The Phyre2 web portal for protein modeling, prediction and analysis View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-06

AUTHORS

Lawrence A Kelley, Stefans Mezulis, Christopher M Yates, Mark N Wass, Michael J E Sternberg

ABSTRACT

Phyre2 is a suite of tools available on the web to predict and analyze protein structure, function and mutations. The focus of Phyre2 is to provide biologists with a simple and intuitive interface to state-of-the-art protein bioinformatics tools. Phyre2 replaces Phyre, the original version of the server for which we previously published a paper in Nature Protocols. In this updated protocol, we describe Phyre2, which uses advanced remote homology detection methods to build 3D models, predict ligand binding sites and analyze the effect of amino acid variants (e.g., nonsynonymous SNPs (nsSNPs)) for a user's protein sequence. Users are guided through results by a simple interface at a level of detail they determine. This protocol will guide users from submitting a protein sequence to interpreting the secondary and tertiary structure of their models, their domain composition and model quality. A range of additional available tools is described to find a protein structure in a genome, to submit large number of sequences at once and to automatically run weekly searches for proteins that are difficult to model. The server is available at http://www.sbg.bio.ic.ac.uk/phyre2. A typical structure prediction will be returned between 30 min and 2 h after submission. More... »

PAGES

845-858

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nprot.2015.053

DOI

http://dx.doi.org/10.1038/nprot.2015.053

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001304490

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25950237


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Internet", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Conformation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Imperial College London", 
          "id": "https://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "Structural Bioinformatics Group, Imperial College London, London, UK."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kelley", 
        "givenName": "Lawrence A", 
        "id": "sg:person.01037232756.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037232756.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imperial College London", 
          "id": "https://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "Structural Bioinformatics Group, Imperial College London, London, UK."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mezulis", 
        "givenName": "Stefans", 
        "id": "sg:person.01155421631.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155421631.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imperial College London", 
          "id": "https://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "Structural Bioinformatics Group, Imperial College London, London, UK."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yates", 
        "givenName": "Christopher M", 
        "id": "sg:person.01140653750.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01140653750.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imperial College London", 
          "id": "https://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "Structural Bioinformatics Group, Imperial College London, London, UK."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wass", 
        "givenName": "Mark N", 
        "id": "sg:person.01274037102.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274037102.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imperial College London", 
          "id": "https://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "Structural Bioinformatics Group, Imperial College London, London, UK."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sternberg", 
        "givenName": "Michael J E", 
        "id": "sg:person.0611736450.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611736450.97"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jmb.2004.02.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000651801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btm270", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002096924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gks1243", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002304859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tube.2012.11.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003910732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tube.2012.11.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003910732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2010.5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006999469", 
          "https://doi.org/10.1038/nprot.2010.5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2010.5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006999469", 
          "https://doi.org/10.1038/nprot.2010.5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth0410-248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007489634", 
          "https://doi.org/10.1038/nmeth0410-248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth0410-248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007489634", 
          "https://doi.org/10.1038/nmeth0410-248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.1999.3091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011752304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.24452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012749447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0015237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013218554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcc.20906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013252307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015432789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1818", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017098509", 
          "https://doi.org/10.1038/nmeth.1818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmb.2014.04.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019148200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1110/ps.0242703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020113927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gks539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025280173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gks1266", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029187072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2009.2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029454980", 
          "https://doi.org/10.1038/nprot.2009.2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.22540", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030725232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.22540", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030725232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti770", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031081661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4419-6889-0_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031224365", 
          "https://doi.org/10.1007/978-1-4419-6889-0_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4419-6889-0_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031224365", 
          "https://doi.org/10.1007/978-1-4419-6889-0_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033561833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajhg.2011.03.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035003425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/16.9.776", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035870810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkq406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039761807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkh028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043666429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btl677", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043788446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-13-224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043899154", 
          "https://doi.org/10.1186/1471-2105-13-224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-13-224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043899154", 
          "https://doi.org/10.1186/1471-2105-13-224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkn659", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043972154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2012.085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044328821", 
          "https://doi.org/10.1038/nprot.2012.085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btl147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045555446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti763", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045730496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01256", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046871020", 
          "https://doi.org/10.1038/nature01256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01256", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046871020", 
          "https://doi.org/10.1038/nature01256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01256", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046871020", 
          "https://doi.org/10.1038/nature01256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/25.17.3389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047265454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkm216", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052481822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmb.2010.01.074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052736218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkq383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053018646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkq383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053018646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkh028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059931925"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-06", 
    "datePublishedReg": "2015-06-01", 
    "description": "Phyre2 is a suite of tools available on the web to predict and analyze protein structure, function and mutations. The focus of Phyre2 is to provide biologists with a simple and intuitive interface to state-of-the-art protein bioinformatics tools. Phyre2 replaces Phyre, the original version of the server for which we previously published a paper in Nature Protocols. In this updated protocol, we describe Phyre2, which uses advanced remote homology detection methods to build 3D models, predict ligand binding sites and analyze the effect of amino acid variants (e.g., nonsynonymous SNPs (nsSNPs)) for a user's protein sequence. Users are guided through results by a simple interface at a level of detail they determine. This protocol will guide users from submitting a protein sequence to interpreting the secondary and tertiary structure of their models, their domain composition and model quality. A range of additional available tools is described to find a protein structure in a genome, to submit large number of sequences at once and to automatically run weekly searches for proteins that are difficult to model. The server is available at http://www.sbg.bio.ic.ac.uk/phyre2. A typical structure prediction will be returned between 30 min and 2 h after submission. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nprot.2015.053", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2762179", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2781870", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3956300", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3497647", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2777650", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2772103", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1037502", 
        "issn": [
          "1754-2189", 
          "1750-2799"
        ], 
        "name": "Nature Protocols", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "name": "The Phyre2 web portal for protein modeling, prediction and analysis", 
    "pagination": "845-858", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "063696ab0d12d10beb0ce29243f745dee9fa5f1297e592673ab2fa7892575260"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25950237"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101284307"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nprot.2015.053"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001304490"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nprot.2015.053", 
      "https://app.dimensions.ai/details/publication/pub.1001304490"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000536.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/nprot/journal/v10/n6/full/nprot.2015.053.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nprot.2015.053'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nprot.2015.053'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nprot.2015.053'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nprot.2015.053'


 

This table displays all metadata directly associated to this object as RDF triples.

246 TRIPLES      21 PREDICATES      70 URIs      26 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nprot.2015.053 schema:about N0a970806aac34be4a4529b46fb3ee57b
2 N18698774cbf140dab754e1220c68d405
3 N18735fee13854ce7bf87c6b711cb2cfb
4 N4f220c33352f41d8b3804f7d1d6282c4
5 N931e6a7d94974f718a225e6cb9c770f5
6 anzsrc-for:08
7 anzsrc-for:0801
8 schema:author Naf8cdf05301b4b62af8d1650f78c8f00
9 schema:citation sg:pub.10.1007/978-1-4419-6889-0_11
10 sg:pub.10.1038/nature01256
11 sg:pub.10.1038/nmeth.1818
12 sg:pub.10.1038/nmeth0410-248
13 sg:pub.10.1038/nprot.2009.2
14 sg:pub.10.1038/nprot.2010.5
15 sg:pub.10.1038/nprot.2012.085
16 sg:pub.10.1186/1471-2105-13-224
17 https://doi.org/10.1002/jcc.20906
18 https://doi.org/10.1002/prot.22540
19 https://doi.org/10.1002/prot.24452
20 https://doi.org/10.1006/jmbi.1999.3091
21 https://doi.org/10.1016/j.ajhg.2011.03.004
22 https://doi.org/10.1016/j.jmb.2004.02.002
23 https://doi.org/10.1016/j.jmb.2010.01.074
24 https://doi.org/10.1016/j.jmb.2014.04.026
25 https://doi.org/10.1016/j.tube.2012.11.008
26 https://doi.org/10.1093/bioinformatics/16.9.776
27 https://doi.org/10.1093/bioinformatics/bti125
28 https://doi.org/10.1093/bioinformatics/bti763
29 https://doi.org/10.1093/bioinformatics/bti770
30 https://doi.org/10.1093/bioinformatics/btl147
31 https://doi.org/10.1093/bioinformatics/btl677
32 https://doi.org/10.1093/bioinformatics/btm270
33 https://doi.org/10.1093/bioinformatics/btp302
34 https://doi.org/10.1093/nar/25.17.3389
35 https://doi.org/10.1093/nar/gkh028
36 https://doi.org/10.1093/nar/gkm216
37 https://doi.org/10.1093/nar/gkn659
38 https://doi.org/10.1093/nar/gkq383
39 https://doi.org/10.1093/nar/gkq406
40 https://doi.org/10.1093/nar/gks1243
41 https://doi.org/10.1093/nar/gks1266
42 https://doi.org/10.1093/nar/gks539
43 https://doi.org/10.1110/ps.0242703
44 https://doi.org/10.1371/journal.pone.0015237
45 schema:datePublished 2015-06
46 schema:datePublishedReg 2015-06-01
47 schema:description Phyre2 is a suite of tools available on the web to predict and analyze protein structure, function and mutations. The focus of Phyre2 is to provide biologists with a simple and intuitive interface to state-of-the-art protein bioinformatics tools. Phyre2 replaces Phyre, the original version of the server for which we previously published a paper in Nature Protocols. In this updated protocol, we describe Phyre2, which uses advanced remote homology detection methods to build 3D models, predict ligand binding sites and analyze the effect of amino acid variants (e.g., nonsynonymous SNPs (nsSNPs)) for a user's protein sequence. Users are guided through results by a simple interface at a level of detail they determine. This protocol will guide users from submitting a protein sequence to interpreting the secondary and tertiary structure of their models, their domain composition and model quality. A range of additional available tools is described to find a protein structure in a genome, to submit large number of sequences at once and to automatically run weekly searches for proteins that are difficult to model. The server is available at http://www.sbg.bio.ic.ac.uk/phyre2. A typical structure prediction will be returned between 30 min and 2 h after submission.
48 schema:genre research_article
49 schema:inLanguage en
50 schema:isAccessibleForFree true
51 schema:isPartOf Nc7ff7750691e4b98ba2df2d1b0397057
52 Nd7651f0e109a49faa336de692207edd8
53 sg:journal.1037502
54 schema:name The Phyre2 web portal for protein modeling, prediction and analysis
55 schema:pagination 845-858
56 schema:productId N69d40bd8357b4141b3ad2e752664529e
57 N79fac7930c1a4154a05336cced8d0b3f
58 Na7d0e760926f4092bf91db7729de8c76
59 Nbc11fa40e6254679a874f12bf49f6083
60 Nec50daf7052c4cd6a0fdde6451a2f925
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001304490
62 https://doi.org/10.1038/nprot.2015.053
63 schema:sdDatePublished 2019-04-10T20:51
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher Na0fd6e2f33034f7fb94ccab0f821522a
66 schema:url http://www.nature.com/nprot/journal/v10/n6/full/nprot.2015.053.html
67 sgo:license sg:explorer/license/
68 sgo:sdDataset articles
69 rdf:type schema:ScholarlyArticle
70 N0a970806aac34be4a4529b46fb3ee57b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Software
72 rdf:type schema:DefinedTerm
73 N0dde31192c934c7582174516a231107b rdf:first sg:person.01274037102.74
74 rdf:rest N1dd303cdbca94c27b3e236bf44248c1b
75 N18698774cbf140dab754e1220c68d405 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Protein Conformation
77 rdf:type schema:DefinedTerm
78 N18735fee13854ce7bf87c6b711cb2cfb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Models, Molecular
80 rdf:type schema:DefinedTerm
81 N1dd303cdbca94c27b3e236bf44248c1b rdf:first sg:person.0611736450.97
82 rdf:rest rdf:nil
83 N1f01c46779bd4221b8678d7777d149d5 rdf:first sg:person.01140653750.94
84 rdf:rest N0dde31192c934c7582174516a231107b
85 N4f220c33352f41d8b3804f7d1d6282c4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Internet
87 rdf:type schema:DefinedTerm
88 N69d40bd8357b4141b3ad2e752664529e schema:name doi
89 schema:value 10.1038/nprot.2015.053
90 rdf:type schema:PropertyValue
91 N79fac7930c1a4154a05336cced8d0b3f schema:name nlm_unique_id
92 schema:value 101284307
93 rdf:type schema:PropertyValue
94 N899796c8390a47dfb1674609b19deac2 rdf:first sg:person.01155421631.13
95 rdf:rest N1f01c46779bd4221b8678d7777d149d5
96 N931e6a7d94974f718a225e6cb9c770f5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Computational Biology
98 rdf:type schema:DefinedTerm
99 Na0fd6e2f33034f7fb94ccab0f821522a schema:name Springer Nature - SN SciGraph project
100 rdf:type schema:Organization
101 Na7d0e760926f4092bf91db7729de8c76 schema:name readcube_id
102 schema:value 063696ab0d12d10beb0ce29243f745dee9fa5f1297e592673ab2fa7892575260
103 rdf:type schema:PropertyValue
104 Naf8cdf05301b4b62af8d1650f78c8f00 rdf:first sg:person.01037232756.19
105 rdf:rest N899796c8390a47dfb1674609b19deac2
106 Nbc11fa40e6254679a874f12bf49f6083 schema:name dimensions_id
107 schema:value pub.1001304490
108 rdf:type schema:PropertyValue
109 Nc7ff7750691e4b98ba2df2d1b0397057 schema:volumeNumber 10
110 rdf:type schema:PublicationVolume
111 Nd7651f0e109a49faa336de692207edd8 schema:issueNumber 6
112 rdf:type schema:PublicationIssue
113 Nec50daf7052c4cd6a0fdde6451a2f925 schema:name pubmed_id
114 schema:value 25950237
115 rdf:type schema:PropertyValue
116 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
117 schema:name Information and Computing Sciences
118 rdf:type schema:DefinedTerm
119 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
120 schema:name Artificial Intelligence and Image Processing
121 rdf:type schema:DefinedTerm
122 sg:grant.2762179 http://pending.schema.org/fundedItem sg:pub.10.1038/nprot.2015.053
123 rdf:type schema:MonetaryGrant
124 sg:grant.2772103 http://pending.schema.org/fundedItem sg:pub.10.1038/nprot.2015.053
125 rdf:type schema:MonetaryGrant
126 sg:grant.2777650 http://pending.schema.org/fundedItem sg:pub.10.1038/nprot.2015.053
127 rdf:type schema:MonetaryGrant
128 sg:grant.2781870 http://pending.schema.org/fundedItem sg:pub.10.1038/nprot.2015.053
129 rdf:type schema:MonetaryGrant
130 sg:grant.3497647 http://pending.schema.org/fundedItem sg:pub.10.1038/nprot.2015.053
131 rdf:type schema:MonetaryGrant
132 sg:grant.3956300 http://pending.schema.org/fundedItem sg:pub.10.1038/nprot.2015.053
133 rdf:type schema:MonetaryGrant
134 sg:journal.1037502 schema:issn 1750-2799
135 1754-2189
136 schema:name Nature Protocols
137 rdf:type schema:Periodical
138 sg:person.01037232756.19 schema:affiliation https://www.grid.ac/institutes/grid.7445.2
139 schema:familyName Kelley
140 schema:givenName Lawrence A
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037232756.19
142 rdf:type schema:Person
143 sg:person.01140653750.94 schema:affiliation https://www.grid.ac/institutes/grid.7445.2
144 schema:familyName Yates
145 schema:givenName Christopher M
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01140653750.94
147 rdf:type schema:Person
148 sg:person.01155421631.13 schema:affiliation https://www.grid.ac/institutes/grid.7445.2
149 schema:familyName Mezulis
150 schema:givenName Stefans
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155421631.13
152 rdf:type schema:Person
153 sg:person.01274037102.74 schema:affiliation https://www.grid.ac/institutes/grid.7445.2
154 schema:familyName Wass
155 schema:givenName Mark N
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274037102.74
157 rdf:type schema:Person
158 sg:person.0611736450.97 schema:affiliation https://www.grid.ac/institutes/grid.7445.2
159 schema:familyName Sternberg
160 schema:givenName Michael J E
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611736450.97
162 rdf:type schema:Person
163 sg:pub.10.1007/978-1-4419-6889-0_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031224365
164 https://doi.org/10.1007/978-1-4419-6889-0_11
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/nature01256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046871020
167 https://doi.org/10.1038/nature01256
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/nmeth.1818 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017098509
170 https://doi.org/10.1038/nmeth.1818
171 rdf:type schema:CreativeWork
172 sg:pub.10.1038/nmeth0410-248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007489634
173 https://doi.org/10.1038/nmeth0410-248
174 rdf:type schema:CreativeWork
175 sg:pub.10.1038/nprot.2009.2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029454980
176 https://doi.org/10.1038/nprot.2009.2
177 rdf:type schema:CreativeWork
178 sg:pub.10.1038/nprot.2010.5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006999469
179 https://doi.org/10.1038/nprot.2010.5
180 rdf:type schema:CreativeWork
181 sg:pub.10.1038/nprot.2012.085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044328821
182 https://doi.org/10.1038/nprot.2012.085
183 rdf:type schema:CreativeWork
184 sg:pub.10.1186/1471-2105-13-224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043899154
185 https://doi.org/10.1186/1471-2105-13-224
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1002/jcc.20906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013252307
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1002/prot.22540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030725232
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1002/prot.24452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012749447
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1006/jmbi.1999.3091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011752304
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/j.ajhg.2011.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035003425
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/j.jmb.2004.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000651801
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/j.jmb.2010.01.074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052736218
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/j.jmb.2014.04.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019148200
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/j.tube.2012.11.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003910732
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1093/bioinformatics/16.9.776 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035870810
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1093/bioinformatics/bti125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015432789
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1093/bioinformatics/bti763 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045730496
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1093/bioinformatics/bti770 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031081661
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1093/bioinformatics/btl147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045555446
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1093/bioinformatics/btl677 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043788446
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1093/bioinformatics/btm270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002096924
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1093/bioinformatics/btp302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033561833
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1093/nar/25.17.3389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047265454
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1093/nar/gkh028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043666429
224 https://app.dimensions.ai/details/publication/pub.1059931925
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1093/nar/gkm216 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052481822
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1093/nar/gkn659 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043972154
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1093/nar/gkq383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053018646
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1093/nar/gkq406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039761807
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1093/nar/gks1243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002304859
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1093/nar/gks1266 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029187072
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1093/nar/gks539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025280173
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1110/ps.0242703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020113927
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1371/journal.pone.0015237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013218554
243 rdf:type schema:CreativeWork
244 https://www.grid.ac/institutes/grid.7445.2 schema:alternateName Imperial College London
245 schema:name Structural Bioinformatics Group, Imperial College London, London, UK.
246 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...