Long-read sequencing data analysis for yeasts View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-05-03

AUTHORS

Jia-Xing Yue, Gianni Liti

ABSTRACT

Long-read sequencing technologies have become increasingly popular due to their strengths in resolving complex genomic regions. As a leading model organism with small genome size and great biotechnological importance, the budding yeast Saccharomyces cerevisiae has many isolates currently being sequenced with long reads. However, analyzing long-read sequencing data to produce high-quality genome assembly and annotation remains challenging. Here, we present a modular computational framework named long-read sequencing data analysis for yeasts (LRSDAY), the first one-stop solution that streamlines this process. Starting from the raw sequencing reads, LRSDAY can produce chromosome-level genome assembly and comprehensive genome annotation in a highly automated manner with minimal manual intervention, which is not possible using any alternative tool available to date. The annotated genomic features include centromeres, protein-coding genes, tRNAs, transposable elements (TEs), and telomere-associated elements. Although tailored for S. cerevisiae, we designed LRSDAY to be highly modular and customizable, making it adaptable to virtually any eukaryotic organism. When applying LRSDAY to an S. cerevisiae strain, it takes ∼41 h to generate a complete and well-annotated genome from ∼100× Pacific Biosciences (PacBio) running the basic workflow with four threads. Basic experience working within the Linux command-line environment is recommended for carrying out the analysis using LRSDAY. More... »

PAGES

1213

References to SciGraph publications

  • 2016-12. Phased diploid genome assembly with single-molecule real-time sequencing in NATURE METHODS
  • 2017-04. Single-molecule sequencing and chromatin conformation capture enable de novo reference assembly of the domestic goat genome in NATURE GENETICS
  • 2012-07. Hybrid error correction and de novo assembly of single-molecule sequencing reads in NATURE BIOTECHNOLOGY
  • 2013-06. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data in NATURE METHODS
  • 2008-12. Automated paleontology of repetitive DNA with REANNOTATE in BMC GENOMICS
  • 2013. Sibelia: A Scalable and Comprehensive Synteny Block Generation Tool for Closely Related Microbial Genomes in ALGORITHMS IN BIOINFORMATICS
  • 2018-04. Genome evolution across 1,011 Saccharomyces cerevisiae isolates in NATURE
  • 2015-11. Single-molecule sequencing of the desiccation-tolerant grass Oropetium thomaeum in NATURE
  • 2015-06. Assembling large genomes with single-molecule sequencing and locality-sensitive hashing in NATURE BIOTECHNOLOGY
  • 2018-01-29. Nanopore sequencing and assembly of a human genome with ultra-long reads in NATURE BIOTECHNOLOGY
  • 2011-12. MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects in BMC BIOINFORMATICS
  • 2008-09. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments in GENOME BIOLOGY
  • 2017-06. The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution in NATURE
  • 2017-06. Contrasting evolutionary genome dynamics between domesticated and wild yeasts in NATURE GENETICS
  • 2011-01. Integrative genomics viewer in NATURE BIOTECHNOLOGY
  • 2017-12. De novo yeast genome assemblies from MinION, PacBio and MiSeq platforms in SCIENTIFIC REPORTS
  • 2012-12. A pipeline for automated annotation of yeast genome sequences by a conserved-synteny approach in BMC BIOINFORMATICS
  • Journal

    TITLE

    Nature Protocols

    ISSUE

    6

    VOLUME

    13

    From Grant

  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nprot.2018.025

    DOI

    http://dx.doi.org/10.1038/nprot.2018.025

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1103764887

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/29725120


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute of Research on Cancer and Aging in Nice", 
              "id": "https://www.grid.ac/institutes/grid.463830.a", 
              "name": [
                "Universit\u00e9 C\u00f4te d'Azur, CNRS, INSERM, IRCAN, Nice, France."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yue", 
            "givenName": "Jia-Xing", 
            "id": "sg:person.0646257562.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646257562.14"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Research on Cancer and Aging in Nice", 
              "id": "https://www.grid.ac/institutes/grid.463830.a", 
              "name": [
                "Universit\u00e9 C\u00f4te d'Azur, CNRS, INSERM, IRCAN, Nice, France."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liti", 
            "givenName": "Gianni", 
            "id": "sg:person.01140234414.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01140234414.73"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nmeth.2474", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002897135", 
              "https://doi.org/10.1038/nmeth.2474"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.aae0344", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007526601"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btw152", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008120144"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btu280", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014952353"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkr1293", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016726853"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2016.08.020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017989680"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.4035", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019059120", 
              "https://doi.org/10.1038/nmeth.4035"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0112963", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019307347"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.1754", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019307928", 
              "https://doi.org/10.1038/nbt.1754"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0092621", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022509597"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkh379", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029024910"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2008-9-1-r7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029779393", 
              "https://doi.org/10.1186/gb-2008-9-1-r7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-13-237", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030139446", 
              "https://doi.org/10.1186/1471-2105-13-237"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.185538.114", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031054093"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/g3.116.029389", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031056399"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/g3.116.029389", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031056399"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature15714", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031293561", 
              "https://doi.org/10.1038/nature15714"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.107524.110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032096953"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/mec.13341", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032840841"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/molbev/msu037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032915689"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2280", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033360952", 
              "https://doi.org/10.1038/nbt.2280"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-9-614", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036294383", 
              "https://doi.org/10.1186/1471-2164-9-614"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-12-491", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039713283", 
              "https://doi.org/10.1186/1471-2105-12-491"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-12-491", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039713283", 
              "https://doi.org/10.1186/1471-2105-12-491"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.3238", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040313779", 
              "https://doi.org/10.1038/nbt.3238"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.10.4.516", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040860989"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gki487", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044813607"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-40453-5_17", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050868498", 
              "https://doi.org/10.1007/978-3-642-40453-5_17"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.191395.115", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051820620"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.274.5287.546", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062554574"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.283.5405.1168", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062564255"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1077141234", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3802", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084129143", 
              "https://doi.org/10.1038/ng.3802"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/gigascience/giw018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084184782"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.215087.116", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084197434"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3847", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084862877", 
              "https://doi.org/10.1038/ng.3847"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3847", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084862877", 
              "https://doi.org/10.1038/ng.3847"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature22380", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085463905", 
              "https://doi.org/10.1038/nature22380"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature22380", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085463905", 
              "https://doi.org/10.1038/nature22380"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-017-03996-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086055771", 
              "https://doi.org/10.1038/s41598-017-03996-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.4060", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100685340", 
              "https://doi.org/10.1038/nbt.4060"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41586-018-0030-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103250606", 
              "https://doi.org/10.1038/s41586-018-0030-5"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-05-03", 
        "datePublishedReg": "2018-05-03", 
        "description": "Long-read sequencing technologies have become increasingly popular due to their strengths in resolving complex genomic regions. As a leading model organism with small genome size and great biotechnological importance, the budding yeast Saccharomyces cerevisiae has many isolates currently being sequenced with long reads. However, analyzing long-read sequencing data to produce high-quality genome assembly and annotation remains challenging. Here, we present a modular computational framework named long-read sequencing data analysis for yeasts (LRSDAY), the first one-stop solution that streamlines this process. Starting from the raw sequencing reads, LRSDAY can produce chromosome-level genome assembly and comprehensive genome annotation in a highly automated manner with minimal manual intervention, which is not possible using any alternative tool available to date. The annotated genomic features include centromeres, protein-coding genes, tRNAs, transposable elements (TEs), and telomere-associated elements. Although tailored for S. cerevisiae, we designed LRSDAY to be highly modular and customizable, making it adaptable to virtually any eukaryotic organism. When applying LRSDAY to an S. cerevisiae strain, it takes \u223c41 h to generate a complete and well-annotated genome from \u223c100\u00d7 Pacific Biosciences (PacBio) running the basic workflow with four threads. Basic experience working within the Linux command-line environment is recommended for carrying out the analysis using LRSDAY.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nprot.2018.025", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7738556", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3797357", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3732087", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1037502", 
            "issn": [
              "1754-2189", 
              "1750-2799"
            ], 
            "name": "Nature Protocols", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "13"
          }
        ], 
        "name": "Long-read sequencing data analysis for yeasts", 
        "pagination": "1213", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "76d3e967d5d7076aa7ccbd290455d5748912eae7119ab9110638cd6af705b7fc"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "29725120"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101284307"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nprot.2018.025"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1103764887"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nprot.2018.025", 
          "https://app.dimensions.ai/details/publication/pub.1103764887"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T14:34", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13109_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/nprot.2018.025"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nprot.2018.025'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nprot.2018.025'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nprot.2018.025'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nprot.2018.025'


     

    This table displays all metadata directly associated to this object as RDF triples.

    212 TRIPLES      21 PREDICATES      66 URIs      20 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nprot.2018.025 schema:about anzsrc-for:06
    2 anzsrc-for:0604
    3 schema:author N5bd30f600dd0443a800a75b0cd18417d
    4 schema:citation sg:pub.10.1007/978-3-642-40453-5_17
    5 sg:pub.10.1038/nature15714
    6 sg:pub.10.1038/nature22380
    7 sg:pub.10.1038/nbt.1754
    8 sg:pub.10.1038/nbt.2280
    9 sg:pub.10.1038/nbt.3238
    10 sg:pub.10.1038/nbt.4060
    11 sg:pub.10.1038/ng.3802
    12 sg:pub.10.1038/ng.3847
    13 sg:pub.10.1038/nmeth.2474
    14 sg:pub.10.1038/nmeth.4035
    15 sg:pub.10.1038/s41586-018-0030-5
    16 sg:pub.10.1038/s41598-017-03996-z
    17 sg:pub.10.1186/1471-2105-12-491
    18 sg:pub.10.1186/1471-2105-13-237
    19 sg:pub.10.1186/1471-2164-9-614
    20 sg:pub.10.1186/gb-2008-9-1-r7
    21 https://app.dimensions.ai/details/publication/pub.1077141234
    22 https://doi.org/10.1016/j.cell.2016.08.020
    23 https://doi.org/10.1093/bioinformatics/btu280
    24 https://doi.org/10.1093/bioinformatics/btw152
    25 https://doi.org/10.1093/gigascience/giw018
    26 https://doi.org/10.1093/molbev/msu037
    27 https://doi.org/10.1093/nar/gkh379
    28 https://doi.org/10.1093/nar/gki487
    29 https://doi.org/10.1093/nar/gkr1293
    30 https://doi.org/10.1101/gr.10.4.516
    31 https://doi.org/10.1101/gr.107524.110
    32 https://doi.org/10.1101/gr.185538.114
    33 https://doi.org/10.1101/gr.191395.115
    34 https://doi.org/10.1101/gr.215087.116
    35 https://doi.org/10.1111/mec.13341
    36 https://doi.org/10.1126/science.274.5287.546
    37 https://doi.org/10.1126/science.283.5405.1168
    38 https://doi.org/10.1126/science.aae0344
    39 https://doi.org/10.1371/journal.pone.0092621
    40 https://doi.org/10.1371/journal.pone.0112963
    41 https://doi.org/10.1534/g3.116.029389
    42 schema:datePublished 2018-05-03
    43 schema:datePublishedReg 2018-05-03
    44 schema:description Long-read sequencing technologies have become increasingly popular due to their strengths in resolving complex genomic regions. As a leading model organism with small genome size and great biotechnological importance, the budding yeast Saccharomyces cerevisiae has many isolates currently being sequenced with long reads. However, analyzing long-read sequencing data to produce high-quality genome assembly and annotation remains challenging. Here, we present a modular computational framework named long-read sequencing data analysis for yeasts (LRSDAY), the first one-stop solution that streamlines this process. Starting from the raw sequencing reads, LRSDAY can produce chromosome-level genome assembly and comprehensive genome annotation in a highly automated manner with minimal manual intervention, which is not possible using any alternative tool available to date. The annotated genomic features include centromeres, protein-coding genes, tRNAs, transposable elements (TEs), and telomere-associated elements. Although tailored for S. cerevisiae, we designed LRSDAY to be highly modular and customizable, making it adaptable to virtually any eukaryotic organism. When applying LRSDAY to an S. cerevisiae strain, it takes ∼41 h to generate a complete and well-annotated genome from ∼100× Pacific Biosciences (PacBio) running the basic workflow with four threads. Basic experience working within the Linux command-line environment is recommended for carrying out the analysis using LRSDAY.
    45 schema:genre research_article
    46 schema:inLanguage en
    47 schema:isAccessibleForFree false
    48 schema:isPartOf N546ad43e56774dc2beeb2b41d5fcb37a
    49 Nbe0f6d44084f407884e6c8dbc3637564
    50 sg:journal.1037502
    51 schema:name Long-read sequencing data analysis for yeasts
    52 schema:pagination 1213
    53 schema:productId N2c0d0cfae19c4fb6836f4e2666ac082e
    54 N485aa34bce3f407b98298f556a6c38ae
    55 N4d7b5fe3d4204d83a1713d5aa9046daa
    56 N6e4790cba7284cee93fa8b979c222a0a
    57 N960612b37db74d5392ca249b9841abf1
    58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103764887
    59 https://doi.org/10.1038/nprot.2018.025
    60 schema:sdDatePublished 2019-04-11T14:34
    61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    62 schema:sdPublisher Ndc31edeb168b464586240726634a8ae7
    63 schema:url https://www.nature.com/articles/nprot.2018.025
    64 sgo:license sg:explorer/license/
    65 sgo:sdDataset articles
    66 rdf:type schema:ScholarlyArticle
    67 N2c0d0cfae19c4fb6836f4e2666ac082e schema:name nlm_unique_id
    68 schema:value 101284307
    69 rdf:type schema:PropertyValue
    70 N485aa34bce3f407b98298f556a6c38ae schema:name readcube_id
    71 schema:value 76d3e967d5d7076aa7ccbd290455d5748912eae7119ab9110638cd6af705b7fc
    72 rdf:type schema:PropertyValue
    73 N4d7b5fe3d4204d83a1713d5aa9046daa schema:name dimensions_id
    74 schema:value pub.1103764887
    75 rdf:type schema:PropertyValue
    76 N546ad43e56774dc2beeb2b41d5fcb37a schema:issueNumber 6
    77 rdf:type schema:PublicationIssue
    78 N5bd30f600dd0443a800a75b0cd18417d rdf:first sg:person.0646257562.14
    79 rdf:rest N7efed0d4780c421ba74171c09732737c
    80 N6e4790cba7284cee93fa8b979c222a0a schema:name pubmed_id
    81 schema:value 29725120
    82 rdf:type schema:PropertyValue
    83 N7efed0d4780c421ba74171c09732737c rdf:first sg:person.01140234414.73
    84 rdf:rest rdf:nil
    85 N960612b37db74d5392ca249b9841abf1 schema:name doi
    86 schema:value 10.1038/nprot.2018.025
    87 rdf:type schema:PropertyValue
    88 Nbe0f6d44084f407884e6c8dbc3637564 schema:volumeNumber 13
    89 rdf:type schema:PublicationVolume
    90 Ndc31edeb168b464586240726634a8ae7 schema:name Springer Nature - SN SciGraph project
    91 rdf:type schema:Organization
    92 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    93 schema:name Biological Sciences
    94 rdf:type schema:DefinedTerm
    95 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    96 schema:name Genetics
    97 rdf:type schema:DefinedTerm
    98 sg:grant.3732087 http://pending.schema.org/fundedItem sg:pub.10.1038/nprot.2018.025
    99 rdf:type schema:MonetaryGrant
    100 sg:grant.3797357 http://pending.schema.org/fundedItem sg:pub.10.1038/nprot.2018.025
    101 rdf:type schema:MonetaryGrant
    102 sg:grant.7738556 http://pending.schema.org/fundedItem sg:pub.10.1038/nprot.2018.025
    103 rdf:type schema:MonetaryGrant
    104 sg:journal.1037502 schema:issn 1750-2799
    105 1754-2189
    106 schema:name Nature Protocols
    107 rdf:type schema:Periodical
    108 sg:person.01140234414.73 schema:affiliation https://www.grid.ac/institutes/grid.463830.a
    109 schema:familyName Liti
    110 schema:givenName Gianni
    111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01140234414.73
    112 rdf:type schema:Person
    113 sg:person.0646257562.14 schema:affiliation https://www.grid.ac/institutes/grid.463830.a
    114 schema:familyName Yue
    115 schema:givenName Jia-Xing
    116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646257562.14
    117 rdf:type schema:Person
    118 sg:pub.10.1007/978-3-642-40453-5_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050868498
    119 https://doi.org/10.1007/978-3-642-40453-5_17
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1038/nature15714 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031293561
    122 https://doi.org/10.1038/nature15714
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1038/nature22380 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085463905
    125 https://doi.org/10.1038/nature22380
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1038/nbt.1754 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019307928
    128 https://doi.org/10.1038/nbt.1754
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1038/nbt.2280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033360952
    131 https://doi.org/10.1038/nbt.2280
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1038/nbt.3238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040313779
    134 https://doi.org/10.1038/nbt.3238
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1038/nbt.4060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100685340
    137 https://doi.org/10.1038/nbt.4060
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1038/ng.3802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084129143
    140 https://doi.org/10.1038/ng.3802
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1038/ng.3847 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084862877
    143 https://doi.org/10.1038/ng.3847
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1038/nmeth.2474 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002897135
    146 https://doi.org/10.1038/nmeth.2474
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1038/nmeth.4035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019059120
    149 https://doi.org/10.1038/nmeth.4035
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1038/s41586-018-0030-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103250606
    152 https://doi.org/10.1038/s41586-018-0030-5
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1038/s41598-017-03996-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1086055771
    155 https://doi.org/10.1038/s41598-017-03996-z
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1186/1471-2105-12-491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039713283
    158 https://doi.org/10.1186/1471-2105-12-491
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1186/1471-2105-13-237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030139446
    161 https://doi.org/10.1186/1471-2105-13-237
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1186/1471-2164-9-614 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036294383
    164 https://doi.org/10.1186/1471-2164-9-614
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1186/gb-2008-9-1-r7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029779393
    167 https://doi.org/10.1186/gb-2008-9-1-r7
    168 rdf:type schema:CreativeWork
    169 https://app.dimensions.ai/details/publication/pub.1077141234 schema:CreativeWork
    170 https://doi.org/10.1016/j.cell.2016.08.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017989680
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1093/bioinformatics/btu280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014952353
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1093/bioinformatics/btw152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008120144
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1093/gigascience/giw018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084184782
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1093/molbev/msu037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032915689
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1093/nar/gkh379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029024910
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1093/nar/gki487 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044813607
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1093/nar/gkr1293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016726853
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1101/gr.10.4.516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040860989
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1101/gr.107524.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032096953
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1101/gr.185538.114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031054093
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1101/gr.191395.115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051820620
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1101/gr.215087.116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084197434
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1111/mec.13341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032840841
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1126/science.274.5287.546 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062554574
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1126/science.283.5405.1168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062564255
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1126/science.aae0344 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007526601
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1371/journal.pone.0092621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022509597
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1371/journal.pone.0112963 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019307347
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1534/g3.116.029389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031056399
    209 rdf:type schema:CreativeWork
    210 https://www.grid.ac/institutes/grid.463830.a schema:alternateName Institute of Research on Cancer and Aging in Nice
    211 schema:name Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France.
    212 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...