California, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fruman", 
            "givenName": "David A.", 
            "id": "sg:person.0644612366.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644612366.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "One Amgen Center Drive, 91320, California, USA", 
              "id": "http://www.grid.ac/institutes/grid.417886.4", 
              "name": [
                "Amgen Inc., Thousand Oaks", 
                "One Amgen Center Drive, 91320, California, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rommel", 
            "givenName": "Christian", 
            "id": "sg:person.01134441477.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134441477.14"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nrg1879", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018626271", 
              "https://doi.org/10.1038/nrg1879"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature10868", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038374700", 
              "https://doi.org/10.1038/nature10868"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nm.2091", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017498874", 
              "https://doi.org/10.1038/nm.2091"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ni.2005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035267474", 
              "https://doi.org/10.1038/ni.2005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10555-012-9391-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012103703", 
              "https://doi.org/10.1007/s10555-012-9391-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrd3531", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044264191", 
              "https://doi.org/10.1038/nrd3531"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrm3330", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040868228", 
              "https://doi.org/10.1038/nrm3330"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchembio0310-244b", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043854974", 
              "https://doi.org/10.1038/nchembio0310-244b"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nm.1890", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000532983", 
              "https://doi.org/10.1038/nm.1890"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2329", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013420009", 
              "https://doi.org/10.1038/ng.2329"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11378", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007597995", 
              "https://doi.org/10.1038/nature11378"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrm2328", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004046070", 
              "https://doi.org/10.1038/nrm2328"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07091", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034861855", 
              "https://doi.org/10.1038/nature07091"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2332", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045971958", 
              "https://doi.org/10.1038/ng.2332"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nri2546", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043018595", 
              "https://doi.org/10.1038/nri2546"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrc2664", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016821519", 
              "https://doi.org/10.1038/nrc2664"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1756-8722-2-45", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042617623", 
              "https://doi.org/10.1186/1756-8722-2-45"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nm.2402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015107623", 
              "https://doi.org/10.1038/nm.2402"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08155", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003181272", 
              "https://doi.org/10.1038/nature08155"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ni.1749", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016011852", 
              "https://doi.org/10.1038/ni.1749"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2331", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000022475", 
              "https://doi.org/10.1038/ng.2331"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrm2882", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003696286", 
              "https://doi.org/10.1038/nrm2882"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrc3237", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049465305", 
              "https://doi.org/10.1038/nrc3237"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrclinonc.2013.10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031948211", 
              "https://doi.org/10.1038/nrclinonc.2013.10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12796", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025089044", 
              "https://doi.org/10.1038/nature12796"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature10334", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030076294", 
              "https://doi.org/10.1038/nature10334"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncb1494", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038789094", 
              "https://doi.org/10.1038/ncb1494"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08782", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013990990", 
              "https://doi.org/10.1038/nature08782"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11523-009-0107-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032919247", 
              "https://doi.org/10.1007/s11523-009-0107-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/82_2010_40", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006840386", 
              "https://doi.org/10.1007/82_2010_40"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ni.2771", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012593761", 
              "https://doi.org/10.1038/ni.2771"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature10912", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049494315", 
              "https://doi.org/10.1038/nature10912"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/onc.2013.265", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023723738", 
              "https://doi.org/10.1038/onc.2013.265"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/onc.2013.100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031685026", 
              "https://doi.org/10.1038/onc.2013.100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/82_2010_45", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029678092", 
              "https://doi.org/10.1007/82_2010_45"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchembio.183", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009197664", 
              "https://doi.org/10.1038/nchembio.183"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/onc.2008.246", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042595901", 
              "https://doi.org/10.1038/onc.2008.246"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/leu.2013.93", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006970503", 
              "https://doi.org/10.1038/leu.2013.93"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/leu.2011.20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033828952", 
              "https://doi.org/10.1038/leu.2011.20"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11899-012-0142-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010787251", 
              "https://doi.org/10.1007/s11899-012-0142-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature10509", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026728956", 
              "https://doi.org/10.1038/nature10509"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12297", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010285457", 
              "https://doi.org/10.1038/nature12297"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/46319", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046130490", 
              "https://doi.org/10.1038/46319"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrc1880", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050959167", 
              "https://doi.org/10.1038/nrc1880"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12205", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027695431", 
              "https://doi.org/10.1038/nature12205"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-01-31", 
        "datePublishedReg": "2014-01-31", 
        "description": "Key PointsMutations that activate the phosphoinositide 3-kinase (PI3K) signalling network are nearly ubiquitous in human cancer.PI3K activation has central physiological roles in many normal cells and tissues, including those of the immune system.Small molecules have been generated that selectively inhibit PI3K, AKT or mammalian target of rapamycin (mTOR) with good pharmacological properties.As single agents, most PI3K\u2013AKT\u2013mTOR inhibitors are cytostatic rather than cytotoxic to cancer cells.Early results from clinical trials show limited activity of these agents as monotherapies, but a striking exception is GS-1101, which is a selective inhibitor of p110\u03b4.Now is the time to re-evaluate strategies to develop and apply PI3K pathway inhibitors for treating cancer.This Review proposes four priorities to guide future efforts in translational and clinical research.The first is biomarker identification, which involves using next-generation sequencing to identify genetic correlates for rare responders.The second is haematological malignancies; following on the success of GS-1101, clinical trials of leukaemia and lymphoma provide advantages for pharmacodynamic monitoring and for harnessing the effects of pathway inhibitors on the tumour microenvironment.The third is immune effects, which involves taking advantage of the cell-extrinsic effects of PI3K\u2013mTOR inhibitors that can enhance antitumour immunity under certain conditions.The last is combination trials; it is likely that PI3K pathway inhibitors will be most effective when applied in combination with other targeted inhibitors. Many such combinations are discussed.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/nrd4204", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2600973", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2438862", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2481408", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1327423", 
            "issn": [
              "1474-1776", 
              "1474-1784"
            ], 
            "name": "Nature Reviews Drug Discovery", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "13"
          }
        ], 
        "keywords": [
          "PI3K pathway inhibitors", 
          "pathway inhibitor", 
          "clinical trials", 
          "PI3K", 
          "PI3K-mTOR inhibitors", 
          "cell-extrinsic effects", 
          "pharmacodynamic monitoring", 
          "immune effects", 
          "haematological malignancies", 
          "central physiological role", 
          "combination trials", 
          "mTOR inhibitors", 
          "single agent", 
          "PI3K activation", 
          "better pharmacological properties", 
          "immune system", 
          "tumor microenvironment", 
          "re-evaluate strategies", 
          "clinical research", 
          "mammalian target", 
          "pharmacological properties", 
          "PI3K-Akt", 
          "cancer cells", 
          "cancer", 
          "human cancers", 
          "limited activity", 
          "trials", 
          "next-generation sequencing", 
          "selective inhibitor", 
          "inhibitors", 
          "normal cells", 
          "physiological role", 
          "genetic correlates", 
          "biomarker identification", 
          "monotherapy", 
          "cells", 
          "future efforts", 
          "malignancy", 
          "lymphoma", 
          "agents", 
          "leukemia", 
          "Key PointsMutations", 
          "responders", 
          "immunity", 
          "such combinations", 
          "Akt", 
          "earlier results", 
          "p110\u03b4", 
          "rapamycin", 
          "effect", 
          "tissue", 
          "cytotoxic", 
          "activation", 
          "microenvironment", 
          "correlates", 
          "GS", 
          "review", 
          "small molecules", 
          "phosphoinositide", 
          "combination", 
          "striking exception", 
          "target", 
          "activity", 
          "sequencing", 
          "role", 
          "monitoring", 
          "exception", 
          "identification", 
          "strategies", 
          "time", 
          "success", 
          "priority", 
          "results", 
          "challenges", 
          "molecules", 
          "efforts", 
          "research", 
          "conditions", 
          "advantages", 
          "opportunities", 
          "lessons", 
          "certain conditions", 
          "system", 
          "properties", 
          "network", 
          "PointsMutations", 
          "K activation", 
          "most PI3K\u2013AKT", 
          "K pathway inhibitors", 
          "rare responders", 
          "success of GS"
        ], 
        "name": "PI3K and cancer: lessons, challenges and opportunities", 
        "pagination": "140-156", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1035315734"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nrd4204"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "24481312"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nrd4204", 
          "https://app.dimensions.ai/details/publication/pub.1035315734"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:34", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_632.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/nrd4204"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nrd4204'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nrd4204'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nrd4204'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nrd4204'


     

    This table displays all metadata directly associated to this object as RDF triples.

    398 TRIPLES      22 PREDICATES      174 URIs      121 LITERALS      19 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nrd4204 schema:about N1af9821a9fb44b7e92c0a7307627ffa4
    2 N34399c9497a44deabaed158139d6c0b7
    3 N6e4c3535d322490986292837582a5eb7
    4 N756a7424fe3f4bdda623296924caad94
    5 N95cbae68015d4f0fb1f40b57006f2032
    6 Na7060d0ca0ab494c8fcb103cd9742ecf
    7 Nb957e57ea06641938405f11f46dcf9cb
    8 Nbd6ff4edd5914c4b81cdfa0670198f08
    9 Nbf5dc040016b4581b4a8642467f7b062
    10 Ncbc59dda47fe41ea921fafdc4d240d9d
    11 Nd0dadd5e511c4543a36a3e7e73923906
    12 Ndb071e5db2784e588ed9a2df87cfbfc9
    13 anzsrc-for:11
    14 anzsrc-for:1112
    15 schema:author N272c041433a04d1cbc44c9a9e7c2a223
    16 schema:citation sg:pub.10.1007/82_2010_40
    17 sg:pub.10.1007/82_2010_45
    18 sg:pub.10.1007/s10555-012-9391-7
    19 sg:pub.10.1007/s11523-009-0107-z
    20 sg:pub.10.1007/s11899-012-0142-1
    21 sg:pub.10.1038/46319
    22 sg:pub.10.1038/leu.2011.20
    23 sg:pub.10.1038/leu.2013.93
    24 sg:pub.10.1038/nature07091
    25 sg:pub.10.1038/nature08155
    26 sg:pub.10.1038/nature08782
    27 sg:pub.10.1038/nature10334
    28 sg:pub.10.1038/nature10509
    29 sg:pub.10.1038/nature10868
    30 sg:pub.10.1038/nature10912
    31 sg:pub.10.1038/nature11378
    32 sg:pub.10.1038/nature12205
    33 sg:pub.10.1038/nature12297
    34 sg:pub.10.1038/nature12796
    35 sg:pub.10.1038/ncb1494
    36 sg:pub.10.1038/nchembio.183
    37 sg:pub.10.1038/nchembio0310-244b
    38 sg:pub.10.1038/ng.2329
    39 sg:pub.10.1038/ng.2331
    40 sg:pub.10.1038/ng.2332
    41 sg:pub.10.1038/ni.1749
    42 sg:pub.10.1038/ni.2005
    43 sg:pub.10.1038/ni.2771
    44 sg:pub.10.1038/nm.1890
    45 sg:pub.10.1038/nm.2091
    46 sg:pub.10.1038/nm.2402
    47 sg:pub.10.1038/nrc1880
    48 sg:pub.10.1038/nrc2664
    49 sg:pub.10.1038/nrc3237
    50 sg:pub.10.1038/nrclinonc.2013.10
    51 sg:pub.10.1038/nrd3531
    52 sg:pub.10.1038/nrg1879
    53 sg:pub.10.1038/nri2546
    54 sg:pub.10.1038/nrm2328
    55 sg:pub.10.1038/nrm2882
    56 sg:pub.10.1038/nrm3330
    57 sg:pub.10.1038/onc.2008.246
    58 sg:pub.10.1038/onc.2013.100
    59 sg:pub.10.1038/onc.2013.265
    60 sg:pub.10.1186/1756-8722-2-45
    61 schema:datePublished 2014-01-31
    62 schema:datePublishedReg 2014-01-31
    63 schema:description Key PointsMutations that activate the phosphoinositide 3-kinase (PI3K) signalling network are nearly ubiquitous in human cancer.PI3K activation has central physiological roles in many normal cells and tissues, including those of the immune system.Small molecules have been generated that selectively inhibit PI3K, AKT or mammalian target of rapamycin (mTOR) with good pharmacological properties.As single agents, most PI3K–AKT–mTOR inhibitors are cytostatic rather than cytotoxic to cancer cells.Early results from clinical trials show limited activity of these agents as monotherapies, but a striking exception is GS-1101, which is a selective inhibitor of p110δ.Now is the time to re-evaluate strategies to develop and apply PI3K pathway inhibitors for treating cancer.This Review proposes four priorities to guide future efforts in translational and clinical research.The first is biomarker identification, which involves using next-generation sequencing to identify genetic correlates for rare responders.The second is haematological malignancies; following on the success of GS-1101, clinical trials of leukaemia and lymphoma provide advantages for pharmacodynamic monitoring and for harnessing the effects of pathway inhibitors on the tumour microenvironment.The third is immune effects, which involves taking advantage of the cell-extrinsic effects of PI3K–mTOR inhibitors that can enhance antitumour immunity under certain conditions.The last is combination trials; it is likely that PI3K pathway inhibitors will be most effective when applied in combination with other targeted inhibitors. Many such combinations are discussed.
    64 schema:genre article
    65 schema:inLanguage en
    66 schema:isAccessibleForFree true
    67 schema:isPartOf N1d2d6ee6a15645528d8734054beef9b2
    68 N7a558d43f4d8466382ac2772e24e3eae
    69 sg:journal.1327423
    70 schema:keywords Akt
    71 GS
    72 K activation
    73 K pathway inhibitors
    74 Key PointsMutations
    75 PI3K
    76 PI3K activation
    77 PI3K pathway inhibitors
    78 PI3K-Akt
    79 PI3K-mTOR inhibitors
    80 PointsMutations
    81 activation
    82 activity
    83 advantages
    84 agents
    85 better pharmacological properties
    86 biomarker identification
    87 cancer
    88 cancer cells
    89 cell-extrinsic effects
    90 cells
    91 central physiological role
    92 certain conditions
    93 challenges
    94 clinical research
    95 clinical trials
    96 combination
    97 combination trials
    98 conditions
    99 correlates
    100 cytotoxic
    101 earlier results
    102 effect
    103 efforts
    104 exception
    105 future efforts
    106 genetic correlates
    107 haematological malignancies
    108 human cancers
    109 identification
    110 immune effects
    111 immune system
    112 immunity
    113 inhibitors
    114 lessons
    115 leukemia
    116 limited activity
    117 lymphoma
    118 mTOR inhibitors
    119 malignancy
    120 mammalian target
    121 microenvironment
    122 molecules
    123 monitoring
    124 monotherapy
    125 most PI3K–AKT
    126 network
    127 next-generation sequencing
    128 normal cells
    129 opportunities
    130 p110δ
    131 pathway inhibitor
    132 pharmacodynamic monitoring
    133 pharmacological properties
    134 phosphoinositide
    135 physiological role
    136 priority
    137 properties
    138 rapamycin
    139 rare responders
    140 re-evaluate strategies
    141 research
    142 responders
    143 results
    144 review
    145 role
    146 selective inhibitor
    147 sequencing
    148 single agent
    149 small molecules
    150 strategies
    151 striking exception
    152 success
    153 success of GS
    154 such combinations
    155 system
    156 target
    157 time
    158 tissue
    159 trials
    160 tumor microenvironment
    161 schema:name PI3K and cancer: lessons, challenges and opportunities
    162 schema:pagination 140-156
    163 schema:productId N00de823fdc1f4dc4b5c3fb6f07f6e263
    164 Nac88b29f1cb94f3b92f350df910f8b52
    165 Nd4e094656da640afaedcb5b5e3c83c10
    166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035315734
    167 https://doi.org/10.1038/nrd4204
    168 schema:sdDatePublished 2022-01-01T18:34
    169 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    170 schema:sdPublisher N1af8869992bd46a28b5422167740b723
    171 schema:url https://doi.org/10.1038/nrd4204
    172 sgo:license sg:explorer/license/
    173 sgo:sdDataset articles
    174 rdf:type schema:ScholarlyArticle
    175 N00de823fdc1f4dc4b5c3fb6f07f6e263 schema:name pubmed_id
    176 schema:value 24481312
    177 rdf:type schema:PropertyValue
    178 N1041edb4f2514b01baf90fa41137677d rdf:first sg:person.01134441477.14
    179 rdf:rest rdf:nil
    180 N1af8869992bd46a28b5422167740b723 schema:name Springer Nature - SN SciGraph project
    181 rdf:type schema:Organization
    182 N1af9821a9fb44b7e92c0a7307627ffa4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    183 schema:name Signal Transduction
    184 rdf:type schema:DefinedTerm
    185 N1d2d6ee6a15645528d8734054beef9b2 schema:issueNumber 2
    186 rdf:type schema:PublicationIssue
    187 N272c041433a04d1cbc44c9a9e7c2a223 rdf:first sg:person.0644612366.50
    188 rdf:rest N1041edb4f2514b01baf90fa41137677d
    189 N34399c9497a44deabaed158139d6c0b7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    190 schema:name Clinical Trials as Topic
    191 rdf:type schema:DefinedTerm
    192 N6e4c3535d322490986292837582a5eb7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    193 schema:name Proto-Oncogene Proteins c-akt
    194 rdf:type schema:DefinedTerm
    195 N756a7424fe3f4bdda623296924caad94 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    196 schema:name Antineoplastic Agents
    197 rdf:type schema:DefinedTerm
    198 N7a558d43f4d8466382ac2772e24e3eae schema:volumeNumber 13
    199 rdf:type schema:PublicationVolume
    200 N95cbae68015d4f0fb1f40b57006f2032 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    201 schema:name Neoplasms
    202 rdf:type schema:DefinedTerm
    203 Na7060d0ca0ab494c8fcb103cd9742ecf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    204 schema:name Animals
    205 rdf:type schema:DefinedTerm
    206 Nac88b29f1cb94f3b92f350df910f8b52 schema:name dimensions_id
    207 schema:value pub.1035315734
    208 rdf:type schema:PropertyValue
    209 Nb957e57ea06641938405f11f46dcf9cb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    210 schema:name Enzyme Inhibitors
    211 rdf:type schema:DefinedTerm
    212 Nbd6ff4edd5914c4b81cdfa0670198f08 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    213 schema:name Drug Discovery
    214 rdf:type schema:DefinedTerm
    215 Nbf5dc040016b4581b4a8642467f7b062 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    216 schema:name Phosphoinositide-3 Kinase Inhibitors
    217 rdf:type schema:DefinedTerm
    218 Ncbc59dda47fe41ea921fafdc4d240d9d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    219 schema:name Humans
    220 rdf:type schema:DefinedTerm
    221 Nd0dadd5e511c4543a36a3e7e73923906 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    222 schema:name TOR Serine-Threonine Kinases
    223 rdf:type schema:DefinedTerm
    224 Nd4e094656da640afaedcb5b5e3c83c10 schema:name doi
    225 schema:value 10.1038/nrd4204
    226 rdf:type schema:PropertyValue
    227 Ndb071e5db2784e588ed9a2df87cfbfc9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    228 schema:name Receptor Cross-Talk
    229 rdf:type schema:DefinedTerm
    230 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    231 schema:name Medical and Health Sciences
    232 rdf:type schema:DefinedTerm
    233 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
    234 schema:name Oncology and Carcinogenesis
    235 rdf:type schema:DefinedTerm
    236 sg:grant.2438862 http://pending.schema.org/fundedItem sg:pub.10.1038/nrd4204
    237 rdf:type schema:MonetaryGrant
    238 sg:grant.2481408 http://pending.schema.org/fundedItem sg:pub.10.1038/nrd4204
    239 rdf:type schema:MonetaryGrant
    240 sg:grant.2600973 http://pending.schema.org/fundedItem sg:pub.10.1038/nrd4204
    241 rdf:type schema:MonetaryGrant
    242 sg:journal.1327423 schema:issn 1474-1776
    243 1474-1784
    244 schema:name Nature Reviews Drug Discovery
    245 schema:publisher Springer Nature
    246 rdf:type schema:Periodical
    247 sg:person.01134441477.14 schema:affiliation grid-institutes:grid.417886.4
    248 schema:familyName Rommel
    249 schema:givenName Christian
    250 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134441477.14
    251 rdf:type schema:Person
    252 sg:person.0644612366.50 schema:affiliation grid-institutes:grid.266093.8
    253 schema:familyName Fruman
    254 schema:givenName David A.
    255 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644612366.50
    256 rdf:type schema:Person
    257 sg:pub.10.1007/82_2010_40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006840386
    258 https://doi.org/10.1007/82_2010_40
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1007/82_2010_45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029678092
    261 https://doi.org/10.1007/82_2010_45
    262 rdf:type schema:CreativeWork
    263 sg:pub.10.1007/s10555-012-9391-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012103703
    264 https://doi.org/10.1007/s10555-012-9391-7
    265 rdf:type schema:CreativeWork
    266 sg:pub.10.1007/s11523-009-0107-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1032919247
    267 https://doi.org/10.1007/s11523-009-0107-z
    268 rdf:type schema:CreativeWork
    269 sg:pub.10.1007/s11899-012-0142-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010787251
    270 https://doi.org/10.1007/s11899-012-0142-1
    271 rdf:type schema:CreativeWork
    272 sg:pub.10.1038/46319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046130490
    273 https://doi.org/10.1038/46319
    274 rdf:type schema:CreativeWork
    275 sg:pub.10.1038/leu.2011.20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033828952
    276 https://doi.org/10.1038/leu.2011.20
    277 rdf:type schema:CreativeWork
    278 sg:pub.10.1038/leu.2013.93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006970503
    279 https://doi.org/10.1038/leu.2013.93
    280 rdf:type schema:CreativeWork
    281 sg:pub.10.1038/nature07091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034861855
    282 https://doi.org/10.1038/nature07091
    283 rdf:type schema:CreativeWork
    284 sg:pub.10.1038/nature08155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003181272
    285 https://doi.org/10.1038/nature08155
    286 rdf:type schema:CreativeWork
    287 sg:pub.10.1038/nature08782 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013990990
    288 https://doi.org/10.1038/nature08782
    289 rdf:type schema:CreativeWork
    290 sg:pub.10.1038/nature10334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030076294
    291 https://doi.org/10.1038/nature10334
    292 rdf:type schema:CreativeWork
    293 sg:pub.10.1038/nature10509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026728956
    294 https://doi.org/10.1038/nature10509
    295 rdf:type schema:CreativeWork
    296 sg:pub.10.1038/nature10868 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038374700
    297 https://doi.org/10.1038/nature10868
    298 rdf:type schema:CreativeWork
    299 sg:pub.10.1038/nature10912 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049494315
    300 https://doi.org/10.1038/nature10912
    301 rdf:type schema:CreativeWork
    302 sg:pub.10.1038/nature11378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007597995
    303 https://doi.org/10.1038/nature11378
    304 rdf:type schema:CreativeWork
    305 sg:pub.10.1038/nature12205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027695431
    306 https://doi.org/10.1038/nature12205
    307 rdf:type schema:CreativeWork
    308 sg:pub.10.1038/nature12297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010285457
    309 https://doi.org/10.1038/nature12297
    310 rdf:type schema:CreativeWork
    311 sg:pub.10.1038/nature12796 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025089044
    312 https://doi.org/10.1038/nature12796
    313 rdf:type schema:CreativeWork
    314 sg:pub.10.1038/ncb1494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038789094
    315 https://doi.org/10.1038/ncb1494
    316 rdf:type schema:CreativeWork
    317 sg:pub.10.1038/nchembio.183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009197664
    318 https://doi.org/10.1038/nchembio.183
    319 rdf:type schema:CreativeWork
    320 sg:pub.10.1038/nchembio0310-244b schema:sameAs https://app.dimensions.ai/details/publication/pub.1043854974
    321 https://doi.org/10.1038/nchembio0310-244b
    322 rdf:type schema:CreativeWork
    323 sg:pub.10.1038/ng.2329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013420009
    324 https://doi.org/10.1038/ng.2329
    325 rdf:type schema:CreativeWork
    326 sg:pub.10.1038/ng.2331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000022475
    327 https://doi.org/10.1038/ng.2331
    328 rdf:type schema:CreativeWork
    329 sg:pub.10.1038/ng.2332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045971958
    330 https://doi.org/10.1038/ng.2332
    331 rdf:type schema:CreativeWork
    332 sg:pub.10.1038/ni.1749 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016011852
    333 https://doi.org/10.1038/ni.1749
    334 rdf:type schema:CreativeWork
    335 sg:pub.10.1038/ni.2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035267474
    336 https://doi.org/10.1038/ni.2005
    337 rdf:type schema:CreativeWork
    338 sg:pub.10.1038/ni.2771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012593761
    339 https://doi.org/10.1038/ni.2771
    340 rdf:type schema:CreativeWork
    341 sg:pub.10.1038/nm.1890 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000532983
    342 https://doi.org/10.1038/nm.1890
    343 rdf:type schema:CreativeWork
    344 sg:pub.10.1038/nm.2091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017498874
    345 https://doi.org/10.1038/nm.2091
    346 rdf:type schema:CreativeWork
    347 sg:pub.10.1038/nm.2402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015107623
    348 https://doi.org/10.1038/nm.2402
    349 rdf:type schema:CreativeWork
    350 sg:pub.10.1038/nrc1880 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050959167
    351 https://doi.org/10.1038/nrc1880
    352 rdf:type schema:CreativeWork
    353 sg:pub.10.1038/nrc2664 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016821519
    354 https://doi.org/10.1038/nrc2664
    355 rdf:type schema:CreativeWork
    356 sg:pub.10.1038/nrc3237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049465305
    357 https://doi.org/10.1038/nrc3237
    358 rdf:type schema:CreativeWork
    359 sg:pub.10.1038/nrclinonc.2013.10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031948211
    360 https://doi.org/10.1038/nrclinonc.2013.10
    361 rdf:type schema:CreativeWork
    362 sg:pub.10.1038/nrd3531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044264191
    363 https://doi.org/10.1038/nrd3531
    364 rdf:type schema:CreativeWork
    365 sg:pub.10.1038/nrg1879 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018626271
    366 https://doi.org/10.1038/nrg1879
    367 rdf:type schema:CreativeWork
    368 sg:pub.10.1038/nri2546 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043018595
    369 https://doi.org/10.1038/nri2546
    370 rdf:type schema:CreativeWork
    371 sg:pub.10.1038/nrm2328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004046070
    372 https://doi.org/10.1038/nrm2328
    373 rdf:type schema:CreativeWork
    374 sg:pub.10.1038/nrm2882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003696286
    375 https://doi.org/10.1038/nrm2882
    376 rdf:type schema:CreativeWork
    377 sg:pub.10.1038/nrm3330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040868228
    378 https://doi.org/10.1038/nrm3330
    379 rdf:type schema:CreativeWork
    380 sg:pub.10.1038/onc.2008.246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042595901
    381 https://doi.org/10.1038/onc.2008.246
    382 rdf:type schema:CreativeWork
    383 sg:pub.10.1038/onc.2013.100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031685026
    384 https://doi.org/10.1038/onc.2013.100
    385 rdf:type schema:CreativeWork
    386 sg:pub.10.1038/onc.2013.265 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023723738
    387 https://doi.org/10.1038/onc.2013.265
    388 rdf:type schema:CreativeWork
    389 sg:pub.10.1186/1756-8722-2-45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042617623
    390 https://doi.org/10.1186/1756-8722-2-45
    391 rdf:type schema:CreativeWork
    392 grid-institutes:grid.266093.8 schema:alternateName Department of Molecular Biology & Biochemistry, and Institute for Immunology, University of California, Irvine, 3242 McGaugh Hall, 92697, Irvine, California, USA
    393 schema:name Department of Molecular Biology & Biochemistry, and Institute for Immunology, University of California, Irvine, 3242 McGaugh Hall, 92697, Irvine, California, USA
    394 rdf:type schema:Organization
    395 grid-institutes:grid.417886.4 schema:alternateName One Amgen Center Drive, 91320, California, USA
    396 schema:name Amgen Inc., Thousand Oaks
    397 One Amgen Center Drive, 91320, California, USA
    398 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...