Hypoxia — a key regulatory factor in tumour growth View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-01-01

AUTHORS

Adrian L. Harris

ABSTRACT

Key Points Hypoxia is a reduction in the normal level of tissue oxygen tension, and occurs during acute and chronic vascular disease, pulmonary disease and cancer. It induces a transcription programme that promotes an aggressive tumour phenotype. Hypoxia is associated with resistance to radiation therapy and chemotherapy, but is also associated with poor outcome regardless of treatment modality, indicating that it might be an important therapeutic target. Hypoxia-inducible factor-1α (HIF-1α) is a key transcription factor that is induced by hypoxia and regulated by a proline hydroxylase. Pathways that are regulated by hypoxia include angiogenesis, glycolysis, growth-factor signalling, immortalization, genetic instability, tissue invasion and metastasis, apoptosis and pH regulation. Most of the hypoxia-induced pathways promote tumour growth, but apoptosis is also induced by hypoxia. The balance of these pathways might be critical for the effects of hypoxia on tumour growth. Drugs that inhibit HIF-1α expression antagonize HIF-1α interaction with CBP/p300 or block downstream function of genes such as vascular endothelial growth factor and cyclooxygenase-2 have potentially important roles in tumour therapy. Hypoxia can also be used to activate therapeutic gene delivery to specific areas of tissue. More... »

PAGES

38-47

References to SciGraph publications

  • 1998-03. Stabilization of wild-type p53 by hypoxia-inducible factor 1α in NATURE
  • 2000-06-09. Ubiquitination of hypoxia-inducible factor requires direct binding to the β-domain of the von Hippel–Lindau protein in NATURE CELL BIOLOGY
  • 2000-12-14. Identification of novel hypoxia dependent and independent target genes of the von Hippel-Lindau (VHL) tumour suppressor by mRNA differential expression profiling in ONCOGENE
  • 1998-06. The contribution of lactic acid to acidification of tumours: studies of variant cells lacking lactate dehydrogenase in BRITISH JOURNAL OF CANCER
  • 2001-04-01. Gene transfer of antisense hypoxia inducible factor-1 α enhances the therapeutic efficacy of cancer immunotherapy in GENE THERAPY
  • 2000-12-01. Suppression of tumor growth through disruption of hypoxia-inducible transcription in NATURE MEDICINE
  • 2001-09-13. Dephosphorylated hypoxia-inducible factor 1α as a mediator of p53-dependent apoptosis during hypoxia in ONCOGENE
  • 2000-02-01. The macrophage – a novel system to deliver gene therapy to pathological hypoxia in GENE THERAPY
  • 1998-07. Role of HIF-1α in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis in NATURE
  • 2000-11-16. Up-regulation of hypoxia-inducible factors HIF-1α and HIF-2α under normoxic conditions in renal carcinoma cells by von Hippel-Lindau tumor suppressor gene loss of function in ONCOGENE
  • 1997-08. The Role of Phosphometabolites in Cell Proliferation, Energy Metabolism, and Tumor Therapy in JOURNAL OF BIOENERGETICS AND BIOMEMBRANES
  • 2001-05-01. Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions in NATURE MEDICINE
  • 1996-01. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours in NATURE
  • 1999-05. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis in NATURE
  • 2001-04-01. Histone deacetylases induce angiogenesis by negative regulation of tumor suppressor genes in NATURE MEDICINE
  • 1997-05. Targeting gene expression to hypoxic tumor cells in NATURE MEDICINE
  • 1955-12. The Histological Structure of Some Human Lung Cancers and the Possible Implications for Radiotherapy in BRITISH JOURNAL OF CANCER
  • 1997-08-01. Anaerobic bacteria as a gene delivery system that is controlled by the tumor microenvironment in GENE THERAPY
  • Journal

    TITLE

    Nature Reviews Cancer

    ISSUE

    1

    VOLUME

    2

    Related Patents

  • Treating Cancer With An Hsp90 Inhibitory Compound
  • Antisense Compounds, Especially Nucleic Acid And Nucleic Acid-Like Oligomers, Which Are Targeted To A Nucleic Acid Encoding Hif1-Beta, And Which Modulate The Expression Of Hif1-Beta; For Inhibiting Tumor Growth, Ocular Neovascularization
  • Antisense Agents For Use In Controlling Expression From Genes Associated Hypoxia-Inducible Factors For Treatment Of Cell Proliferative And Vision Disorders; Gene Expression Inhibition
  • Core-Shell Nanofiber-Based Sensors
  • Mixed Micelles
  • Mixed Micelles
  • Compounds As Hif-1alphainhibitors And Manufacturing Process Thereof
  • Methods For Treating Vascular Eye Disorders With Actrii Antagonists
  • Compositions And Methods For Inhibiting Activity Of Hypoxia-Inducible Transcription Factor Complex And Its Use For Treatment Of Tumors
  • Mn/Ca Ix And Egfr Pathway Inhibition
  • Manipulation Of Hsp70 And Ire1alpha Protein Interactions
  • Enhanced Erythropoiesis And Iron Metabolism
  • Modulation Of Hif1Α And Hif2Α Expression
  • Mn/Ca Ix And Breast Cancer Therapy
  • Method Of Predicting Metastatic Potential, Poor Prognosis Or Lower Overall Survival Of Cancer Patients
  • Compounds Useful As Carbonic Anhydrase Modulators And Uses Thereof
  • Pre-Selection Of Subjects For Therapeutic Treatment With An Hsp90 Inhibitor Based On Hypoxic Status
  • Pharmaceutical Composition For Inhibiting The Transcription Factor Inducible By Hypoxia, Modulators Of Pathological Processes Of Angiogenesis, Oncogenesis, Inflammation, Apoptosis, And Cellular Therapy
  • Hypoxia And Hyaluronan And Markers Thereof For Diagnosis And Monitoring Of Diseases And Conditions And Related Methods
  • Biomarker For Sensitivity To Mtor Inhibitor Therapy In Kidney Cancer
  • Hypoxia-Inducible Factors (Hifs); Modified Antisense Oligonucleotide That Inhibits Expression Of Human Hif-1 Beta; Cancer, Eye Disorders
  • Compositions And Methods For Inhibiting Activity Of Hypoxia-Inducible Transcription Factor Complex And Its Use For Treatment Of Tumors
  • Enhanced Erythropoiesis And Iron Metabolism
  • Enhanced Erythropoiesis And Iron Metabolism
  • Gemcitabine Protide Hypoxia-Activated Prodrug And Application Thereof
  • Compositions And Methods For Treating Cancer By Rational Targeting Of Protein Translation
  • Enhanced Erythropoiesis And Iron Metabolism
  • Enhanced Erythropoiesis And Iron Metabolism
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nrc704

    DOI

    http://dx.doi.org/10.1038/nrc704

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1028740665

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/11902584


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Oncology and Carcinogenesis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Antineoplastic Agents", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Apoptosis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aryl Hydrocarbon Receptor Nuclear Translocator", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Basic Helix-Loop-Helix Transcription Factors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Division", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Hypoxia", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Survival", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cyclic AMP Response Element-Binding Protein", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA Damage", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA-Binding Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Dimerization", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Embryonic and Fetal Development", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Endothelial Growth Factors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Erythropoietin", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Forecasting", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Regulation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Glycolysis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Hydrogen-Ion Concentration", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Hypoxia-Inducible Factor 1", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Hypoxia-Inducible Factor 1, alpha Subunit", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Lymphokines", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mice", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "NF-kappa B", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neoplasms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neovascularization, Pathologic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nuclear Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Oxidation-Reduction", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Oxidative Stress", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Oxygen", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Prodrugs", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Proto-Oncogene Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Receptor Protein-Tyrosine Kinases", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Receptors, Aryl Hydrocarbon", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Signal Transduction", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Trans-Activators", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Transcription Factors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Vascular Endothelial Growth Factor A", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Vascular Endothelial Growth Factor Receptor-1", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Vascular Endothelial Growth Factors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Xenograft Model Antitumor Assays", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, OX3 9DS, Oxford, UK", 
              "id": "http://www.grid.ac/institutes/grid.8348.7", 
              "name": [
                "Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, OX3 9DS, Oxford, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Harris", 
            "givenName": "Adrian L.", 
            "id": "sg:person.01151433574.57", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151433574.57"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/35017054", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033141962", 
              "https://doi.org/10.1038/35017054"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nm0597-515", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041248498", 
              "https://doi.org/10.1038/nm0597-515"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/20459", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020261903", 
              "https://doi.org/10.1038/20459"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.onc.1204742", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031167781", 
              "https://doi.org/10.1038/sj.onc.1204742"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/bjc.1955.55", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043829956", 
              "https://doi.org/10.1038/bjc.1955.55"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/379088a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007643465", 
              "https://doi.org/10.1038/379088a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/bjc.1998.289", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048269790", 
              "https://doi.org/10.1038/bjc.1998.289"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.gt.3301388", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027721772", 
              "https://doi.org/10.1038/sj.gt.3301388"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.onc.1203938", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018020219", 
              "https://doi.org/10.1038/sj.onc.1203938"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.gt.3300468", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004838695", 
              "https://doi.org/10.1038/sj.gt.3300468"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/86507", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023141012", 
              "https://doi.org/10.1038/86507"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/82146", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027986752", 
              "https://doi.org/10.1038/82146"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/32925", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025968893", 
              "https://doi.org/10.1038/32925"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1022490512705", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040335402", 
              "https://doi.org/10.1023/a:1022490512705"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.onc.1204012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018472075", 
              "https://doi.org/10.1038/sj.onc.1204012"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/87904", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036670646", 
              "https://doi.org/10.1038/87904"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.gt.3301058", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046680683", 
              "https://doi.org/10.1038/sj.gt.3301058"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/28867", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020992380", 
              "https://doi.org/10.1038/28867"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2002-01-01", 
        "datePublishedReg": "2002-01-01", 
        "description": "Key Points Hypoxia is a reduction in the normal level of tissue oxygen tension, and occurs during acute and chronic vascular disease, pulmonary disease and cancer. It induces a transcription programme that promotes an aggressive tumour phenotype.  Hypoxia is associated with resistance to radiation therapy and chemotherapy, but is also associated with poor outcome regardless of treatment modality, indicating that it might be an important therapeutic target.  Hypoxia-inducible factor-1\u03b1 (HIF-1\u03b1) is a key transcription factor that is induced by hypoxia and regulated by a proline hydroxylase.  Pathways that are regulated by hypoxia include angiogenesis, glycolysis, growth-factor signalling, immortalization, genetic instability, tissue invasion and metastasis, apoptosis and pH regulation.  Most of the hypoxia-induced pathways promote tumour growth, but apoptosis is also induced by hypoxia. The balance of these pathways might be critical for the effects of hypoxia on tumour growth.  Drugs that inhibit HIF-1\u03b1 expression antagonize HIF-1\u03b1 interaction with CBP/p300 or block downstream function of genes such as vascular endothelial growth factor and cyclooxygenase-2 have potentially important roles in tumour therapy. Hypoxia can also be used to activate therapeutic gene delivery to specific areas of tissue.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/nrc704", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1029716", 
            "issn": [
              "1474-175X", 
              "1474-1768"
            ], 
            "name": "Nature Reviews Cancer", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2"
          }
        ], 
        "keywords": [
          "tumor growth", 
          "hypoxia-induced pathways", 
          "chronic vascular disease", 
          "hypoxia-inducible factor-1\u03b1", 
          "vascular endothelial growth factor", 
          "tissue oxygen tension", 
          "aggressive tumor phenotype", 
          "endothelial growth factor", 
          "effects of hypoxia", 
          "important therapeutic target", 
          "pulmonary disease", 
          "poor outcome", 
          "vascular disease", 
          "treatment modalities", 
          "cyclooxygenase-2", 
          "radiation therapy", 
          "therapeutic target", 
          "normal levels", 
          "factor-1\u03b1", 
          "tumor phenotype", 
          "hypoxia", 
          "growth factor", 
          "tissue invasion", 
          "oxygen tension", 
          "growth factor signaling", 
          "key transcription factor", 
          "therapy", 
          "tumor therapy", 
          "proline hydroxylase", 
          "disease", 
          "key regulatory factors", 
          "therapeutic gene delivery", 
          "apoptosis", 
          "genetic instability", 
          "regulatory factors", 
          "pathway", 
          "CBP/p300", 
          "chemotherapy", 
          "metastasis", 
          "transcription factors", 
          "cancer", 
          "factors", 
          "transcription program", 
          "important role", 
          "angiogenesis", 
          "drugs", 
          "outcomes", 
          "hydroxylase", 
          "modalities", 
          "gene delivery", 
          "HIF", 
          "invasion", 
          "tissue", 
          "signaling", 
          "immortalization", 
          "phenotype", 
          "glycolysis", 
          "downstream functions", 
          "delivery", 
          "p300", 
          "target", 
          "levels", 
          "genes", 
          "role", 
          "specific areas", 
          "regulation", 
          "growth", 
          "reduction", 
          "effect", 
          "resistance", 
          "program", 
          "function", 
          "balance", 
          "area", 
          "instability", 
          "interaction", 
          "tension", 
          "key"
        ], 
        "name": "Hypoxia \u2014 a key regulatory factor in tumour growth", 
        "pagination": "38-47", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1028740665"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nrc704"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "11902584"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nrc704", 
          "https://app.dimensions.ai/details/publication/pub.1028740665"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T20:50", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_358.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/nrc704"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nrc704'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nrc704'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nrc704'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nrc704'


     

    This table displays all metadata directly associated to this object as RDF triples.

    379 TRIPLES      21 PREDICATES      163 URIs      137 LITERALS      49 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nrc704 schema:about N0292aedb1d68410d9d183cbe72d25884
    2 N03830aa304ca4c108716694003c09490
    3 N0729a26241bb4651acb0c16418c58ebf
    4 N18c1eee8af0147899a34c4271a27b2d8
    5 N2c2746c9480c452bb297b1a15eaba2c4
    6 N2ebc93d570dd43389fa2607728bcb3b1
    7 N4130f2a67ea04933af56e5dd71837e52
    8 N416584175e454268a80dca350c45f7ab
    9 N43efdae2402c420db8f34cd1f6859ae0
    10 N471e5d1b4e1e49bfa18b39fa34f71c8e
    11 N4890b096c35f463a8ea25b975339d91c
    12 N4d6409511af94169a102ed36ab281879
    13 N4de68d0d946b419da06c5d6dcec8a108
    14 N53c8ea5ced4244129e77d70b5db93e6a
    15 N5916d16e54f54dbaa4f6eba81bcedccd
    16 N5cb7456ce9ac42f5ba7bd18697f8ad8f
    17 N5cb8eeddf0174801a836565c4a187516
    18 N64b99031cd264b05ae1c8e677dc12922
    19 N68b6e68e03694297bb33751080b4312e
    20 N6c5a479583e848028e1676e3462db298
    21 N77172f7198ba4e4faf0a821ab94980c8
    22 N7718027cfb074e53819aecec66b7f18a
    23 N829a4befa8a94f11b899ab90066233b6
    24 N85edba5cbaa943bc919b9815c78ebe7d
    25 N8e1288182aaa4a88839392d3483817e1
    26 Na7a0ce9a014044518b80f7ee524e0937
    27 Na98287fa7ac4479eacd1b546b8390a76
    28 Nb8aedb2433c145b98d7d02b2eefcb1f1
    29 Nbe4033418e064c3cb58107e93fca1429
    30 Nc2d2fdb2107644b795b549a74c4ee7e0
    31 Nc78089c97b694c7a979bfb17a53f731d
    32 Ncf3dfea6cdf34afe9aa2d47ada272278
    33 Ncf70dc802ce64977a370152c6d444931
    34 Nd4757ad00ef245e3a27ef87b8b98fe11
    35 Ndacf823c7875442d835bafe0fd21ccf4
    36 Ndbf4656ac21f4828a106f4ed58eee04e
    37 Ne92d352cf48148c5a3ceb6edd513f9a8
    38 Ne9750fa3145f44eb8cfbb9df2f437788
    39 Nea0bcc2da77e41f6a22483f5d042928d
    40 Neb94270cc8684516a37559e249d12585
    41 Nfa75b53f881343b68291a2868080659c
    42 Nfadf83332fb445c796c6d66263eefce9
    43 anzsrc-for:11
    44 anzsrc-for:1112
    45 schema:author N06cadc75478d48328b771501bd5aa948
    46 schema:citation sg:pub.10.1023/a:1022490512705
    47 sg:pub.10.1038/20459
    48 sg:pub.10.1038/28867
    49 sg:pub.10.1038/32925
    50 sg:pub.10.1038/35017054
    51 sg:pub.10.1038/379088a0
    52 sg:pub.10.1038/82146
    53 sg:pub.10.1038/86507
    54 sg:pub.10.1038/87904
    55 sg:pub.10.1038/bjc.1955.55
    56 sg:pub.10.1038/bjc.1998.289
    57 sg:pub.10.1038/nm0597-515
    58 sg:pub.10.1038/sj.gt.3300468
    59 sg:pub.10.1038/sj.gt.3301058
    60 sg:pub.10.1038/sj.gt.3301388
    61 sg:pub.10.1038/sj.onc.1203938
    62 sg:pub.10.1038/sj.onc.1204012
    63 sg:pub.10.1038/sj.onc.1204742
    64 schema:datePublished 2002-01-01
    65 schema:datePublishedReg 2002-01-01
    66 schema:description Key Points Hypoxia is a reduction in the normal level of tissue oxygen tension, and occurs during acute and chronic vascular disease, pulmonary disease and cancer. It induces a transcription programme that promotes an aggressive tumour phenotype. Hypoxia is associated with resistance to radiation therapy and chemotherapy, but is also associated with poor outcome regardless of treatment modality, indicating that it might be an important therapeutic target. Hypoxia-inducible factor-1α (HIF-1α) is a key transcription factor that is induced by hypoxia and regulated by a proline hydroxylase. Pathways that are regulated by hypoxia include angiogenesis, glycolysis, growth-factor signalling, immortalization, genetic instability, tissue invasion and metastasis, apoptosis and pH regulation. Most of the hypoxia-induced pathways promote tumour growth, but apoptosis is also induced by hypoxia. The balance of these pathways might be critical for the effects of hypoxia on tumour growth. Drugs that inhibit HIF-1α expression antagonize HIF-1α interaction with CBP/p300 or block downstream function of genes such as vascular endothelial growth factor and cyclooxygenase-2 have potentially important roles in tumour therapy. Hypoxia can also be used to activate therapeutic gene delivery to specific areas of tissue.
    67 schema:genre article
    68 schema:isAccessibleForFree false
    69 schema:isPartOf Nd7705c7ddae9476092f6dabafb8775c4
    70 Ndce3e86ab71c4e7193a9b9e3afa061cf
    71 sg:journal.1029716
    72 schema:keywords CBP/p300
    73 HIF
    74 aggressive tumor phenotype
    75 angiogenesis
    76 apoptosis
    77 area
    78 balance
    79 cancer
    80 chemotherapy
    81 chronic vascular disease
    82 cyclooxygenase-2
    83 delivery
    84 disease
    85 downstream functions
    86 drugs
    87 effect
    88 effects of hypoxia
    89 endothelial growth factor
    90 factor-1α
    91 factors
    92 function
    93 gene delivery
    94 genes
    95 genetic instability
    96 glycolysis
    97 growth
    98 growth factor
    99 growth factor signaling
    100 hydroxylase
    101 hypoxia
    102 hypoxia-induced pathways
    103 hypoxia-inducible factor-1α
    104 immortalization
    105 important role
    106 important therapeutic target
    107 instability
    108 interaction
    109 invasion
    110 key
    111 key regulatory factors
    112 key transcription factor
    113 levels
    114 metastasis
    115 modalities
    116 normal levels
    117 outcomes
    118 oxygen tension
    119 p300
    120 pathway
    121 phenotype
    122 poor outcome
    123 program
    124 proline hydroxylase
    125 pulmonary disease
    126 radiation therapy
    127 reduction
    128 regulation
    129 regulatory factors
    130 resistance
    131 role
    132 signaling
    133 specific areas
    134 target
    135 tension
    136 therapeutic gene delivery
    137 therapeutic target
    138 therapy
    139 tissue
    140 tissue invasion
    141 tissue oxygen tension
    142 transcription factors
    143 transcription program
    144 treatment modalities
    145 tumor growth
    146 tumor phenotype
    147 tumor therapy
    148 vascular disease
    149 vascular endothelial growth factor
    150 schema:name Hypoxia — a key regulatory factor in tumour growth
    151 schema:pagination 38-47
    152 schema:productId N9fdcb7ccb6fb462988795df370cf633b
    153 Naa49611e6cff4c13a9150a415060a50c
    154 Nba26646311b94265a92b6aa053fadf11
    155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028740665
    156 https://doi.org/10.1038/nrc704
    157 schema:sdDatePublished 2022-11-24T20:50
    158 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    159 schema:sdPublisher N3582f765546d4ffda3d729ee01f6fe05
    160 schema:url https://doi.org/10.1038/nrc704
    161 sgo:license sg:explorer/license/
    162 sgo:sdDataset articles
    163 rdf:type schema:ScholarlyArticle
    164 N0292aedb1d68410d9d183cbe72d25884 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    165 schema:name Xenograft Model Antitumor Assays
    166 rdf:type schema:DefinedTerm
    167 N03830aa304ca4c108716694003c09490 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    168 schema:name Lymphokines
    169 rdf:type schema:DefinedTerm
    170 N06cadc75478d48328b771501bd5aa948 rdf:first sg:person.01151433574.57
    171 rdf:rest rdf:nil
    172 N0729a26241bb4651acb0c16418c58ebf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    173 schema:name Signal Transduction
    174 rdf:type schema:DefinedTerm
    175 N18c1eee8af0147899a34c4271a27b2d8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    176 schema:name Humans
    177 rdf:type schema:DefinedTerm
    178 N2c2746c9480c452bb297b1a15eaba2c4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    179 schema:name Prodrugs
    180 rdf:type schema:DefinedTerm
    181 N2ebc93d570dd43389fa2607728bcb3b1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    182 schema:name Hydrogen-Ion Concentration
    183 rdf:type schema:DefinedTerm
    184 N3582f765546d4ffda3d729ee01f6fe05 schema:name Springer Nature - SN SciGraph project
    185 rdf:type schema:Organization
    186 N4130f2a67ea04933af56e5dd71837e52 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    187 schema:name Forecasting
    188 rdf:type schema:DefinedTerm
    189 N416584175e454268a80dca350c45f7ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    190 schema:name Embryonic and Fetal Development
    191 rdf:type schema:DefinedTerm
    192 N43efdae2402c420db8f34cd1f6859ae0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    193 schema:name Vascular Endothelial Growth Factors
    194 rdf:type schema:DefinedTerm
    195 N471e5d1b4e1e49bfa18b39fa34f71c8e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    196 schema:name Nuclear Proteins
    197 rdf:type schema:DefinedTerm
    198 N4890b096c35f463a8ea25b975339d91c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    199 schema:name Cell Survival
    200 rdf:type schema:DefinedTerm
    201 N4d6409511af94169a102ed36ab281879 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    202 schema:name NF-kappa B
    203 rdf:type schema:DefinedTerm
    204 N4de68d0d946b419da06c5d6dcec8a108 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    205 schema:name Aryl Hydrocarbon Receptor Nuclear Translocator
    206 rdf:type schema:DefinedTerm
    207 N53c8ea5ced4244129e77d70b5db93e6a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    208 schema:name Antineoplastic Agents
    209 rdf:type schema:DefinedTerm
    210 N5916d16e54f54dbaa4f6eba81bcedccd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    211 schema:name Endothelial Growth Factors
    212 rdf:type schema:DefinedTerm
    213 N5cb7456ce9ac42f5ba7bd18697f8ad8f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    214 schema:name Cell Hypoxia
    215 rdf:type schema:DefinedTerm
    216 N5cb8eeddf0174801a836565c4a187516 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    217 schema:name Basic Helix-Loop-Helix Transcription Factors
    218 rdf:type schema:DefinedTerm
    219 N64b99031cd264b05ae1c8e677dc12922 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    220 schema:name Erythropoietin
    221 rdf:type schema:DefinedTerm
    222 N68b6e68e03694297bb33751080b4312e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    223 schema:name Apoptosis
    224 rdf:type schema:DefinedTerm
    225 N6c5a479583e848028e1676e3462db298 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    226 schema:name Receptors, Aryl Hydrocarbon
    227 rdf:type schema:DefinedTerm
    228 N77172f7198ba4e4faf0a821ab94980c8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    229 schema:name DNA-Binding Proteins
    230 rdf:type schema:DefinedTerm
    231 N7718027cfb074e53819aecec66b7f18a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    232 schema:name Animals
    233 rdf:type schema:DefinedTerm
    234 N829a4befa8a94f11b899ab90066233b6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    235 schema:name Oxidative Stress
    236 rdf:type schema:DefinedTerm
    237 N85edba5cbaa943bc919b9815c78ebe7d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    238 schema:name Transcription Factors
    239 rdf:type schema:DefinedTerm
    240 N8e1288182aaa4a88839392d3483817e1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    241 schema:name DNA Damage
    242 rdf:type schema:DefinedTerm
    243 N9fdcb7ccb6fb462988795df370cf633b schema:name dimensions_id
    244 schema:value pub.1028740665
    245 rdf:type schema:PropertyValue
    246 Na7a0ce9a014044518b80f7ee524e0937 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    247 schema:name Vascular Endothelial Growth Factor Receptor-1
    248 rdf:type schema:DefinedTerm
    249 Na98287fa7ac4479eacd1b546b8390a76 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    250 schema:name Glycolysis
    251 rdf:type schema:DefinedTerm
    252 Naa49611e6cff4c13a9150a415060a50c schema:name doi
    253 schema:value 10.1038/nrc704
    254 rdf:type schema:PropertyValue
    255 Nb8aedb2433c145b98d7d02b2eefcb1f1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    256 schema:name Mice
    257 rdf:type schema:DefinedTerm
    258 Nba26646311b94265a92b6aa053fadf11 schema:name pubmed_id
    259 schema:value 11902584
    260 rdf:type schema:PropertyValue
    261 Nbe4033418e064c3cb58107e93fca1429 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    262 schema:name Trans-Activators
    263 rdf:type schema:DefinedTerm
    264 Nc2d2fdb2107644b795b549a74c4ee7e0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    265 schema:name Oxygen
    266 rdf:type schema:DefinedTerm
    267 Nc78089c97b694c7a979bfb17a53f731d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    268 schema:name Oxidation-Reduction
    269 rdf:type schema:DefinedTerm
    270 Ncf3dfea6cdf34afe9aa2d47ada272278 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    271 schema:name Gene Expression Regulation
    272 rdf:type schema:DefinedTerm
    273 Ncf70dc802ce64977a370152c6d444931 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    274 schema:name Vascular Endothelial Growth Factor A
    275 rdf:type schema:DefinedTerm
    276 Nd4757ad00ef245e3a27ef87b8b98fe11 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    277 schema:name Neoplasms
    278 rdf:type schema:DefinedTerm
    279 Nd7705c7ddae9476092f6dabafb8775c4 schema:issueNumber 1
    280 rdf:type schema:PublicationIssue
    281 Ndacf823c7875442d835bafe0fd21ccf4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    282 schema:name Hypoxia-Inducible Factor 1, alpha Subunit
    283 rdf:type schema:DefinedTerm
    284 Ndbf4656ac21f4828a106f4ed58eee04e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    285 schema:name Cell Division
    286 rdf:type schema:DefinedTerm
    287 Ndce3e86ab71c4e7193a9b9e3afa061cf schema:volumeNumber 2
    288 rdf:type schema:PublicationVolume
    289 Ne92d352cf48148c5a3ceb6edd513f9a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    290 schema:name Hypoxia-Inducible Factor 1
    291 rdf:type schema:DefinedTerm
    292 Ne9750fa3145f44eb8cfbb9df2f437788 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    293 schema:name Receptor Protein-Tyrosine Kinases
    294 rdf:type schema:DefinedTerm
    295 Nea0bcc2da77e41f6a22483f5d042928d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    296 schema:name Proto-Oncogene Proteins
    297 rdf:type schema:DefinedTerm
    298 Neb94270cc8684516a37559e249d12585 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    299 schema:name Neovascularization, Pathologic
    300 rdf:type schema:DefinedTerm
    301 Nfa75b53f881343b68291a2868080659c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    302 schema:name Dimerization
    303 rdf:type schema:DefinedTerm
    304 Nfadf83332fb445c796c6d66263eefce9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    305 schema:name Cyclic AMP Response Element-Binding Protein
    306 rdf:type schema:DefinedTerm
    307 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    308 schema:name Medical and Health Sciences
    309 rdf:type schema:DefinedTerm
    310 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
    311 schema:name Oncology and Carcinogenesis
    312 rdf:type schema:DefinedTerm
    313 sg:journal.1029716 schema:issn 1474-175X
    314 1474-1768
    315 schema:name Nature Reviews Cancer
    316 schema:publisher Springer Nature
    317 rdf:type schema:Periodical
    318 sg:person.01151433574.57 schema:affiliation grid-institutes:grid.8348.7
    319 schema:familyName Harris
    320 schema:givenName Adrian L.
    321 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151433574.57
    322 rdf:type schema:Person
    323 sg:pub.10.1023/a:1022490512705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040335402
    324 https://doi.org/10.1023/a:1022490512705
    325 rdf:type schema:CreativeWork
    326 sg:pub.10.1038/20459 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020261903
    327 https://doi.org/10.1038/20459
    328 rdf:type schema:CreativeWork
    329 sg:pub.10.1038/28867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020992380
    330 https://doi.org/10.1038/28867
    331 rdf:type schema:CreativeWork
    332 sg:pub.10.1038/32925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025968893
    333 https://doi.org/10.1038/32925
    334 rdf:type schema:CreativeWork
    335 sg:pub.10.1038/35017054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033141962
    336 https://doi.org/10.1038/35017054
    337 rdf:type schema:CreativeWork
    338 sg:pub.10.1038/379088a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007643465
    339 https://doi.org/10.1038/379088a0
    340 rdf:type schema:CreativeWork
    341 sg:pub.10.1038/82146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027986752
    342 https://doi.org/10.1038/82146
    343 rdf:type schema:CreativeWork
    344 sg:pub.10.1038/86507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023141012
    345 https://doi.org/10.1038/86507
    346 rdf:type schema:CreativeWork
    347 sg:pub.10.1038/87904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036670646
    348 https://doi.org/10.1038/87904
    349 rdf:type schema:CreativeWork
    350 sg:pub.10.1038/bjc.1955.55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043829956
    351 https://doi.org/10.1038/bjc.1955.55
    352 rdf:type schema:CreativeWork
    353 sg:pub.10.1038/bjc.1998.289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048269790
    354 https://doi.org/10.1038/bjc.1998.289
    355 rdf:type schema:CreativeWork
    356 sg:pub.10.1038/nm0597-515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041248498
    357 https://doi.org/10.1038/nm0597-515
    358 rdf:type schema:CreativeWork
    359 sg:pub.10.1038/sj.gt.3300468 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004838695
    360 https://doi.org/10.1038/sj.gt.3300468
    361 rdf:type schema:CreativeWork
    362 sg:pub.10.1038/sj.gt.3301058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046680683
    363 https://doi.org/10.1038/sj.gt.3301058
    364 rdf:type schema:CreativeWork
    365 sg:pub.10.1038/sj.gt.3301388 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027721772
    366 https://doi.org/10.1038/sj.gt.3301388
    367 rdf:type schema:CreativeWork
    368 sg:pub.10.1038/sj.onc.1203938 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018020219
    369 https://doi.org/10.1038/sj.onc.1203938
    370 rdf:type schema:CreativeWork
    371 sg:pub.10.1038/sj.onc.1204012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018472075
    372 https://doi.org/10.1038/sj.onc.1204012
    373 rdf:type schema:CreativeWork
    374 sg:pub.10.1038/sj.onc.1204742 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031167781
    375 https://doi.org/10.1038/sj.onc.1204742
    376 rdf:type schema:CreativeWork
    377 grid-institutes:grid.8348.7 schema:alternateName Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, OX3 9DS, Oxford, UK
    378 schema:name Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, OX3 9DS, Oxford, UK
    379 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...