Hypoxia — a key regulatory factor in tumour growth View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-01-01

AUTHORS

Adrian L. Harris

ABSTRACT

Key Points Hypoxia is a reduction in the normal level of tissue oxygen tension, and occurs during acute and chronic vascular disease, pulmonary disease and cancer. It induces a transcription programme that promotes an aggressive tumour phenotype. Hypoxia is associated with resistance to radiation therapy and chemotherapy, but is also associated with poor outcome regardless of treatment modality, indicating that it might be an important therapeutic target. Hypoxia-inducible factor-1α (HIF-1α) is a key transcription factor that is induced by hypoxia and regulated by a proline hydroxylase. Pathways that are regulated by hypoxia include angiogenesis, glycolysis, growth-factor signalling, immortalization, genetic instability, tissue invasion and metastasis, apoptosis and pH regulation. Most of the hypoxia-induced pathways promote tumour growth, but apoptosis is also induced by hypoxia. The balance of these pathways might be critical for the effects of hypoxia on tumour growth. Drugs that inhibit HIF-1α expression antagonize HIF-1α interaction with CBP/p300 or block downstream function of genes such as vascular endothelial growth factor and cyclooxygenase-2 have potentially important roles in tumour therapy. Hypoxia can also be used to activate therapeutic gene delivery to specific areas of tissue. More... »

PAGES

38-47

References to SciGraph publications

  • 1998-03. Stabilization of wild-type p53 by hypoxia-inducible factor 1α in NATURE
  • 2000-06-09. Ubiquitination of hypoxia-inducible factor requires direct binding to the β-domain of the von Hippel–Lindau protein in NATURE CELL BIOLOGY
  • 2000-12-14. Identification of novel hypoxia dependent and independent target genes of the von Hippel-Lindau (VHL) tumour suppressor by mRNA differential expression profiling in ONCOGENE
  • 1998-06. The contribution of lactic acid to acidification of tumours: studies of variant cells lacking lactate dehydrogenase in BRITISH JOURNAL OF CANCER
  • 2001-04-01. Gene transfer of antisense hypoxia inducible factor-1 α enhances the therapeutic efficacy of cancer immunotherapy in GENE THERAPY
  • 2000-12-01. Suppression of tumor growth through disruption of hypoxia-inducible transcription in NATURE MEDICINE
  • 2001-09-13. Dephosphorylated hypoxia-inducible factor 1α as a mediator of p53-dependent apoptosis during hypoxia in ONCOGENE
  • 2000-02-01. The macrophage – a novel system to deliver gene therapy to pathological hypoxia in GENE THERAPY
  • 1998-07. Role of HIF-1α in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis in NATURE
  • 2000-11-16. Up-regulation of hypoxia-inducible factors HIF-1α and HIF-2α under normoxic conditions in renal carcinoma cells by von Hippel-Lindau tumor suppressor gene loss of function in ONCOGENE
  • 1997-08. The Role of Phosphometabolites in Cell Proliferation, Energy Metabolism, and Tumor Therapy in JOURNAL OF BIOENERGETICS AND BIOMEMBRANES
  • 2001-05-01. Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions in NATURE MEDICINE
  • 1996-01. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours in NATURE
  • 1999-05. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis in NATURE
  • 2001-04-01. Histone deacetylases induce angiogenesis by negative regulation of tumor suppressor genes in NATURE MEDICINE
  • 1997-05. Targeting gene expression to hypoxic tumor cells in NATURE MEDICINE
  • 1955-12. The Histological Structure of Some Human Lung Cancers and the Possible Implications for Radiotherapy in BRITISH JOURNAL OF CANCER
  • 1997-08-01. Anaerobic bacteria as a gene delivery system that is controlled by the tumor microenvironment in GENE THERAPY
  • Journal

    TITLE

    Nature Reviews Cancer

    ISSUE

    1

    VOLUME

    2

    Related Patents

  • Mixed Micelles
  • Mixed Micelles
  • Core-Shell Nanofiber-Based Sensors
  • Treating Cancer With An Hsp90 Inhibitory Compound
  • Antisense Agents For Use In Controlling Expression From Genes Associated Hypoxia-Inducible Factors For Treatment Of Cell Proliferative And Vision Disorders; Gene Expression Inhibition
  • Antisense Compounds, Especially Nucleic Acid And Nucleic Acid-Like Oligomers, Which Are Targeted To A Nucleic Acid Encoding Hif1-Beta, And Which Modulate The Expression Of Hif1-Beta; For Inhibiting Tumor Growth, Ocular Neovascularization
  • Mn/Ca Ix And Breast Cancer Therapy
  • Method Of Predicting Metastatic Potential, Poor Prognosis Or Lower Overall Survival Of Cancer Patients
  • Manipulation Of Hsp70 And Ire1alpha Protein Interactions
  • Methods For Treating Vascular Eye Disorders With Actrii Antagonists
  • Mn/Ca Ix And Egfr Pathway Inhibition
  • Modulation Of Hif1Α And Hif2Α Expression
  • Compounds Useful As Carbonic Anhydrase Modulators And Uses Thereof
  • Enhanced Erythropoiesis And Iron Metabolism
  • Compounds As Hif-1alphainhibitors And Manufacturing Process Thereof
  • Compositions And Methods For Inhibiting Activity Of Hypoxia-Inducible Transcription Factor Complex And Its Use For Treatment Of Tumors
  • Pharmaceutical Composition For Inhibiting The Transcription Factor Inducible By Hypoxia, Modulators Of Pathological Processes Of Angiogenesis, Oncogenesis, Inflammation, Apoptosis, And Cellular Therapy
  • Pre-Selection Of Subjects For Therapeutic Treatment With An Hsp90 Inhibitor Based On Hypoxic Status
  • Biomarker For Sensitivity To Mtor Inhibitor Therapy In Kidney Cancer
  • Enhanced Erythropoiesis And Iron Metabolism
  • Hypoxia And Hyaluronan And Markers Thereof For Diagnosis And Monitoring Of Diseases And Conditions And Related Methods
  • Compositions And Methods For Inhibiting Activity Of Hypoxia-Inducible Transcription Factor Complex And Its Use For Treatment Of Tumors
  • Hypoxia-Inducible Factors (Hifs); Modified Antisense Oligonucleotide That Inhibits Expression Of Human Hif-1 Beta; Cancer, Eye Disorders
  • Enhanced Erythropoiesis And Iron Metabolism
  • Gemcitabine Protide Hypoxia-Activated Prodrug And Application Thereof
  • Enhanced Erythropoiesis And Iron Metabolism
  • Enhanced Erythropoiesis And Iron Metabolism
  • Compositions And Methods For Treating Cancer By Rational Targeting Of Protein Translation
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nrc704

    DOI

    http://dx.doi.org/10.1038/nrc704

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1028740665

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/11902584


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Oncology and Carcinogenesis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Antineoplastic Agents", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Apoptosis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aryl Hydrocarbon Receptor Nuclear Translocator", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Basic Helix-Loop-Helix Transcription Factors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Division", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Hypoxia", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Survival", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cyclic AMP Response Element-Binding Protein", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA Damage", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA-Binding Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Dimerization", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Embryonic and Fetal Development", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Endothelial Growth Factors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Erythropoietin", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Forecasting", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Regulation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Glycolysis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Hydrogen-Ion Concentration", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Hypoxia-Inducible Factor 1", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Hypoxia-Inducible Factor 1, alpha Subunit", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Lymphokines", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mice", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "NF-kappa B", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neoplasms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neovascularization, Pathologic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nuclear Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Oxidation-Reduction", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Oxidative Stress", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Oxygen", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Prodrugs", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Proto-Oncogene Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Receptor Protein-Tyrosine Kinases", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Receptors, Aryl Hydrocarbon", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Signal Transduction", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Trans-Activators", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Transcription Factors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Vascular Endothelial Growth Factor A", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Vascular Endothelial Growth Factor Receptor-1", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Vascular Endothelial Growth Factors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Xenograft Model Antitumor Assays", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, OX3 9DS, Oxford, UK", 
              "id": "http://www.grid.ac/institutes/grid.8348.7", 
              "name": [
                "Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, OX3 9DS, Oxford, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Harris", 
            "givenName": "Adrian L.", 
            "id": "sg:person.01151433574.57", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151433574.57"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/32925", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025968893", 
              "https://doi.org/10.1038/32925"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.onc.1204742", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031167781", 
              "https://doi.org/10.1038/sj.onc.1204742"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nm0597-515", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041248498", 
              "https://doi.org/10.1038/nm0597-515"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/bjc.1955.55", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043829956", 
              "https://doi.org/10.1038/bjc.1955.55"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/379088a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007643465", 
              "https://doi.org/10.1038/379088a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35017054", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033141962", 
              "https://doi.org/10.1038/35017054"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/82146", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027986752", 
              "https://doi.org/10.1038/82146"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.gt.3300468", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004838695", 
              "https://doi.org/10.1038/sj.gt.3300468"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.onc.1204012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018472075", 
              "https://doi.org/10.1038/sj.onc.1204012"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/20459", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020261903", 
              "https://doi.org/10.1038/20459"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1022490512705", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040335402", 
              "https://doi.org/10.1023/a:1022490512705"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.gt.3301388", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027721772", 
              "https://doi.org/10.1038/sj.gt.3301388"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.onc.1203938", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018020219", 
              "https://doi.org/10.1038/sj.onc.1203938"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/bjc.1998.289", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048269790", 
              "https://doi.org/10.1038/bjc.1998.289"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/86507", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023141012", 
              "https://doi.org/10.1038/86507"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/87904", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036670646", 
              "https://doi.org/10.1038/87904"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.gt.3301058", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046680683", 
              "https://doi.org/10.1038/sj.gt.3301058"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/28867", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020992380", 
              "https://doi.org/10.1038/28867"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2002-01-01", 
        "datePublishedReg": "2002-01-01", 
        "description": "Key Points Hypoxia is a reduction in the normal level of tissue oxygen tension, and occurs during acute and chronic vascular disease, pulmonary disease and cancer. It induces a transcription programme that promotes an aggressive tumour phenotype.  Hypoxia is associated with resistance to radiation therapy and chemotherapy, but is also associated with poor outcome regardless of treatment modality, indicating that it might be an important therapeutic target.  Hypoxia-inducible factor-1\u03b1 (HIF-1\u03b1) is a key transcription factor that is induced by hypoxia and regulated by a proline hydroxylase.  Pathways that are regulated by hypoxia include angiogenesis, glycolysis, growth-factor signalling, immortalization, genetic instability, tissue invasion and metastasis, apoptosis and pH regulation.  Most of the hypoxia-induced pathways promote tumour growth, but apoptosis is also induced by hypoxia. The balance of these pathways might be critical for the effects of hypoxia on tumour growth.  Drugs that inhibit HIF-1\u03b1 expression antagonize HIF-1\u03b1 interaction with CBP/p300 or block downstream function of genes such as vascular endothelial growth factor and cyclooxygenase-2 have potentially important roles in tumour therapy. Hypoxia can also be used to activate therapeutic gene delivery to specific areas of tissue.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/nrc704", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1029716", 
            "issn": [
              "1474-175X", 
              "1474-1768"
            ], 
            "name": "Nature Reviews Cancer", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2"
          }
        ], 
        "keywords": [
          "tumor growth", 
          "hypoxia-induced pathways", 
          "chronic vascular disease", 
          "hypoxia-inducible factor-1\u03b1", 
          "vascular endothelial growth factor", 
          "tissue oxygen tension", 
          "aggressive tumor phenotype", 
          "endothelial growth factor", 
          "effects of hypoxia", 
          "important therapeutic target", 
          "pulmonary disease", 
          "poor outcome", 
          "vascular disease", 
          "treatment modalities", 
          "cyclooxygenase-2", 
          "radiation therapy", 
          "therapeutic target", 
          "normal levels", 
          "factor-1\u03b1", 
          "tumor phenotype", 
          "hypoxia", 
          "growth factor", 
          "tissue invasion", 
          "oxygen tension", 
          "growth factor signaling", 
          "key transcription factor", 
          "therapy", 
          "tumor therapy", 
          "proline hydroxylase", 
          "disease", 
          "key regulatory factors", 
          "therapeutic gene delivery", 
          "apoptosis", 
          "genetic instability", 
          "regulatory factors", 
          "pathway", 
          "CBP/p300", 
          "chemotherapy", 
          "metastasis", 
          "transcription factors", 
          "cancer", 
          "factors", 
          "transcription program", 
          "important role", 
          "angiogenesis", 
          "drugs", 
          "outcomes", 
          "hydroxylase", 
          "modalities", 
          "gene delivery", 
          "HIF", 
          "invasion", 
          "tissue", 
          "signaling", 
          "immortalization", 
          "phenotype", 
          "glycolysis", 
          "downstream functions", 
          "delivery", 
          "p300", 
          "target", 
          "levels", 
          "genes", 
          "role", 
          "specific areas", 
          "regulation", 
          "growth", 
          "reduction", 
          "effect", 
          "resistance", 
          "program", 
          "function", 
          "balance", 
          "area", 
          "instability", 
          "interaction", 
          "tension", 
          "key"
        ], 
        "name": "Hypoxia \u2014 a key regulatory factor in tumour growth", 
        "pagination": "38-47", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1028740665"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nrc704"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "11902584"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nrc704", 
          "https://app.dimensions.ai/details/publication/pub.1028740665"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:23", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_358.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/nrc704"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nrc704'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nrc704'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nrc704'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nrc704'


     

    This table displays all metadata directly associated to this object as RDF triples.

    379 TRIPLES      21 PREDICATES      163 URIs      137 LITERALS      49 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nrc704 schema:about N016383da6de44acfafdb2bca7dc40a9c
    2 N05c382e6d8c24eeb8ea0da20033ddd6f
    3 N0ef328f048f34f60a25cd926b84fbbda
    4 N16aeb59748604768b64fd08313cf51f7
    5 N1dc149dd21644254b3fff39a9d0ab497
    6 N23196cbb4b6f43c6b1bf659fc4409b81
    7 N26b7bc91d5f34519a070173e684d4857
    8 N28217b78766f4f64b1ed004f2f36bb1d
    9 N2cc6df03e57444a0aa28e7c94a377a37
    10 N317ab8fd54a940719dfb91381838c902
    11 N3337afbc8eb04778a76d003db7f73e4d
    12 N385a9167c62b4444924aae7dde061f93
    13 N3a28c006607f4435b17417bfcf46cffe
    14 N3cc6775cb4924a3aa019c78411672c8e
    15 N3d855741210244ecb9c6cfd097e93163
    16 N496047dea5d54d91b17b390a5a5cc265
    17 N4b475a9af32040069ff923a2c3abaee8
    18 N61b198325fb844fb9d0a498d29190fcf
    19 N66beef0186714cd2a9b0ab28c1134248
    20 N7165ccb1f7db40a390c76e04c7d1d66d
    21 N7501d28881174f74b4fd0513f72a8db6
    22 N7af64c6f80104eadbc6436b40be83e82
    23 N8d17a2ec9d614cbe9a8bb345f296bd73
    24 N8e39a912bc3447bebb24676fe9114c95
    25 N98f37270195541a4b7379aa8afd61d8e
    26 N9f9cd740e9204114abeb9cc6754e01cd
    27 Na4068a998cc9475eae16aa37ec3f95dd
    28 Nb3290138a1564f85b077012aa3373d5c
    29 Nb462aa5ea2064bd1af9879b04cbae5ba
    30 Nba544b4f0fad4fea922619b7f3baa253
    31 Nd0c1615a1200404ab19dcf5ada71a47e
    32 Nd69dc4a7fbb84cae96283193c7bda05d
    33 Nd6cdaeea0a9d4242ae26b2a1554428fb
    34 Ndc3ab02f852e4bce98ddc51596e742be
    35 Ne00dd849fa4d4c8bbe5a8578d638fdca
    36 Ne4e1fecca8ba49bbbe06abb3b83cb5e6
    37 Ne79a5a58271640e99bd4240bf87605d6
    38 Ne8695be518ac4c619af3f53b075bd8ac
    39 Nf45daba8fd9042aea37de55d17d0c56e
    40 Nf621b9d471754f6cbc0e95ffbefc8165
    41 Nfb21bc8314694eeabb8f98be1d4ac09c
    42 Nfdbdda59e2af43cf958cd98ba16eb4ec
    43 anzsrc-for:11
    44 anzsrc-for:1112
    45 schema:author N31d02ac18350485180dc35ac8e76944a
    46 schema:citation sg:pub.10.1023/a:1022490512705
    47 sg:pub.10.1038/20459
    48 sg:pub.10.1038/28867
    49 sg:pub.10.1038/32925
    50 sg:pub.10.1038/35017054
    51 sg:pub.10.1038/379088a0
    52 sg:pub.10.1038/82146
    53 sg:pub.10.1038/86507
    54 sg:pub.10.1038/87904
    55 sg:pub.10.1038/bjc.1955.55
    56 sg:pub.10.1038/bjc.1998.289
    57 sg:pub.10.1038/nm0597-515
    58 sg:pub.10.1038/sj.gt.3300468
    59 sg:pub.10.1038/sj.gt.3301058
    60 sg:pub.10.1038/sj.gt.3301388
    61 sg:pub.10.1038/sj.onc.1203938
    62 sg:pub.10.1038/sj.onc.1204012
    63 sg:pub.10.1038/sj.onc.1204742
    64 schema:datePublished 2002-01-01
    65 schema:datePublishedReg 2002-01-01
    66 schema:description Key Points Hypoxia is a reduction in the normal level of tissue oxygen tension, and occurs during acute and chronic vascular disease, pulmonary disease and cancer. It induces a transcription programme that promotes an aggressive tumour phenotype. Hypoxia is associated with resistance to radiation therapy and chemotherapy, but is also associated with poor outcome regardless of treatment modality, indicating that it might be an important therapeutic target. Hypoxia-inducible factor-1α (HIF-1α) is a key transcription factor that is induced by hypoxia and regulated by a proline hydroxylase. Pathways that are regulated by hypoxia include angiogenesis, glycolysis, growth-factor signalling, immortalization, genetic instability, tissue invasion and metastasis, apoptosis and pH regulation. Most of the hypoxia-induced pathways promote tumour growth, but apoptosis is also induced by hypoxia. The balance of these pathways might be critical for the effects of hypoxia on tumour growth. Drugs that inhibit HIF-1α expression antagonize HIF-1α interaction with CBP/p300 or block downstream function of genes such as vascular endothelial growth factor and cyclooxygenase-2 have potentially important roles in tumour therapy. Hypoxia can also be used to activate therapeutic gene delivery to specific areas of tissue.
    67 schema:genre article
    68 schema:isAccessibleForFree false
    69 schema:isPartOf N8c599143ef464dc7b312906e7e905d43
    70 Ned8c02dc9879444d843194719ec8fd0c
    71 sg:journal.1029716
    72 schema:keywords CBP/p300
    73 HIF
    74 aggressive tumor phenotype
    75 angiogenesis
    76 apoptosis
    77 area
    78 balance
    79 cancer
    80 chemotherapy
    81 chronic vascular disease
    82 cyclooxygenase-2
    83 delivery
    84 disease
    85 downstream functions
    86 drugs
    87 effect
    88 effects of hypoxia
    89 endothelial growth factor
    90 factor-1α
    91 factors
    92 function
    93 gene delivery
    94 genes
    95 genetic instability
    96 glycolysis
    97 growth
    98 growth factor
    99 growth factor signaling
    100 hydroxylase
    101 hypoxia
    102 hypoxia-induced pathways
    103 hypoxia-inducible factor-1α
    104 immortalization
    105 important role
    106 important therapeutic target
    107 instability
    108 interaction
    109 invasion
    110 key
    111 key regulatory factors
    112 key transcription factor
    113 levels
    114 metastasis
    115 modalities
    116 normal levels
    117 outcomes
    118 oxygen tension
    119 p300
    120 pathway
    121 phenotype
    122 poor outcome
    123 program
    124 proline hydroxylase
    125 pulmonary disease
    126 radiation therapy
    127 reduction
    128 regulation
    129 regulatory factors
    130 resistance
    131 role
    132 signaling
    133 specific areas
    134 target
    135 tension
    136 therapeutic gene delivery
    137 therapeutic target
    138 therapy
    139 tissue
    140 tissue invasion
    141 tissue oxygen tension
    142 transcription factors
    143 transcription program
    144 treatment modalities
    145 tumor growth
    146 tumor phenotype
    147 tumor therapy
    148 vascular disease
    149 vascular endothelial growth factor
    150 schema:name Hypoxia — a key regulatory factor in tumour growth
    151 schema:pagination 38-47
    152 schema:productId N3165d9982aec4be2ba79120f9760742c
    153 N41209d0070c140c7b92df3d23b79f6c2
    154 Nd9ef576d25d74feda46be49e0065227a
    155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028740665
    156 https://doi.org/10.1038/nrc704
    157 schema:sdDatePublished 2022-12-01T06:23
    158 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    159 schema:sdPublisher N0fc3adb1788b4da6a0deb963a439e754
    160 schema:url https://doi.org/10.1038/nrc704
    161 sgo:license sg:explorer/license/
    162 sgo:sdDataset articles
    163 rdf:type schema:ScholarlyArticle
    164 N016383da6de44acfafdb2bca7dc40a9c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    165 schema:name Mice
    166 rdf:type schema:DefinedTerm
    167 N05c382e6d8c24eeb8ea0da20033ddd6f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    168 schema:name Xenograft Model Antitumor Assays
    169 rdf:type schema:DefinedTerm
    170 N0ef328f048f34f60a25cd926b84fbbda schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    171 schema:name Nuclear Proteins
    172 rdf:type schema:DefinedTerm
    173 N0fc3adb1788b4da6a0deb963a439e754 schema:name Springer Nature - SN SciGraph project
    174 rdf:type schema:Organization
    175 N16aeb59748604768b64fd08313cf51f7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    176 schema:name Hypoxia-Inducible Factor 1
    177 rdf:type schema:DefinedTerm
    178 N1dc149dd21644254b3fff39a9d0ab497 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    179 schema:name Dimerization
    180 rdf:type schema:DefinedTerm
    181 N23196cbb4b6f43c6b1bf659fc4409b81 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    182 schema:name Humans
    183 rdf:type schema:DefinedTerm
    184 N26b7bc91d5f34519a070173e684d4857 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    185 schema:name Receptors, Aryl Hydrocarbon
    186 rdf:type schema:DefinedTerm
    187 N28217b78766f4f64b1ed004f2f36bb1d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    188 schema:name Vascular Endothelial Growth Factor A
    189 rdf:type schema:DefinedTerm
    190 N2cc6df03e57444a0aa28e7c94a377a37 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    191 schema:name DNA-Binding Proteins
    192 rdf:type schema:DefinedTerm
    193 N3165d9982aec4be2ba79120f9760742c schema:name dimensions_id
    194 schema:value pub.1028740665
    195 rdf:type schema:PropertyValue
    196 N317ab8fd54a940719dfb91381838c902 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    197 schema:name Signal Transduction
    198 rdf:type schema:DefinedTerm
    199 N31d02ac18350485180dc35ac8e76944a rdf:first sg:person.01151433574.57
    200 rdf:rest rdf:nil
    201 N3337afbc8eb04778a76d003db7f73e4d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    202 schema:name Lymphokines
    203 rdf:type schema:DefinedTerm
    204 N385a9167c62b4444924aae7dde061f93 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    205 schema:name Aryl Hydrocarbon Receptor Nuclear Translocator
    206 rdf:type schema:DefinedTerm
    207 N3a28c006607f4435b17417bfcf46cffe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    208 schema:name Glycolysis
    209 rdf:type schema:DefinedTerm
    210 N3cc6775cb4924a3aa019c78411672c8e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    211 schema:name Cell Hypoxia
    212 rdf:type schema:DefinedTerm
    213 N3d855741210244ecb9c6cfd097e93163 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    214 schema:name Forecasting
    215 rdf:type schema:DefinedTerm
    216 N41209d0070c140c7b92df3d23b79f6c2 schema:name pubmed_id
    217 schema:value 11902584
    218 rdf:type schema:PropertyValue
    219 N496047dea5d54d91b17b390a5a5cc265 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    220 schema:name Transcription Factors
    221 rdf:type schema:DefinedTerm
    222 N4b475a9af32040069ff923a2c3abaee8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    223 schema:name Oxygen
    224 rdf:type schema:DefinedTerm
    225 N61b198325fb844fb9d0a498d29190fcf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    226 schema:name Prodrugs
    227 rdf:type schema:DefinedTerm
    228 N66beef0186714cd2a9b0ab28c1134248 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    229 schema:name Embryonic and Fetal Development
    230 rdf:type schema:DefinedTerm
    231 N7165ccb1f7db40a390c76e04c7d1d66d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    232 schema:name Cyclic AMP Response Element-Binding Protein
    233 rdf:type schema:DefinedTerm
    234 N7501d28881174f74b4fd0513f72a8db6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    235 schema:name Oxidation-Reduction
    236 rdf:type schema:DefinedTerm
    237 N7af64c6f80104eadbc6436b40be83e82 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    238 schema:name Oxidative Stress
    239 rdf:type schema:DefinedTerm
    240 N8c599143ef464dc7b312906e7e905d43 schema:volumeNumber 2
    241 rdf:type schema:PublicationVolume
    242 N8d17a2ec9d614cbe9a8bb345f296bd73 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    243 schema:name Trans-Activators
    244 rdf:type schema:DefinedTerm
    245 N8e39a912bc3447bebb24676fe9114c95 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    246 schema:name DNA Damage
    247 rdf:type schema:DefinedTerm
    248 N98f37270195541a4b7379aa8afd61d8e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    249 schema:name NF-kappa B
    250 rdf:type schema:DefinedTerm
    251 N9f9cd740e9204114abeb9cc6754e01cd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    252 schema:name Cell Division
    253 rdf:type schema:DefinedTerm
    254 Na4068a998cc9475eae16aa37ec3f95dd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    255 schema:name Cell Survival
    256 rdf:type schema:DefinedTerm
    257 Nb3290138a1564f85b077012aa3373d5c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    258 schema:name Basic Helix-Loop-Helix Transcription Factors
    259 rdf:type schema:DefinedTerm
    260 Nb462aa5ea2064bd1af9879b04cbae5ba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    261 schema:name Gene Expression Regulation
    262 rdf:type schema:DefinedTerm
    263 Nba544b4f0fad4fea922619b7f3baa253 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    264 schema:name Vascular Endothelial Growth Factor Receptor-1
    265 rdf:type schema:DefinedTerm
    266 Nd0c1615a1200404ab19dcf5ada71a47e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    267 schema:name Hydrogen-Ion Concentration
    268 rdf:type schema:DefinedTerm
    269 Nd69dc4a7fbb84cae96283193c7bda05d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    270 schema:name Proto-Oncogene Proteins
    271 rdf:type schema:DefinedTerm
    272 Nd6cdaeea0a9d4242ae26b2a1554428fb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    273 schema:name Erythropoietin
    274 rdf:type schema:DefinedTerm
    275 Nd9ef576d25d74feda46be49e0065227a schema:name doi
    276 schema:value 10.1038/nrc704
    277 rdf:type schema:PropertyValue
    278 Ndc3ab02f852e4bce98ddc51596e742be schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    279 schema:name Animals
    280 rdf:type schema:DefinedTerm
    281 Ne00dd849fa4d4c8bbe5a8578d638fdca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    282 schema:name Neovascularization, Pathologic
    283 rdf:type schema:DefinedTerm
    284 Ne4e1fecca8ba49bbbe06abb3b83cb5e6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    285 schema:name Hypoxia-Inducible Factor 1, alpha Subunit
    286 rdf:type schema:DefinedTerm
    287 Ne79a5a58271640e99bd4240bf87605d6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    288 schema:name Apoptosis
    289 rdf:type schema:DefinedTerm
    290 Ne8695be518ac4c619af3f53b075bd8ac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    291 schema:name Receptor Protein-Tyrosine Kinases
    292 rdf:type schema:DefinedTerm
    293 Ned8c02dc9879444d843194719ec8fd0c schema:issueNumber 1
    294 rdf:type schema:PublicationIssue
    295 Nf45daba8fd9042aea37de55d17d0c56e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    296 schema:name Endothelial Growth Factors
    297 rdf:type schema:DefinedTerm
    298 Nf621b9d471754f6cbc0e95ffbefc8165 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    299 schema:name Antineoplastic Agents
    300 rdf:type schema:DefinedTerm
    301 Nfb21bc8314694eeabb8f98be1d4ac09c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    302 schema:name Vascular Endothelial Growth Factors
    303 rdf:type schema:DefinedTerm
    304 Nfdbdda59e2af43cf958cd98ba16eb4ec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    305 schema:name Neoplasms
    306 rdf:type schema:DefinedTerm
    307 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    308 schema:name Medical and Health Sciences
    309 rdf:type schema:DefinedTerm
    310 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
    311 schema:name Oncology and Carcinogenesis
    312 rdf:type schema:DefinedTerm
    313 sg:journal.1029716 schema:issn 1474-175X
    314 1474-1768
    315 schema:name Nature Reviews Cancer
    316 schema:publisher Springer Nature
    317 rdf:type schema:Periodical
    318 sg:person.01151433574.57 schema:affiliation grid-institutes:grid.8348.7
    319 schema:familyName Harris
    320 schema:givenName Adrian L.
    321 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151433574.57
    322 rdf:type schema:Person
    323 sg:pub.10.1023/a:1022490512705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040335402
    324 https://doi.org/10.1023/a:1022490512705
    325 rdf:type schema:CreativeWork
    326 sg:pub.10.1038/20459 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020261903
    327 https://doi.org/10.1038/20459
    328 rdf:type schema:CreativeWork
    329 sg:pub.10.1038/28867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020992380
    330 https://doi.org/10.1038/28867
    331 rdf:type schema:CreativeWork
    332 sg:pub.10.1038/32925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025968893
    333 https://doi.org/10.1038/32925
    334 rdf:type schema:CreativeWork
    335 sg:pub.10.1038/35017054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033141962
    336 https://doi.org/10.1038/35017054
    337 rdf:type schema:CreativeWork
    338 sg:pub.10.1038/379088a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007643465
    339 https://doi.org/10.1038/379088a0
    340 rdf:type schema:CreativeWork
    341 sg:pub.10.1038/82146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027986752
    342 https://doi.org/10.1038/82146
    343 rdf:type schema:CreativeWork
    344 sg:pub.10.1038/86507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023141012
    345 https://doi.org/10.1038/86507
    346 rdf:type schema:CreativeWork
    347 sg:pub.10.1038/87904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036670646
    348 https://doi.org/10.1038/87904
    349 rdf:type schema:CreativeWork
    350 sg:pub.10.1038/bjc.1955.55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043829956
    351 https://doi.org/10.1038/bjc.1955.55
    352 rdf:type schema:CreativeWork
    353 sg:pub.10.1038/bjc.1998.289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048269790
    354 https://doi.org/10.1038/bjc.1998.289
    355 rdf:type schema:CreativeWork
    356 sg:pub.10.1038/nm0597-515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041248498
    357 https://doi.org/10.1038/nm0597-515
    358 rdf:type schema:CreativeWork
    359 sg:pub.10.1038/sj.gt.3300468 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004838695
    360 https://doi.org/10.1038/sj.gt.3300468
    361 rdf:type schema:CreativeWork
    362 sg:pub.10.1038/sj.gt.3301058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046680683
    363 https://doi.org/10.1038/sj.gt.3301058
    364 rdf:type schema:CreativeWork
    365 sg:pub.10.1038/sj.gt.3301388 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027721772
    366 https://doi.org/10.1038/sj.gt.3301388
    367 rdf:type schema:CreativeWork
    368 sg:pub.10.1038/sj.onc.1203938 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018020219
    369 https://doi.org/10.1038/sj.onc.1203938
    370 rdf:type schema:CreativeWork
    371 sg:pub.10.1038/sj.onc.1204012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018472075
    372 https://doi.org/10.1038/sj.onc.1204012
    373 rdf:type schema:CreativeWork
    374 sg:pub.10.1038/sj.onc.1204742 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031167781
    375 https://doi.org/10.1038/sj.onc.1204742
    376 rdf:type schema:CreativeWork
    377 grid-institutes:grid.8348.7 schema:alternateName Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, OX3 9DS, Oxford, UK
    378 schema:name Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, OX3 9DS, Oxford, UK
    379 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...