Why do cancers have high aerobic glycolysis? View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2004-11

AUTHORS

Robert A. Gatenby, Robert J. Gillies

ABSTRACT

Key PointsWidespread clinical use of 18fluorodeoxyglucose positron-emission tomography has demonstrated that the glycolytic phenotype is observed in most human cancers.The concept of carcinogenesis as a process that occurs by somatic evolution clearly implies that common traits of the malignant phenotype, such as upregulation of glycolysis, are the result of active selection processes and must confer a significant, identifiable growth advantage.Constitutive upregulation of glycolysis is likely to be an adaptation to hypoxia that develops as pre-malignant lesions grow progressively further from their blood supply. At this stage, the blood supply remains physically separated from the growing cells by an intact basement membrane.Increased acid production from upregulation of glycolysis results in microenvironmental acidosis and requires further adaptation through somatic evolution to phenotypes resistant to acid-induced toxicity.Cell populations that emerge from this evolutionary sequence have a powerful growth advantage, as they alter their environment through increased glycolysis in a way that is toxic to other phenotypes, but harmless to themselves. The environmental acidosis also facilitates invasion through destruction of adjacent normal populations, degradation of the extracellular matrix and promotion of angiogenesis.We propose that the glycolytic phenotype, by conferring a powerful growth advantage, is necessary for evolution of invasive human cancers. More... »

PAGES

891-899

References to SciGraph publications

  • 1998-06. Role for glucose transporter 1 protein in human breast cancer in PATHOLOGY & ONCOLOGY RESEARCH
  • 1996-03. Acidic pH enhances the invasive behavior of human melanoma cells in CLINICAL & EXPERIMENTAL METASTASIS
  • 1998-07. Role of HIF-1α in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis in NATURE
  • 1999-07-30. Acidic environment causes apoptosis by increasing caspase activity in BRITISH JOURNAL OF CANCER
  • 1999-08-01. Relevance of Positron Emission Tomography (PET) in Oncology in STRAHLENTHERAPIE UND ONKOLOGIE
  • 1955-12. The Histological Structure of Some Human Lung Cancers and the Possible Implications for Radiotherapy in BRITISH JOURNAL OF CANCER
  • 1997-08. Aerobic Glycolysis by Proliferating Cells: Protection against Oxidative Stress at the Expense of Energy Yield in JOURNAL OF BIOENERGETICS AND BIOMEMBRANES
  • 1999-05-25. An acidic environment leads to p53 dependent induction of apoptosis in human adenoma and carcinoma cell lines: implications for clonal selection during colorectal carcinogenesis in ONCOGENE
  • 1998. Theoretical Simulation of Oxygen Transport to Tumors by Three-Dimensional Networks of Microvessels in OXYGEN TRANSPORT TO TISSUE XX
  • 1974-11. History of the Pasteur effect and its pathobiology in MOLECULAR AND CELLULAR BIOCHEMISTRY
  • 1996-01. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours in NATURE
  • 1988-06. PET in clinical oncology in CANCER AND METASTASIS REVIEWS
  • 1997-02. Interstitial pH and pO2 gradients in solid tumors in vivo: High-resolution measurements reveal a lack of correlation in NATURE MEDICINE
  • 2000-01. Intravascular origin of metastasis from the proliferation of endothelium-attached tumor cells: a new model for metastasis in NATURE MEDICINE
  • 1991-10. Glucose starvation and acidosis: effect on experimental metastatic potential, DNA content and MTX resistance of murine tumour cells. in BRITISH JOURNAL OF CANCER
  • 1997-08. Role of Intracellular pH in Proliferation, Transformation, and Apoptosis in JOURNAL OF BIOENERGETICS AND BIOMEMBRANES
  • 1997-08. Aberrant Glycolytic Metabolism of Cancer Cells: A Remarkable Coordination of Genetic, Transcriptional, Post-translational, and Mutational Events That Lead to a Critical Role for Type II Hexokinase in JOURNAL OF BIOENERGETICS AND BIOMEMBRANES
  • 2002-09. Molecular imaging of cancer with positron emission tomography in NATURE REVIEWS CANCER
  • 1999-07-09. Hypoxia-induced metastasis of human melanoma cells: involvement of vascular endothelial growth factor-mediated angiogenesis in BRITISH JOURNAL OF CANCER
  • 2002-08. Metastasis genes: A progression puzzle in NATURE
  • 2004-02-17. Evaluation of 18F-2-deoxy-2-fluoro-d-glucose Positron Emission Tomography for Gastric Cancer in WORLD JOURNAL OF SURGERY
  • 1997-08. Oncogenes in Tumor Metabolism, Tumorigenesis, and Apoptosis in JOURNAL OF BIOENERGETICS AND BIOMEMBRANES
  • 1976-01. The Warburg hypothesis fifty years later in ZEITSCHRIFT FÜR KREBSFORSCHUNG UND KLINISCHE ONKOLOGIE
  • 1997-07. Breast cancer cells have a high capacity to acidify extracellular milieu by a dual mechanism in CLINICAL & EXPERIMENTAL METASTASIS
  • 2003-12. Targeting HIF-1 for cancer therapy in NATURE REVIEWS CANCER
  • Journal

    TITLE

    Nature Reviews Cancer

    ISSUE

    11

    VOLUME

    4

    Related Patents

  • Methods Of Modulating Cellular Homeostatic Pathways And Cellular Survival
  • Precise Delivery Of Therapeutic Agents To Cell Mitochondria For Anti-Cancer Therapy
  • Methods For Treating Lung Cancer
  • Targeting Wsb1 And Pvhl To Treat Cancer
  • Indole Derivatives Inhibitors Of Enzyme Lactate Dehydrogenase (Ldh)
  • Inhibitors Of Glycolysis Useful In The Treatment Of Brain Tumors
  • Use Of Fructose-Based Compounds For The Diagnosis Of Cancer
  • Esters Of 2-Deoxy-Monosacharides With Anti Proliferative Activity
  • Methods For The Regulation Of Cellular Metabolism Through The Modulation Of Sirt3 Activity
  • Compositions And Methods For Inhibiting Activity Of Hypoxia-Inducible Transcription Factor Complex And Its Use For Treatment Of Tumors
  • Targeting Wsb1 And Pvhl To Treat Cancer
  • Anti-Cd40 Antibodies And Methods Of Treating Cancer Having Cd40+ Tumor Cells
  • Anti-Cd40 Antibodies, Uses And Methods
  • Combination Uses Of Dichloroacetate And Oxamate, And Their Prodrugs, For Cancer Treatment
  • Phd2 Inhibition For Blood Vessel Normalization, And Uses Thereof
  • Tri-Color Dual Glucose And Oxygen Sensors And Methods Of Preparing And Using Them
  • Methods Of Treating Cancer With Glut Inhibitors And Oxidative Phosphorylation Inhibitors
  • Method For Treating Cancer
  • Nitroxyl (Hno) Releasing Compounds And Uses Thereof In Treating Diseases
  • Short Antisense Compounds With Gapmer Configuration
  • Alpha-Enolase Specific Antibody And Method Of Use
  • Anti-Cd40 Antibodies And Methods Of Treating Cancer
  • Function Of Gpr4 In Vascular Inflammatory Response To Acidosis And Related Methods
  • Ph-Weighted Mri Using Fast Amine Chemical Exchange Saturation Transfer (Cest) Imaging
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nrc1478

    DOI

    http://dx.doi.org/10.1038/nrc1478

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1032257073

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/15516961


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Acidosis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Proliferation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Transformation, Neoplastic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Glycolysis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neoplasm Invasiveness", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neoplasm Metastasis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neoplasms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neovascularization, Pathologic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Oxygen", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phenotype", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Up-Regulation", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Departments of Radiology and Applied Mathematics, University of Arizona, 85721, Tucson, Arizona, USA", 
              "id": "http://www.grid.ac/institutes/grid.134563.6", 
              "name": [
                "Departments of Radiology and Applied Mathematics, University of Arizona, 85721, Tucson, Arizona, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gatenby", 
            "givenName": "Robert A.", 
            "id": "sg:person.01251663701.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251663701.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Departments of Radiology and Biochemistry and Molecular Biophysics, University of Arizona, 85721, Tucson, Arizona, USA", 
              "id": "http://www.grid.ac/institutes/grid.134563.6", 
              "name": [
                "Departments of Radiology and Biochemistry and Molecular Biophysics, University of Arizona, 85721, Tucson, Arizona, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gillies", 
            "givenName": "Robert J.", 
            "id": "sg:person.014224135057.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014224135057.83"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00121214", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049934315", 
              "https://doi.org/10.1007/bf00121214"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/bjc.1955.55", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043829956", 
              "https://doi.org/10.1038/bjc.1955.55"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrc882", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036705264", 
              "https://doi.org/10.1038/nrc882"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1022494613613", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018464471", 
              "https://doi.org/10.1023/a:1022494613613"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/418823a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010356341", 
              "https://doi.org/10.1038/418823a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1022446730452", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044374655", 
              "https://doi.org/10.1023/a:1022446730452"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/28867", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020992380", 
              "https://doi.org/10.1038/28867"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s000660050022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020194991", 
              "https://doi.org/10.1007/s000660050022"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00046482", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052562582", 
              "https://doi.org/10.1007/bf00046482"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrc1187", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034382167", 
              "https://doi.org/10.1038/nrc1187"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.bjc.6690617", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021494252", 
              "https://doi.org/10.1038/sj.bjc.6690617"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nm0297-177", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025563287", 
              "https://doi.org/10.1038/nm0297-177"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/bjc.1991.378", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047247383", 
              "https://doi.org/10.1038/bjc.1991.378"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1022407116339", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022448776", 
              "https://doi.org/10.1023/a:1022407116339"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1018446104071", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005600464", 
              "https://doi.org/10.1023/a:1018446104071"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01874168", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024589490", 
              "https://doi.org/10.1007/bf01874168"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.onc.1202660", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035053743", 
              "https://doi.org/10.1038/sj.onc.1202660"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1022498714522", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020940157", 
              "https://doi.org/10.1023/a:1022498714522"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02904704", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020223218", 
              "https://doi.org/10.1007/bf02904704"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00284370", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047267243", 
              "https://doi.org/10.1007/bf00284370"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/379088a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007643465", 
              "https://doi.org/10.1038/379088a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/71429", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032718023", 
              "https://doi.org/10.1038/71429"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.bjc.6690586", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051263178", 
              "https://doi.org/10.1038/sj.bjc.6690586"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4615-4863-8_74", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025331549", 
              "https://doi.org/10.1007/978-1-4615-4863-8_74"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00268-003-7191-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031583396", 
              "https://doi.org/10.1007/s00268-003-7191-5"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2004-11", 
        "datePublishedReg": "2004-11-01", 
        "description": "Key PointsWidespread clinical use of 18fluorodeoxyglucose positron-emission tomography has demonstrated that the glycolytic phenotype is observed in most human cancers.The concept of carcinogenesis as a process that occurs by somatic evolution clearly implies that common traits of the malignant phenotype, such as upregulation of glycolysis, are the result of active selection processes and must confer a significant, identifiable growth advantage.Constitutive upregulation of glycolysis is likely to be an adaptation to hypoxia that develops as pre-malignant lesions grow progressively further from their blood supply. At this stage, the blood supply remains physically separated from the growing cells by an intact basement membrane.Increased acid production from upregulation of glycolysis results in microenvironmental acidosis and requires further adaptation through somatic evolution to phenotypes resistant to acid-induced toxicity.Cell populations that emerge from this evolutionary sequence have a powerful growth advantage, as they alter their environment through increased glycolysis in a way that is toxic to other phenotypes, but harmless to themselves. The environmental acidosis also facilitates invasion through destruction of adjacent normal populations, degradation of the extracellular matrix and promotion of angiogenesis.We propose that the glycolytic phenotype, by conferring a powerful growth advantage, is necessary for evolution of invasive human cancers.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/nrc1478", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1029716", 
            "issn": [
              "1474-175X", 
              "1474-1768"
            ], 
            "name": "Nature Reviews Cancer", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "11", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "4"
          }
        ], 
        "keywords": [
          "somatic evolution", 
          "growth advantage", 
          "glycolytic phenotype", 
          "human cancers", 
          "upregulation of glycolysis", 
          "most human cancers", 
          "invasive human cancers", 
          "active selection process", 
          "constitutive upregulation", 
          "aerobic glycolysis", 
          "high aerobic glycolysis", 
          "extracellular matrix", 
          "acid-induced toxicity", 
          "malignant phenotype", 
          "microenvironmental acidosis", 
          "phenotype", 
          "glycolysis", 
          "common traits", 
          "cell populations", 
          "environmental acidosis", 
          "promotion of angiogenesis", 
          "acid production", 
          "intact basement membrane", 
          "glycolysis results", 
          "concept of carcinogenesis", 
          "upregulation", 
          "basement membrane", 
          "evolutionary sequence", 
          "evolution", 
          "adaptation", 
          "traits", 
          "further adaptation", 
          "sequence", 
          "population", 
          "membrane", 
          "invasion", 
          "cells", 
          "angiogenesis", 
          "cancer", 
          "carcinogenesis", 
          "degradation", 
          "production", 
          "hypoxia", 
          "selection process", 
          "toxicity", 
          "supply", 
          "pre-malignant lesions", 
          "stage", 
          "process", 
          "environment", 
          "results", 
          "destruction", 
          "promotion", 
          "matrix", 
          "advantages", 
          "acidosis", 
          "clinical use", 
          "normal population", 
          "use", 
          "blood supply", 
          "way", 
          "lesions", 
          "concept", 
          "tomography", 
          "positron emission tomography", 
          "Key PointsWidespread clinical use", 
          "PointsWidespread clinical use", 
          "identifiable growth advantage", 
          "powerful growth advantage", 
          "adjacent normal populations"
        ], 
        "name": "Why do cancers have high aerobic glycolysis?", 
        "pagination": "891-899", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1032257073"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nrc1478"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "15516961"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nrc1478", 
          "https://app.dimensions.ai/details/publication/pub.1032257073"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:13", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_386.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/nrc1478"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nrc1478'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nrc1478'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nrc1478'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nrc1478'


     

    This table displays all metadata directly associated to this object as RDF triples.

    285 TRIPLES      22 PREDICATES      133 URIs      101 LITERALS      19 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nrc1478 schema:about N102615349d2249dcbe73868211a772a5
    2 N22e0af9c5c9347c8b5367c1af2054d30
    3 N5235dd7b2ada4ae3bb234cdf31233511
    4 N53160c35a0c34f0981bcfbff285d1ef4
    5 N576480d5ae504cf2a8cc687a75568765
    6 N6976f71a7696434fbf168cd53e21221b
    7 N6fd1abc0aeb34367b6453f0b5c5099c9
    8 Na80ccf1d90cf4409b357e8931fd53c1c
    9 Nd51d006c4cbd4b94a5211652444aca1e
    10 Nd83803a523634715ae73d05d3ae0a498
    11 Ne2b6628a404e4715a37525281bc0d11e
    12 Ne6261d9928f046be9e01fb9fab7a1554
    13 anzsrc-for:11
    14 schema:author N48b7dd247a4245c08903dc743cf21c37
    15 schema:citation sg:pub.10.1007/978-1-4615-4863-8_74
    16 sg:pub.10.1007/bf00046482
    17 sg:pub.10.1007/bf00121214
    18 sg:pub.10.1007/bf00284370
    19 sg:pub.10.1007/bf01874168
    20 sg:pub.10.1007/bf02904704
    21 sg:pub.10.1007/s000660050022
    22 sg:pub.10.1007/s00268-003-7191-5
    23 sg:pub.10.1023/a:1018446104071
    24 sg:pub.10.1023/a:1022407116339
    25 sg:pub.10.1023/a:1022446730452
    26 sg:pub.10.1023/a:1022494613613
    27 sg:pub.10.1023/a:1022498714522
    28 sg:pub.10.1038/28867
    29 sg:pub.10.1038/379088a0
    30 sg:pub.10.1038/418823a
    31 sg:pub.10.1038/71429
    32 sg:pub.10.1038/bjc.1955.55
    33 sg:pub.10.1038/bjc.1991.378
    34 sg:pub.10.1038/nm0297-177
    35 sg:pub.10.1038/nrc1187
    36 sg:pub.10.1038/nrc882
    37 sg:pub.10.1038/sj.bjc.6690586
    38 sg:pub.10.1038/sj.bjc.6690617
    39 sg:pub.10.1038/sj.onc.1202660
    40 schema:datePublished 2004-11
    41 schema:datePublishedReg 2004-11-01
    42 schema:description Key PointsWidespread clinical use of 18fluorodeoxyglucose positron-emission tomography has demonstrated that the glycolytic phenotype is observed in most human cancers.The concept of carcinogenesis as a process that occurs by somatic evolution clearly implies that common traits of the malignant phenotype, such as upregulation of glycolysis, are the result of active selection processes and must confer a significant, identifiable growth advantage.Constitutive upregulation of glycolysis is likely to be an adaptation to hypoxia that develops as pre-malignant lesions grow progressively further from their blood supply. At this stage, the blood supply remains physically separated from the growing cells by an intact basement membrane.Increased acid production from upregulation of glycolysis results in microenvironmental acidosis and requires further adaptation through somatic evolution to phenotypes resistant to acid-induced toxicity.Cell populations that emerge from this evolutionary sequence have a powerful growth advantage, as they alter their environment through increased glycolysis in a way that is toxic to other phenotypes, but harmless to themselves. The environmental acidosis also facilitates invasion through destruction of adjacent normal populations, degradation of the extracellular matrix and promotion of angiogenesis.We propose that the glycolytic phenotype, by conferring a powerful growth advantage, is necessary for evolution of invasive human cancers.
    43 schema:genre article
    44 schema:inLanguage en
    45 schema:isAccessibleForFree false
    46 schema:isPartOf N27781cd12a784b44b46d2ff777eaf2be
    47 Nf6047681cb644dfaa2ea7dba5f12cf50
    48 sg:journal.1029716
    49 schema:keywords Key PointsWidespread clinical use
    50 PointsWidespread clinical use
    51 acid production
    52 acid-induced toxicity
    53 acidosis
    54 active selection process
    55 adaptation
    56 adjacent normal populations
    57 advantages
    58 aerobic glycolysis
    59 angiogenesis
    60 basement membrane
    61 blood supply
    62 cancer
    63 carcinogenesis
    64 cell populations
    65 cells
    66 clinical use
    67 common traits
    68 concept
    69 concept of carcinogenesis
    70 constitutive upregulation
    71 degradation
    72 destruction
    73 environment
    74 environmental acidosis
    75 evolution
    76 evolutionary sequence
    77 extracellular matrix
    78 further adaptation
    79 glycolysis
    80 glycolysis results
    81 glycolytic phenotype
    82 growth advantage
    83 high aerobic glycolysis
    84 human cancers
    85 hypoxia
    86 identifiable growth advantage
    87 intact basement membrane
    88 invasion
    89 invasive human cancers
    90 lesions
    91 malignant phenotype
    92 matrix
    93 membrane
    94 microenvironmental acidosis
    95 most human cancers
    96 normal population
    97 phenotype
    98 population
    99 positron emission tomography
    100 powerful growth advantage
    101 pre-malignant lesions
    102 process
    103 production
    104 promotion
    105 promotion of angiogenesis
    106 results
    107 selection process
    108 sequence
    109 somatic evolution
    110 stage
    111 supply
    112 tomography
    113 toxicity
    114 traits
    115 upregulation
    116 upregulation of glycolysis
    117 use
    118 way
    119 schema:name Why do cancers have high aerobic glycolysis?
    120 schema:pagination 891-899
    121 schema:productId N0931013f7dee468eb8f22b10b1fa3193
    122 Nb5ee85fc7d6a43b286b82525e4f9b4de
    123 Nf93e48377b2e4f82b3e3d8f0c0c464b9
    124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032257073
    125 https://doi.org/10.1038/nrc1478
    126 schema:sdDatePublished 2022-01-01T18:13
    127 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    128 schema:sdPublisher N73846a83e8704d8e9cd28d90b8d8bc0c
    129 schema:url https://doi.org/10.1038/nrc1478
    130 sgo:license sg:explorer/license/
    131 sgo:sdDataset articles
    132 rdf:type schema:ScholarlyArticle
    133 N0931013f7dee468eb8f22b10b1fa3193 schema:name doi
    134 schema:value 10.1038/nrc1478
    135 rdf:type schema:PropertyValue
    136 N102615349d2249dcbe73868211a772a5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    137 schema:name Phenotype
    138 rdf:type schema:DefinedTerm
    139 N22e0af9c5c9347c8b5367c1af2054d30 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    140 schema:name Humans
    141 rdf:type schema:DefinedTerm
    142 N27781cd12a784b44b46d2ff777eaf2be schema:issueNumber 11
    143 rdf:type schema:PublicationIssue
    144 N48b7dd247a4245c08903dc743cf21c37 rdf:first sg:person.01251663701.28
    145 rdf:rest Need0ec9a3a494a6ab487aefed6e699ab
    146 N5235dd7b2ada4ae3bb234cdf31233511 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    147 schema:name Acidosis
    148 rdf:type schema:DefinedTerm
    149 N53160c35a0c34f0981bcfbff285d1ef4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    150 schema:name Oxygen
    151 rdf:type schema:DefinedTerm
    152 N576480d5ae504cf2a8cc687a75568765 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    153 schema:name Neoplasms
    154 rdf:type schema:DefinedTerm
    155 N6976f71a7696434fbf168cd53e21221b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    156 schema:name Up-Regulation
    157 rdf:type schema:DefinedTerm
    158 N6fd1abc0aeb34367b6453f0b5c5099c9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    159 schema:name Cell Proliferation
    160 rdf:type schema:DefinedTerm
    161 N73846a83e8704d8e9cd28d90b8d8bc0c schema:name Springer Nature - SN SciGraph project
    162 rdf:type schema:Organization
    163 Na80ccf1d90cf4409b357e8931fd53c1c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    164 schema:name Neoplasm Invasiveness
    165 rdf:type schema:DefinedTerm
    166 Nb5ee85fc7d6a43b286b82525e4f9b4de schema:name dimensions_id
    167 schema:value pub.1032257073
    168 rdf:type schema:PropertyValue
    169 Nd51d006c4cbd4b94a5211652444aca1e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    170 schema:name Glycolysis
    171 rdf:type schema:DefinedTerm
    172 Nd83803a523634715ae73d05d3ae0a498 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    173 schema:name Cell Transformation, Neoplastic
    174 rdf:type schema:DefinedTerm
    175 Ne2b6628a404e4715a37525281bc0d11e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    176 schema:name Neoplasm Metastasis
    177 rdf:type schema:DefinedTerm
    178 Ne6261d9928f046be9e01fb9fab7a1554 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    179 schema:name Neovascularization, Pathologic
    180 rdf:type schema:DefinedTerm
    181 Need0ec9a3a494a6ab487aefed6e699ab rdf:first sg:person.014224135057.83
    182 rdf:rest rdf:nil
    183 Nf6047681cb644dfaa2ea7dba5f12cf50 schema:volumeNumber 4
    184 rdf:type schema:PublicationVolume
    185 Nf93e48377b2e4f82b3e3d8f0c0c464b9 schema:name pubmed_id
    186 schema:value 15516961
    187 rdf:type schema:PropertyValue
    188 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    189 schema:name Medical and Health Sciences
    190 rdf:type schema:DefinedTerm
    191 sg:journal.1029716 schema:issn 1474-175X
    192 1474-1768
    193 schema:name Nature Reviews Cancer
    194 schema:publisher Springer Nature
    195 rdf:type schema:Periodical
    196 sg:person.01251663701.28 schema:affiliation grid-institutes:grid.134563.6
    197 schema:familyName Gatenby
    198 schema:givenName Robert A.
    199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251663701.28
    200 rdf:type schema:Person
    201 sg:person.014224135057.83 schema:affiliation grid-institutes:grid.134563.6
    202 schema:familyName Gillies
    203 schema:givenName Robert J.
    204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014224135057.83
    205 rdf:type schema:Person
    206 sg:pub.10.1007/978-1-4615-4863-8_74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025331549
    207 https://doi.org/10.1007/978-1-4615-4863-8_74
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1007/bf00046482 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052562582
    210 https://doi.org/10.1007/bf00046482
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1007/bf00121214 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049934315
    213 https://doi.org/10.1007/bf00121214
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1007/bf00284370 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047267243
    216 https://doi.org/10.1007/bf00284370
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1007/bf01874168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024589490
    219 https://doi.org/10.1007/bf01874168
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1007/bf02904704 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020223218
    222 https://doi.org/10.1007/bf02904704
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1007/s000660050022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020194991
    225 https://doi.org/10.1007/s000660050022
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1007/s00268-003-7191-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031583396
    228 https://doi.org/10.1007/s00268-003-7191-5
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1023/a:1018446104071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005600464
    231 https://doi.org/10.1023/a:1018446104071
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1023/a:1022407116339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022448776
    234 https://doi.org/10.1023/a:1022407116339
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1023/a:1022446730452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044374655
    237 https://doi.org/10.1023/a:1022446730452
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1023/a:1022494613613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018464471
    240 https://doi.org/10.1023/a:1022494613613
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1023/a:1022498714522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020940157
    243 https://doi.org/10.1023/a:1022498714522
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1038/28867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020992380
    246 https://doi.org/10.1038/28867
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1038/379088a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007643465
    249 https://doi.org/10.1038/379088a0
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1038/418823a schema:sameAs https://app.dimensions.ai/details/publication/pub.1010356341
    252 https://doi.org/10.1038/418823a
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1038/71429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032718023
    255 https://doi.org/10.1038/71429
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1038/bjc.1955.55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043829956
    258 https://doi.org/10.1038/bjc.1955.55
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1038/bjc.1991.378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047247383
    261 https://doi.org/10.1038/bjc.1991.378
    262 rdf:type schema:CreativeWork
    263 sg:pub.10.1038/nm0297-177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025563287
    264 https://doi.org/10.1038/nm0297-177
    265 rdf:type schema:CreativeWork
    266 sg:pub.10.1038/nrc1187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034382167
    267 https://doi.org/10.1038/nrc1187
    268 rdf:type schema:CreativeWork
    269 sg:pub.10.1038/nrc882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036705264
    270 https://doi.org/10.1038/nrc882
    271 rdf:type schema:CreativeWork
    272 sg:pub.10.1038/sj.bjc.6690586 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051263178
    273 https://doi.org/10.1038/sj.bjc.6690586
    274 rdf:type schema:CreativeWork
    275 sg:pub.10.1038/sj.bjc.6690617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021494252
    276 https://doi.org/10.1038/sj.bjc.6690617
    277 rdf:type schema:CreativeWork
    278 sg:pub.10.1038/sj.onc.1202660 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035053743
    279 https://doi.org/10.1038/sj.onc.1202660
    280 rdf:type schema:CreativeWork
    281 grid-institutes:grid.134563.6 schema:alternateName Departments of Radiology and Applied Mathematics, University of Arizona, 85721, Tucson, Arizona, USA
    282 Departments of Radiology and Biochemistry and Molecular Biophysics, University of Arizona, 85721, Tucson, Arizona, USA
    283 schema:name Departments of Radiology and Applied Mathematics, University of Arizona, 85721, Tucson, Arizona, USA
    284 Departments of Radiology and Biochemistry and Molecular Biophysics, University of Arizona, 85721, Tucson, Arizona, USA
    285 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...