Using hiCLIP to identify RNA duplexes that interact with a specific RNA-binding protein View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-03

AUTHORS

Yoichiro Sugimoto, Anob M Chakrabarti, Nicholas M Luscombe, Jernej Ule

ABSTRACT

The structure of RNA molecules has a critical role in regulating gene expression, largely through influencing their interactions with RNA-binding proteins (RBPs). RNA hybrid and individual-nucleotide resolution UV cross-linking and immunoprecipitation (hiCLIP) is a transcriptome-wide method of monitoring these interactions by identifying RNA duplexes bound by a specific RBP. The hiCLIP protocol consists of the following steps: in vivo cross-linking of RBPs to their bound RNAs; partial RNA digestion and purification of RNA duplexes interacting with the specific RBP using immunoprecipitation; ligation of the two arms of RNA duplexes via a linker; reverse transcription; cDNA library amplification; and finally high-throughput DNA sequencing. Mapping of the sequenced arms to a reference transcriptome identifies the exact locations of duplexes. hiCLIP data can directly identify all types of RNA duplexes bound by RBPs, including those that are challenging to predict computationally, such as intermolecular and long-range intramolecular duplexes. Moreover, the use of an adaptor that links the two arms of the RNA duplex permits hiCLIP to unambiguously identify the duplexes. Here we describe in detail the procedure for a hiCLIP experiment and the subsequent streamlined data analysis with an R package, 'hiclipr' (https://github.com/luslab/hiclipr/). Preparation of the library for high-throughput DNA sequencing takes ∼7 d and the basic bioinformatic pipeline takes 1 d. More... »

PAGES

611-637

References to SciGraph publications

  • 2004-12. The double-stranded-RNA-binding motif: interference and much more in NATURE REVIEWS MOLECULAR CELL BIOLOGY
  • 2014-01. In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features in NATURE
  • 2016-06. Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP) in NATURE METHODS
  • 2009. Filter-Binding Assays in DNA-PROTEIN INTERACTIONS
  • 2009-01. Analysis of the platypus genome suggests a transposon origin for mammalian imprinting in GENOME BIOLOGY
  • 2011-04. Characterizing the RNA targets and position-dependent splicing regulation by TDP-43 in NATURE NEUROSCIENCE
  • 2012-12-02. Control of somatic tissue differentiation by the long non-coding RNA TINCR in NATURE
  • 2011-02. lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3′ UTRs via Alu elements in NATURE
  • 2011-09. Understanding the transcriptome through RNA structure in NATURE REVIEWS GENETICS
  • 2014-03. Mapping the miRNA interactome by cross-linking ligation and sequencing of hybrids (CLASH) in NATURE PROTOCOLS
  • 2011-01. Integrative genomics viewer in NATURE BIOTECHNOLOGY
  • 2015-03. Structural imprints in vivo decode RNA regulatory mechanisms in NATURE
  • 2013-12. Determination of in vivo RNA structure in low-abundance transcripts in NATURE COMMUNICATIONS
  • 2016-02. Transcriptome-wide interrogation of RNA secondary structure in living cells with icSHAPE in NATURE PROTOCOLS
  • 2010-07. iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 2013-10. mRNA–mRNA duplexes that autoelicit Staufen1-mediated mRNA decay in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 2015-12. miRNA–target chimeras reveal miRNA 3′-end pairing as a major determinant of Argonaute target specificity in NATURE COMMUNICATIONS
  • 2014. Western Blotting Technique in Biomedical Research in CURRENT LABORATORY METHODS IN NEUROSCIENCE RESEARCH
  • 2016-06. irCLIP platform for efficient characterization of protein-RNA interactions in NATURE METHODS
  • 2015-03. hiCLIP reveals the in vivo atlas of mRNA secondary structures recognized by Staufen 1 in NATURE
  • 2014-01. Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo in NATURE
  • 2014-02. Mapping Argonaute and conventional RNA-binding protein interactions with RNA at single-nucleotide resolution using HITS-CLIP and CIMS analysis in NATURE PROTOCOLS
  • 2014-04. CRISPR-Cas systems for editing, regulating and targeting genomes in NATURE BIOTECHNOLOGY
  • 2010-09. Genome-wide measurement of RNA secondary structure in yeast in NATURE
  • 2004-07. MicroRNAs: small RNAs with a big role in gene regulation in NATURE REVIEWS GENETICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nprot.2016.188

    DOI

    http://dx.doi.org/10.1038/nprot.2016.188

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1083860820

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/28230851


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Line", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Collodion", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computational Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Electrophoresis, Polyacrylamide Gel", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Immunoprecipitation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Membranes, Artificial", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Protein Binding", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "RNA", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "RNA-Binding Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Substrate Specificity", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "The Francis Crick Institute", 
              "id": "https://www.grid.ac/institutes/grid.451388.3", 
              "name": [
                "Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK.", 
                "The Francis Crick Institute, London, UK."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sugimoto", 
            "givenName": "Yoichiro", 
            "id": "sg:person.01206446203.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206446203.06"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University College London", 
              "id": "https://www.grid.ac/institutes/grid.83440.3b", 
              "name": [
                "The Francis Crick Institute, London, UK.", 
                "Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College London, London, UK."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chakrabarti", 
            "givenName": "Anob M", 
            "id": "sg:person.01037470325.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037470325.21"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Okinawa Institute of Science and Technology", 
              "id": "https://www.grid.ac/institutes/grid.250464.1", 
              "name": [
                "The Francis Crick Institute, London, UK.", 
                "Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College London, London, UK.", 
                "Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Luscombe", 
            "givenName": "Nicholas M", 
            "id": "sg:person.0766526513.53", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766526513.53"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "The Francis Crick Institute", 
              "id": "https://www.grid.ac/institutes/grid.451388.3", 
              "name": [
                "Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK.", 
                "The Francis Crick Institute, London, UK."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ule", 
            "givenName": "Jernej", 
            "id": "sg:person.0674426730.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674426730.31"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.cell.2013.03.043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000605111"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg1379", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001799892", 
              "https://doi.org/10.1038/nrg1379"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg1379", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001799892", 
              "https://doi.org/10.1038/nrg1379"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4614-8794-4_14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002217024", 
              "https://doi.org/10.1007/978-1-4614-8794-4_14"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-60327-015-1_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003842130", 
              "https://doi.org/10.1007/978-1-60327-015-1_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/9.1.133", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004222010"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/wrna.31", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005965573"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.3840", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006396368", 
              "https://doi.org/10.1038/nmeth.3840"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nprot.2016.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006859463", 
              "https://doi.org/10.1038/nprot.2016.011"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg3049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007002917", 
              "https://doi.org/10.1038/nrg3049"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature14280", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007638796", 
              "https://doi.org/10.1038/nature14280"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nsmb.1838", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009634080", 
              "https://doi.org/10.1038/nsmb.1838"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nsmb.1838", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009634080", 
              "https://doi.org/10.1038/nsmb.1838"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btv098", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011832020"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature14263", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012087852", 
              "https://doi.org/10.1038/nature14263"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms3971", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013086902", 
              "https://doi.org/10.1038/ncomms3971"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ar200051h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013293185"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ar200051h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013293185"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ymeth.2013.10.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014406080"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ymeth.2013.10.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014406080"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11661", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016106186", 
              "https://doi.org/10.1038/nature11661"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11661", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016106186", 
              "https://doi.org/10.1038/nature11661"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.sbi.2016.01.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017471584"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.1754", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019307928", 
              "https://doi.org/10.1038/nbt.1754"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.molcel.2016.04.030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020420816"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.molcel.2016.04.028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020904631"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.229102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022792016"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btp352", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023014918"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12756", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023750524", 
              "https://doi.org/10.1038/nature12756"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2016.04.028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023788536"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrm1528", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024180800", 
              "https://doi.org/10.1038/nrm1528"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrm1528", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024180800", 
              "https://doi.org/10.1038/nrm1528"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nprot.2014.043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026038123", 
              "https://doi.org/10.1038/nprot.2014.043"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nprot.2014.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027820768", 
              "https://doi.org/10.1038/nprot.2014.012"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms9864", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031013262", 
              "https://doi.org/10.1038/ncomms9864"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12894", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031549764", 
              "https://doi.org/10.1038/nature12894"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.bi.54.070185.005443", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032202016"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09322", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033775404", 
              "https://doi.org/10.1038/nature09322"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09322", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033775404", 
              "https://doi.org/10.1038/nature09322"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1261/rna.5248604", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034010998"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.molcel.2014.03.049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034203999"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09701", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037337046", 
              "https://doi.org/10.1038/nature09701"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.3810", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037788559", 
              "https://doi.org/10.1038/nmeth.3810"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2842", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038520013", 
              "https://doi.org/10.1038/nbt.2842"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nn.2778", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040486700", 
              "https://doi.org/10.1038/nn.2778"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2009-10-1-r1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041324905", 
              "https://doi.org/10.1186/gb-2009-10-1-r1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0014-5793(74)80385-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041547562"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2012.04.031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042503982"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.76.2.755", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043231937"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1090095", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046017157"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1017386108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046761431"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3791/2638", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047212383"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nsmb.2664", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051127837", 
              "https://doi.org/10.1038/nsmb.2664"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/12.5.359", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063982943"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/12.5.359", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063982943"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.14806/ej.17.1.200", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067372670"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-03", 
        "datePublishedReg": "2017-03-01", 
        "description": "The structure of RNA molecules has a critical role in regulating gene expression, largely through influencing their interactions with RNA-binding proteins (RBPs). RNA hybrid and individual-nucleotide resolution UV cross-linking and immunoprecipitation (hiCLIP) is a transcriptome-wide method of monitoring these interactions by identifying RNA duplexes bound by a specific RBP. The hiCLIP protocol consists of the following steps: in vivo cross-linking of RBPs to their bound RNAs; partial RNA digestion and purification of RNA duplexes interacting with the specific RBP using immunoprecipitation; ligation of the two arms of RNA duplexes via a linker; reverse transcription; cDNA library amplification; and finally high-throughput DNA sequencing. Mapping of the sequenced arms to a reference transcriptome identifies the exact locations of duplexes. hiCLIP data can directly identify all types of RNA duplexes bound by RBPs, including those that are challenging to predict computationally, such as intermolecular and long-range intramolecular duplexes. Moreover, the use of an adaptor that links the two arms of the RNA duplex permits hiCLIP to unambiguously identify the duplexes. Here we describe in detail the procedure for a hiCLIP experiment and the subsequent streamlined data analysis with an R package, 'hiclipr' (https://github.com/luslab/hiclipr/). Preparation of the library for high-throughput DNA sequencing takes \u223c7 d and the basic bioinformatic pipeline takes 1 d.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nprot.2016.188", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.6798250", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3790770", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.4578954", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1037502", 
            "issn": [
              "1754-2189", 
              "1750-2799"
            ], 
            "name": "Nature Protocols", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "12"
          }
        ], 
        "name": "Using hiCLIP to identify RNA duplexes that interact with a specific RNA-binding protein", 
        "pagination": "611-637", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "63aaef6a800116830205319fd682944ad80b8a763ba340b44473b7a0ff38aac5"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "28230851"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101284307"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nprot.2016.188"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1083860820"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nprot.2016.188", 
          "https://app.dimensions.ai/details/publication/pub.1083860820"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T20:51", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000538.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/nprot/journal/v12/n3/full/nprot.2016.188.html"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nprot.2016.188'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nprot.2016.188'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nprot.2016.188'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nprot.2016.188'


     

    This table displays all metadata directly associated to this object as RDF triples.

    315 TRIPLES      21 PREDICATES      87 URIs      31 LITERALS      19 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nprot.2016.188 schema:about N24d54ae434da4638b9dcf7b383cbd931
    2 N3d63572d316e41059345b8eb305af974
    3 N4535952d02ea491aaf48843917a06df0
    4 N5a73652d46594f4692ef8946001e3417
    5 N902e82a72368467d91c834eab2b8b43c
    6 Nb54ed96d5b9b43e7b03f479e8b8288f2
    7 Nd370900576634d3ab878d8931fed1ae8
    8 Ne251620b4cbe4095b542c9dd4404f500
    9 Ne4fe2b1270634df9a44f64fe4f46b2fc
    10 Nf91bff90465b407181fbf1eed011c4ed
    11 anzsrc-for:06
    12 anzsrc-for:0604
    13 schema:author N95ced1a49b12467e8405c5e390ab4a42
    14 schema:citation sg:pub.10.1007/978-1-4614-8794-4_14
    15 sg:pub.10.1007/978-1-60327-015-1_1
    16 sg:pub.10.1038/nature09322
    17 sg:pub.10.1038/nature09701
    18 sg:pub.10.1038/nature11661
    19 sg:pub.10.1038/nature12756
    20 sg:pub.10.1038/nature12894
    21 sg:pub.10.1038/nature14263
    22 sg:pub.10.1038/nature14280
    23 sg:pub.10.1038/nbt.1754
    24 sg:pub.10.1038/nbt.2842
    25 sg:pub.10.1038/ncomms3971
    26 sg:pub.10.1038/ncomms9864
    27 sg:pub.10.1038/nmeth.3810
    28 sg:pub.10.1038/nmeth.3840
    29 sg:pub.10.1038/nn.2778
    30 sg:pub.10.1038/nprot.2014.012
    31 sg:pub.10.1038/nprot.2014.043
    32 sg:pub.10.1038/nprot.2016.011
    33 sg:pub.10.1038/nrg1379
    34 sg:pub.10.1038/nrg3049
    35 sg:pub.10.1038/nrm1528
    36 sg:pub.10.1038/nsmb.1838
    37 sg:pub.10.1038/nsmb.2664
    38 sg:pub.10.1186/gb-2009-10-1-r1
    39 https://doi.org/10.1002/wrna.31
    40 https://doi.org/10.1016/0014-5793(74)80385-6
    41 https://doi.org/10.1016/j.cell.2012.04.031
    42 https://doi.org/10.1016/j.cell.2013.03.043
    43 https://doi.org/10.1016/j.cell.2016.04.028
    44 https://doi.org/10.1016/j.molcel.2014.03.049
    45 https://doi.org/10.1016/j.molcel.2016.04.028
    46 https://doi.org/10.1016/j.molcel.2016.04.030
    47 https://doi.org/10.1016/j.sbi.2016.01.007
    48 https://doi.org/10.1016/j.ymeth.2013.10.011
    49 https://doi.org/10.1021/ar200051h
    50 https://doi.org/10.1073/pnas.1017386108
    51 https://doi.org/10.1073/pnas.76.2.755
    52 https://doi.org/10.1093/bioinformatics/btp352
    53 https://doi.org/10.1093/bioinformatics/btv098
    54 https://doi.org/10.1093/nar/9.1.133
    55 https://doi.org/10.1101/gr.229102
    56 https://doi.org/10.1126/science.1090095
    57 https://doi.org/10.1146/annurev.bi.54.070185.005443
    58 https://doi.org/10.1177/12.5.359
    59 https://doi.org/10.1261/rna.5248604
    60 https://doi.org/10.14806/ej.17.1.200
    61 https://doi.org/10.3791/2638
    62 schema:datePublished 2017-03
    63 schema:datePublishedReg 2017-03-01
    64 schema:description The structure of RNA molecules has a critical role in regulating gene expression, largely through influencing their interactions with RNA-binding proteins (RBPs). RNA hybrid and individual-nucleotide resolution UV cross-linking and immunoprecipitation (hiCLIP) is a transcriptome-wide method of monitoring these interactions by identifying RNA duplexes bound by a specific RBP. The hiCLIP protocol consists of the following steps: in vivo cross-linking of RBPs to their bound RNAs; partial RNA digestion and purification of RNA duplexes interacting with the specific RBP using immunoprecipitation; ligation of the two arms of RNA duplexes via a linker; reverse transcription; cDNA library amplification; and finally high-throughput DNA sequencing. Mapping of the sequenced arms to a reference transcriptome identifies the exact locations of duplexes. hiCLIP data can directly identify all types of RNA duplexes bound by RBPs, including those that are challenging to predict computationally, such as intermolecular and long-range intramolecular duplexes. Moreover, the use of an adaptor that links the two arms of the RNA duplex permits hiCLIP to unambiguously identify the duplexes. Here we describe in detail the procedure for a hiCLIP experiment and the subsequent streamlined data analysis with an R package, 'hiclipr' (https://github.com/luslab/hiclipr/). Preparation of the library for high-throughput DNA sequencing takes ∼7 d and the basic bioinformatic pipeline takes 1 d.
    65 schema:genre research_article
    66 schema:inLanguage en
    67 schema:isAccessibleForFree true
    68 schema:isPartOf N6fc1101106ba420faebb50d9d3030e80
    69 N739d81e9af884ecbb81c290c2298e091
    70 sg:journal.1037502
    71 schema:name Using hiCLIP to identify RNA duplexes that interact with a specific RNA-binding protein
    72 schema:pagination 611-637
    73 schema:productId N12496c11bf6c49078566b633d09f642c
    74 N1c7a15e883c1478db281b612b79440b9
    75 N28c6c9a615dc4229b638e1b8d147ff9c
    76 Nabbbba2944e04f79916ae1d0c9ca7acd
    77 Ndd3a156696f7493887a488327a30cc89
    78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083860820
    79 https://doi.org/10.1038/nprot.2016.188
    80 schema:sdDatePublished 2019-04-10T20:51
    81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    82 schema:sdPublisher N4c0795c9a3ff490dbab6445c56806fc7
    83 schema:url http://www.nature.com/nprot/journal/v12/n3/full/nprot.2016.188.html
    84 sgo:license sg:explorer/license/
    85 sgo:sdDataset articles
    86 rdf:type schema:ScholarlyArticle
    87 N12496c11bf6c49078566b633d09f642c schema:name readcube_id
    88 schema:value 63aaef6a800116830205319fd682944ad80b8a763ba340b44473b7a0ff38aac5
    89 rdf:type schema:PropertyValue
    90 N1c7a15e883c1478db281b612b79440b9 schema:name pubmed_id
    91 schema:value 28230851
    92 rdf:type schema:PropertyValue
    93 N24d54ae434da4638b9dcf7b383cbd931 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    94 schema:name Protein Binding
    95 rdf:type schema:DefinedTerm
    96 N28c6c9a615dc4229b638e1b8d147ff9c schema:name nlm_unique_id
    97 schema:value 101284307
    98 rdf:type schema:PropertyValue
    99 N30b7119bdbba4f81a5726b0eff2697a1 rdf:first sg:person.0766526513.53
    100 rdf:rest Ne21faaaf1a8a4ce3bdf0c931f9e73ebc
    101 N3d63572d316e41059345b8eb305af974 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    102 schema:name Substrate Specificity
    103 rdf:type schema:DefinedTerm
    104 N4535952d02ea491aaf48843917a06df0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    105 schema:name Cell Line
    106 rdf:type schema:DefinedTerm
    107 N4c0795c9a3ff490dbab6445c56806fc7 schema:name Springer Nature - SN SciGraph project
    108 rdf:type schema:Organization
    109 N5a73652d46594f4692ef8946001e3417 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    110 schema:name Computational Biology
    111 rdf:type schema:DefinedTerm
    112 N6ccd5636fc9040fc8cf6c6bf9a29746d rdf:first sg:person.01037470325.21
    113 rdf:rest N30b7119bdbba4f81a5726b0eff2697a1
    114 N6fc1101106ba420faebb50d9d3030e80 schema:issueNumber 3
    115 rdf:type schema:PublicationIssue
    116 N739d81e9af884ecbb81c290c2298e091 schema:volumeNumber 12
    117 rdf:type schema:PublicationVolume
    118 N902e82a72368467d91c834eab2b8b43c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    119 schema:name Immunoprecipitation
    120 rdf:type schema:DefinedTerm
    121 N95ced1a49b12467e8405c5e390ab4a42 rdf:first sg:person.01206446203.06
    122 rdf:rest N6ccd5636fc9040fc8cf6c6bf9a29746d
    123 Nabbbba2944e04f79916ae1d0c9ca7acd schema:name dimensions_id
    124 schema:value pub.1083860820
    125 rdf:type schema:PropertyValue
    126 Nb54ed96d5b9b43e7b03f479e8b8288f2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    127 schema:name RNA
    128 rdf:type schema:DefinedTerm
    129 Nd370900576634d3ab878d8931fed1ae8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    130 schema:name RNA-Binding Proteins
    131 rdf:type schema:DefinedTerm
    132 Ndd3a156696f7493887a488327a30cc89 schema:name doi
    133 schema:value 10.1038/nprot.2016.188
    134 rdf:type schema:PropertyValue
    135 Ne21faaaf1a8a4ce3bdf0c931f9e73ebc rdf:first sg:person.0674426730.31
    136 rdf:rest rdf:nil
    137 Ne251620b4cbe4095b542c9dd4404f500 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    138 schema:name Membranes, Artificial
    139 rdf:type schema:DefinedTerm
    140 Ne4fe2b1270634df9a44f64fe4f46b2fc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    141 schema:name Collodion
    142 rdf:type schema:DefinedTerm
    143 Nf91bff90465b407181fbf1eed011c4ed schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    144 schema:name Electrophoresis, Polyacrylamide Gel
    145 rdf:type schema:DefinedTerm
    146 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    147 schema:name Biological Sciences
    148 rdf:type schema:DefinedTerm
    149 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    150 schema:name Genetics
    151 rdf:type schema:DefinedTerm
    152 sg:grant.3790770 http://pending.schema.org/fundedItem sg:pub.10.1038/nprot.2016.188
    153 rdf:type schema:MonetaryGrant
    154 sg:grant.4578954 http://pending.schema.org/fundedItem sg:pub.10.1038/nprot.2016.188
    155 rdf:type schema:MonetaryGrant
    156 sg:grant.6798250 http://pending.schema.org/fundedItem sg:pub.10.1038/nprot.2016.188
    157 rdf:type schema:MonetaryGrant
    158 sg:journal.1037502 schema:issn 1750-2799
    159 1754-2189
    160 schema:name Nature Protocols
    161 rdf:type schema:Periodical
    162 sg:person.01037470325.21 schema:affiliation https://www.grid.ac/institutes/grid.83440.3b
    163 schema:familyName Chakrabarti
    164 schema:givenName Anob M
    165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037470325.21
    166 rdf:type schema:Person
    167 sg:person.01206446203.06 schema:affiliation https://www.grid.ac/institutes/grid.451388.3
    168 schema:familyName Sugimoto
    169 schema:givenName Yoichiro
    170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206446203.06
    171 rdf:type schema:Person
    172 sg:person.0674426730.31 schema:affiliation https://www.grid.ac/institutes/grid.451388.3
    173 schema:familyName Ule
    174 schema:givenName Jernej
    175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674426730.31
    176 rdf:type schema:Person
    177 sg:person.0766526513.53 schema:affiliation https://www.grid.ac/institutes/grid.250464.1
    178 schema:familyName Luscombe
    179 schema:givenName Nicholas M
    180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766526513.53
    181 rdf:type schema:Person
    182 sg:pub.10.1007/978-1-4614-8794-4_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002217024
    183 https://doi.org/10.1007/978-1-4614-8794-4_14
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1007/978-1-60327-015-1_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003842130
    186 https://doi.org/10.1007/978-1-60327-015-1_1
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1038/nature09322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033775404
    189 https://doi.org/10.1038/nature09322
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1038/nature09701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037337046
    192 https://doi.org/10.1038/nature09701
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1038/nature11661 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016106186
    195 https://doi.org/10.1038/nature11661
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1038/nature12756 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023750524
    198 https://doi.org/10.1038/nature12756
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1038/nature12894 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031549764
    201 https://doi.org/10.1038/nature12894
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1038/nature14263 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012087852
    204 https://doi.org/10.1038/nature14263
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1038/nature14280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007638796
    207 https://doi.org/10.1038/nature14280
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1038/nbt.1754 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019307928
    210 https://doi.org/10.1038/nbt.1754
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1038/nbt.2842 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038520013
    213 https://doi.org/10.1038/nbt.2842
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1038/ncomms3971 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013086902
    216 https://doi.org/10.1038/ncomms3971
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1038/ncomms9864 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031013262
    219 https://doi.org/10.1038/ncomms9864
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1038/nmeth.3810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037788559
    222 https://doi.org/10.1038/nmeth.3810
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1038/nmeth.3840 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006396368
    225 https://doi.org/10.1038/nmeth.3840
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1038/nn.2778 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040486700
    228 https://doi.org/10.1038/nn.2778
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1038/nprot.2014.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027820768
    231 https://doi.org/10.1038/nprot.2014.012
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1038/nprot.2014.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026038123
    234 https://doi.org/10.1038/nprot.2014.043
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1038/nprot.2016.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006859463
    237 https://doi.org/10.1038/nprot.2016.011
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1038/nrg1379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001799892
    240 https://doi.org/10.1038/nrg1379
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1038/nrg3049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007002917
    243 https://doi.org/10.1038/nrg3049
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1038/nrm1528 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024180800
    246 https://doi.org/10.1038/nrm1528
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1038/nsmb.1838 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009634080
    249 https://doi.org/10.1038/nsmb.1838
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1038/nsmb.2664 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051127837
    252 https://doi.org/10.1038/nsmb.2664
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1186/gb-2009-10-1-r1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041324905
    255 https://doi.org/10.1186/gb-2009-10-1-r1
    256 rdf:type schema:CreativeWork
    257 https://doi.org/10.1002/wrna.31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005965573
    258 rdf:type schema:CreativeWork
    259 https://doi.org/10.1016/0014-5793(74)80385-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041547562
    260 rdf:type schema:CreativeWork
    261 https://doi.org/10.1016/j.cell.2012.04.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042503982
    262 rdf:type schema:CreativeWork
    263 https://doi.org/10.1016/j.cell.2013.03.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000605111
    264 rdf:type schema:CreativeWork
    265 https://doi.org/10.1016/j.cell.2016.04.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023788536
    266 rdf:type schema:CreativeWork
    267 https://doi.org/10.1016/j.molcel.2014.03.049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034203999
    268 rdf:type schema:CreativeWork
    269 https://doi.org/10.1016/j.molcel.2016.04.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020904631
    270 rdf:type schema:CreativeWork
    271 https://doi.org/10.1016/j.molcel.2016.04.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020420816
    272 rdf:type schema:CreativeWork
    273 https://doi.org/10.1016/j.sbi.2016.01.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017471584
    274 rdf:type schema:CreativeWork
    275 https://doi.org/10.1016/j.ymeth.2013.10.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014406080
    276 rdf:type schema:CreativeWork
    277 https://doi.org/10.1021/ar200051h schema:sameAs https://app.dimensions.ai/details/publication/pub.1013293185
    278 rdf:type schema:CreativeWork
    279 https://doi.org/10.1073/pnas.1017386108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046761431
    280 rdf:type schema:CreativeWork
    281 https://doi.org/10.1073/pnas.76.2.755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043231937
    282 rdf:type schema:CreativeWork
    283 https://doi.org/10.1093/bioinformatics/btp352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023014918
    284 rdf:type schema:CreativeWork
    285 https://doi.org/10.1093/bioinformatics/btv098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011832020
    286 rdf:type schema:CreativeWork
    287 https://doi.org/10.1093/nar/9.1.133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004222010
    288 rdf:type schema:CreativeWork
    289 https://doi.org/10.1101/gr.229102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022792016
    290 rdf:type schema:CreativeWork
    291 https://doi.org/10.1126/science.1090095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046017157
    292 rdf:type schema:CreativeWork
    293 https://doi.org/10.1146/annurev.bi.54.070185.005443 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032202016
    294 rdf:type schema:CreativeWork
    295 https://doi.org/10.1177/12.5.359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063982943
    296 rdf:type schema:CreativeWork
    297 https://doi.org/10.1261/rna.5248604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034010998
    298 rdf:type schema:CreativeWork
    299 https://doi.org/10.14806/ej.17.1.200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067372670
    300 rdf:type schema:CreativeWork
    301 https://doi.org/10.3791/2638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047212383
    302 rdf:type schema:CreativeWork
    303 https://www.grid.ac/institutes/grid.250464.1 schema:alternateName Okinawa Institute of Science and Technology
    304 schema:name Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College London, London, UK.
    305 Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan.
    306 The Francis Crick Institute, London, UK.
    307 rdf:type schema:Organization
    308 https://www.grid.ac/institutes/grid.451388.3 schema:alternateName The Francis Crick Institute
    309 schema:name Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK.
    310 The Francis Crick Institute, London, UK.
    311 rdf:type schema:Organization
    312 https://www.grid.ac/institutes/grid.83440.3b schema:alternateName University College London
    313 schema:name Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College London, London, UK.
    314 The Francis Crick Institute, London, UK.
    315 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...