NetworkAnalyst for statistical, visual and network-based meta-analysis of gene expression data View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-06

AUTHORS

Jianguo Xia, Erin E Gill, Robert E W Hancock

ABSTRACT

Meta-analysis of gene expression data sets is increasingly performed to help identify robust molecular signatures and to gain insights into underlying biological processes. The complicated nature of such analyses requires both advanced statistics and innovative visualization strategies to support efficient data comparison, interpretation and hypothesis generation. NetworkAnalyst (http://www.networkanalyst.ca) is a comprehensive web-based tool designed to allow bench researchers to perform various common and complex meta-analyses of gene expression data via an intuitive web interface. By coupling well-established statistical procedures with state-of-the-art data visualization techniques, NetworkAnalyst allows researchers to easily navigate large complex gene expression data sets to determine important features, patterns, functions and connections, thus leading to the generation of new biological hypotheses. This protocol provides a step-wise description of how to effectively use NetworkAnalyst to perform network analysis and visualization from gene lists; to perform meta-analysis on gene expression data while taking into account multiple metadata parameters; and, finally, to perform a meta-analysis of multiple gene expression data sets. NetworkAnalyst is designed to be accessible to biologists rather than to specialist bioinformaticians. The complete protocol can be executed in ∼1.5 h. Compared with other similar web-based tools, NetworkAnalyst offers a unique visual analytics experience that enables data analysis within the context of protein-protein interaction networks, heatmaps or chord diagrams. All of these analysis methods provide the user with supporting statistical and functional evidence. More... »

PAGES

823-844

References to SciGraph publications

  • 2014-09. Epiviz: interactive visual analytics for functional genomics data in NATURE METHODS
  • 2010-03. Visualizing biological data—now and in the future in NATURE METHODS
  • 2014-02. voom: precision weights unlock linear model analysis tools for RNA-seq read counts in GENOME BIOLOGY
  • 2014-02. Molecular signatures of antibody responses derived from a systems biology study of five human vaccines in NATURE IMMUNOLOGY
  • 2014-03. Data integration in the era of omics: current and future challenges in BMC SYSTEMS BIOLOGY
  • 2011-06. Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst in NATURE PROTOCOLS
  • 2005. limma: Linear Models for Microarray Data in BIOINFORMATICS AND COMPUTATIONAL BIOLOGY SOLUTIONS USING R AND BIOCONDUCTOR
  • 2012-11. A travel guide to Cytoscape plugins in NATURE METHODS
  • 2012-12. Gene interaction enrichment and network analysis to identify dysregulated pathways and their interactions in complex diseases in BMC SYSTEMS BIOLOGY
  • 2013-10. Integrative approaches for finding modular structure in biological networks in NATURE REVIEWS GENETICS
  • 2006-05. GenePattern 2.0 in NATURE GENETICS
  • 2012-09. Next-generation sequencing data interpretation: enhancing reproducibility and accessibility in NATURE REVIEWS GENETICS
  • 2011-05. Interaction databases on the same page in NATURE BIOTECHNOLOGY
  • 2012-04. Protein interaction data curation: the International Molecular Exchange (IMEx) consortium in NATURE METHODS
  • 2007-11. The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration in NATURE BIOTECHNOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nprot.2015.052

    DOI

    http://dx.doi.org/10.1038/nprot.2015.052

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1027375032

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/25950236


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information Systems", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computational Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Profiling", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Regulatory Networks", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Meta-Analysis as Topic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Protein Interaction Mapping", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Software", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "McGill University", 
              "id": "https://www.grid.ac/institutes/grid.14709.3b", 
              "name": [
                "Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada.", 
                "Institute of Parasitology, and Department of Animal Science, McGill University, Ste. Ann de Bellevue, Qu\u00e9bec, Canada.", 
                "Department of Microbiology and Immunology, McGill University, Montreal, Qu\u00e9bec, Canada."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xia", 
            "givenName": "Jianguo", 
            "id": "sg:person.01060336237.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01060336237.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of British Columbia", 
              "id": "https://www.grid.ac/institutes/grid.17091.3e", 
              "name": [
                "Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gill", 
            "givenName": "Erin E", 
            "id": "sg:person.01010117007.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010117007.17"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Wellcome Sanger Institute", 
              "id": "https://www.grid.ac/institutes/grid.10306.34", 
              "name": [
                "Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada.", 
                "Wellcome Trust Sanger Institute, Hinxton, United Kingdom."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hancock", 
            "givenName": "Robert E W", 
            "id": "sg:person.01125176622.90", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125176622.90"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/1752-0509-6-65", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000447239", 
              "https://doi.org/10.1186/1752-0509-6-65"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1593/neo.07112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001776780"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkh052", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002546052"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkm415", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003264848"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1158/1078-0432.ccr-13-0209", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004962203"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkr930", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005403189"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1931", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005577453", 
              "https://doi.org/10.1038/nmeth.1931"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkj109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007734343"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1158684", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007743479"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkg056", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009644940"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ni.2789", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013008123", 
              "https://doi.org/10.1038/ni.2789"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2014.10.050", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013710164"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2014.10.050", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013710164"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1038/msb.2008.55", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019717008"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1038/msb.2008.55", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019717008"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.092759.109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020163602"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gks374", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020822297"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btt562", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024435170"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/0-387-29362-0_23", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025432622", 
              "https://doi.org/10.1007/0-387-29362-0_23"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2212", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026331197", 
              "https://doi.org/10.1038/nmeth.2212"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nprot.2011.319", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027556089", 
              "https://doi.org/10.1038/nprot.2011.319"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1346", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028001312", 
              "https://doi.org/10.1038/nbt1346"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pmed.0050184", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029308818"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ebiom.2014.10.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029861791"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/pcmr.12126", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030986275"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng0506-500", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033189636", 
              "https://doi.org/10.1038/ng0506-500"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng0506-500", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033189636", 
              "https://doi.org/10.1038/ng0506-500"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2011.02.016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034466938"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkt338", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035444457"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.3038", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036222314", 
              "https://doi.org/10.1038/nmeth.3038"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.1867", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037047893", 
              "https://doi.org/10.1038/nbt.1867"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4049/jimmunol.1001952", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037634473"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/18.suppl_1.s233", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038177541"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg3552", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038725356", 
              "https://doi.org/10.1038/nrg3552"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.f.301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039247021", 
              "https://doi.org/10.1038/nmeth.f.301"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.f.301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039247021", 
              "https://doi.org/10.1038/nmeth.f.301"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg3305", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040199034", 
              "https://doi.org/10.1038/nrg3305"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.1000282", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041945577"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jbi.2008.01.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042407175"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1752-0509-8-s2-i1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042478943", 
              "https://doi.org/10.1186/1752-0509-8-s2-i1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gku443", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044275351"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkn303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044359466"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gks1147", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044402199"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2014-15-2-r29", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045312009", 
              "https://doi.org/10.1186/gb-2014-15-2-r29"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkr378", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045860050"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0019541", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048063378"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkr1265", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050550090"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gku1105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050912818"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btq089", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052112574"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.1239303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052744398"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkh052", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059931949"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2144/03342mt01", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1075245738"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-06", 
        "datePublishedReg": "2015-06-01", 
        "description": "Meta-analysis of gene expression data sets is increasingly performed to help identify robust molecular signatures and to gain insights into underlying biological processes. The complicated nature of such analyses requires both advanced statistics and innovative visualization strategies to support efficient data comparison, interpretation and hypothesis generation. NetworkAnalyst (http://www.networkanalyst.ca) is a comprehensive web-based tool designed to allow bench researchers to perform various common and complex meta-analyses of gene expression data via an intuitive web interface. By coupling well-established statistical procedures with state-of-the-art data visualization techniques, NetworkAnalyst allows researchers to easily navigate large complex gene expression data sets to determine important features, patterns, functions and connections, thus leading to the generation of new biological hypotheses. This protocol provides a step-wise description of how to effectively use NetworkAnalyst to perform network analysis and visualization from gene lists; to perform meta-analysis on gene expression data while taking into account multiple metadata parameters; and, finally, to perform a meta-analysis of multiple gene expression data sets. NetworkAnalyst is designed to be accessible to biologists rather than to specialist bioinformaticians. The complete protocol can be executed in \u223c1.5 h. Compared with other similar web-based tools, NetworkAnalyst offers a unique visual analytics experience that enables data analysis within the context of protein-protein interaction networks, heatmaps or chord diagrams. All of these analysis methods provide the user with supporting statistical and functional evidence. ", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nprot.2015.052", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1037502", 
            "issn": [
              "1754-2189", 
              "1750-2799"
            ], 
            "name": "Nature Protocols", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "10"
          }
        ], 
        "name": "NetworkAnalyst for statistical, visual and network-based meta-analysis of gene expression data", 
        "pagination": "823-844", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "8267aad04377f0886947513bd0e2f2b7ded15468133a47704113532f31ed5ff2"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "25950236"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101284307"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nprot.2015.052"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1027375032"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nprot.2015.052", 
          "https://app.dimensions.ai/details/publication/pub.1027375032"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T17:36", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000537.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/nprot/journal/v10/n6/full/nprot.2015.052.html"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nprot.2015.052'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nprot.2015.052'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nprot.2015.052'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nprot.2015.052'


     

    This table displays all metadata directly associated to this object as RDF triples.

    273 TRIPLES      21 PREDICATES      82 URIs      27 LITERALS      15 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nprot.2015.052 schema:about N030f7225e493480396fa244ecccd2b26
    2 N05112207fcc54fd59cb71862af74c141
    3 N1c0139281de54f05a21ac7a164c7dafd
    4 N1de7dfcab88d48218c11146846cff149
    5 N9205c571decf4cab90ad01e33e6a43a0
    6 Nb7a851e937b94b7d931b48d0480c0437
    7 anzsrc-for:08
    8 anzsrc-for:0806
    9 schema:author Nc9d4f8fbbb854bd6b2fa44b1c9282bc3
    10 schema:citation sg:pub.10.1007/0-387-29362-0_23
    11 sg:pub.10.1038/nbt.1867
    12 sg:pub.10.1038/nbt1346
    13 sg:pub.10.1038/ng0506-500
    14 sg:pub.10.1038/ni.2789
    15 sg:pub.10.1038/nmeth.1931
    16 sg:pub.10.1038/nmeth.2212
    17 sg:pub.10.1038/nmeth.3038
    18 sg:pub.10.1038/nmeth.f.301
    19 sg:pub.10.1038/nprot.2011.319
    20 sg:pub.10.1038/nrg3305
    21 sg:pub.10.1038/nrg3552
    22 sg:pub.10.1186/1752-0509-6-65
    23 sg:pub.10.1186/1752-0509-8-s2-i1
    24 sg:pub.10.1186/gb-2014-15-2-r29
    25 https://doi.org/10.1016/j.cell.2011.02.016
    26 https://doi.org/10.1016/j.cell.2014.10.050
    27 https://doi.org/10.1016/j.ebiom.2014.10.003
    28 https://doi.org/10.1016/j.jbi.2008.01.008
    29 https://doi.org/10.1038/msb.2008.55
    30 https://doi.org/10.1093/bioinformatics/18.suppl_1.s233
    31 https://doi.org/10.1093/bioinformatics/btq089
    32 https://doi.org/10.1093/bioinformatics/btt562
    33 https://doi.org/10.1093/nar/gkg056
    34 https://doi.org/10.1093/nar/gkh052
    35 https://doi.org/10.1093/nar/gkj109
    36 https://doi.org/10.1093/nar/gkm415
    37 https://doi.org/10.1093/nar/gkn303
    38 https://doi.org/10.1093/nar/gkr1265
    39 https://doi.org/10.1093/nar/gkr378
    40 https://doi.org/10.1093/nar/gkr930
    41 https://doi.org/10.1093/nar/gks1147
    42 https://doi.org/10.1093/nar/gks374
    43 https://doi.org/10.1093/nar/gkt338
    44 https://doi.org/10.1093/nar/gku1105
    45 https://doi.org/10.1093/nar/gku443
    46 https://doi.org/10.1101/gr.092759.109
    47 https://doi.org/10.1101/gr.1239303
    48 https://doi.org/10.1111/pcmr.12126
    49 https://doi.org/10.1126/science.1158684
    50 https://doi.org/10.1158/1078-0432.ccr-13-0209
    51 https://doi.org/10.1371/journal.pgen.1000282
    52 https://doi.org/10.1371/journal.pmed.0050184
    53 https://doi.org/10.1371/journal.pone.0019541
    54 https://doi.org/10.1593/neo.07112
    55 https://doi.org/10.2144/03342mt01
    56 https://doi.org/10.4049/jimmunol.1001952
    57 schema:datePublished 2015-06
    58 schema:datePublishedReg 2015-06-01
    59 schema:description Meta-analysis of gene expression data sets is increasingly performed to help identify robust molecular signatures and to gain insights into underlying biological processes. The complicated nature of such analyses requires both advanced statistics and innovative visualization strategies to support efficient data comparison, interpretation and hypothesis generation. NetworkAnalyst (http://www.networkanalyst.ca) is a comprehensive web-based tool designed to allow bench researchers to perform various common and complex meta-analyses of gene expression data via an intuitive web interface. By coupling well-established statistical procedures with state-of-the-art data visualization techniques, NetworkAnalyst allows researchers to easily navigate large complex gene expression data sets to determine important features, patterns, functions and connections, thus leading to the generation of new biological hypotheses. This protocol provides a step-wise description of how to effectively use NetworkAnalyst to perform network analysis and visualization from gene lists; to perform meta-analysis on gene expression data while taking into account multiple metadata parameters; and, finally, to perform a meta-analysis of multiple gene expression data sets. NetworkAnalyst is designed to be accessible to biologists rather than to specialist bioinformaticians. The complete protocol can be executed in ∼1.5 h. Compared with other similar web-based tools, NetworkAnalyst offers a unique visual analytics experience that enables data analysis within the context of protein-protein interaction networks, heatmaps or chord diagrams. All of these analysis methods provide the user with supporting statistical and functional evidence.
    60 schema:genre research_article
    61 schema:inLanguage en
    62 schema:isAccessibleForFree false
    63 schema:isPartOf N1374318d97c542cd931d7986e4066f50
    64 Nf007b2bc29734692a7553cc779eea2cc
    65 sg:journal.1037502
    66 schema:name NetworkAnalyst for statistical, visual and network-based meta-analysis of gene expression data
    67 schema:pagination 823-844
    68 schema:productId N06287b9a35a34cf6bb90f8304cedb4ee
    69 N67a448d1ebb24a1cb3f2dcf6d0a516e0
    70 N955b57f8dc1045b1ae8d7a7d8ea202cd
    71 Nb91136680562452ab311139dc261a463
    72 Ncb362dfd3e30469b8dc7cfd4c5d898e0
    73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027375032
    74 https://doi.org/10.1038/nprot.2015.052
    75 schema:sdDatePublished 2019-04-10T17:36
    76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    77 schema:sdPublisher Nd56fbb7c9ab749ddab88e991c2e6bf96
    78 schema:url http://www.nature.com/nprot/journal/v10/n6/full/nprot.2015.052.html
    79 sgo:license sg:explorer/license/
    80 sgo:sdDataset articles
    81 rdf:type schema:ScholarlyArticle
    82 N030f7225e493480396fa244ecccd2b26 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    83 schema:name Meta-Analysis as Topic
    84 rdf:type schema:DefinedTerm
    85 N05112207fcc54fd59cb71862af74c141 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    86 schema:name Software
    87 rdf:type schema:DefinedTerm
    88 N06287b9a35a34cf6bb90f8304cedb4ee schema:name doi
    89 schema:value 10.1038/nprot.2015.052
    90 rdf:type schema:PropertyValue
    91 N0cdbff5b7d0e426480d3e970c6c4eb6f rdf:first sg:person.01125176622.90
    92 rdf:rest rdf:nil
    93 N1374318d97c542cd931d7986e4066f50 schema:issueNumber 6
    94 rdf:type schema:PublicationIssue
    95 N1c0139281de54f05a21ac7a164c7dafd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    96 schema:name Protein Interaction Mapping
    97 rdf:type schema:DefinedTerm
    98 N1de7dfcab88d48218c11146846cff149 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    99 schema:name Computational Biology
    100 rdf:type schema:DefinedTerm
    101 N67a448d1ebb24a1cb3f2dcf6d0a516e0 schema:name dimensions_id
    102 schema:value pub.1027375032
    103 rdf:type schema:PropertyValue
    104 N9205c571decf4cab90ad01e33e6a43a0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    105 schema:name Gene Regulatory Networks
    106 rdf:type schema:DefinedTerm
    107 N955b57f8dc1045b1ae8d7a7d8ea202cd schema:name nlm_unique_id
    108 schema:value 101284307
    109 rdf:type schema:PropertyValue
    110 Nb7a851e937b94b7d931b48d0480c0437 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    111 schema:name Gene Expression Profiling
    112 rdf:type schema:DefinedTerm
    113 Nb91136680562452ab311139dc261a463 schema:name readcube_id
    114 schema:value 8267aad04377f0886947513bd0e2f2b7ded15468133a47704113532f31ed5ff2
    115 rdf:type schema:PropertyValue
    116 Nc9d4f8fbbb854bd6b2fa44b1c9282bc3 rdf:first sg:person.01060336237.24
    117 rdf:rest Ncb392bc914674a77841afbfcae43d176
    118 Ncb362dfd3e30469b8dc7cfd4c5d898e0 schema:name pubmed_id
    119 schema:value 25950236
    120 rdf:type schema:PropertyValue
    121 Ncb392bc914674a77841afbfcae43d176 rdf:first sg:person.01010117007.17
    122 rdf:rest N0cdbff5b7d0e426480d3e970c6c4eb6f
    123 Nd56fbb7c9ab749ddab88e991c2e6bf96 schema:name Springer Nature - SN SciGraph project
    124 rdf:type schema:Organization
    125 Nf007b2bc29734692a7553cc779eea2cc schema:volumeNumber 10
    126 rdf:type schema:PublicationVolume
    127 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    128 schema:name Information and Computing Sciences
    129 rdf:type schema:DefinedTerm
    130 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
    131 schema:name Information Systems
    132 rdf:type schema:DefinedTerm
    133 sg:journal.1037502 schema:issn 1750-2799
    134 1754-2189
    135 schema:name Nature Protocols
    136 rdf:type schema:Periodical
    137 sg:person.01010117007.17 schema:affiliation https://www.grid.ac/institutes/grid.17091.3e
    138 schema:familyName Gill
    139 schema:givenName Erin E
    140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010117007.17
    141 rdf:type schema:Person
    142 sg:person.01060336237.24 schema:affiliation https://www.grid.ac/institutes/grid.14709.3b
    143 schema:familyName Xia
    144 schema:givenName Jianguo
    145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01060336237.24
    146 rdf:type schema:Person
    147 sg:person.01125176622.90 schema:affiliation https://www.grid.ac/institutes/grid.10306.34
    148 schema:familyName Hancock
    149 schema:givenName Robert E W
    150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125176622.90
    151 rdf:type schema:Person
    152 sg:pub.10.1007/0-387-29362-0_23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025432622
    153 https://doi.org/10.1007/0-387-29362-0_23
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1038/nbt.1867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037047893
    156 https://doi.org/10.1038/nbt.1867
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1038/nbt1346 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028001312
    159 https://doi.org/10.1038/nbt1346
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1038/ng0506-500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033189636
    162 https://doi.org/10.1038/ng0506-500
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1038/ni.2789 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013008123
    165 https://doi.org/10.1038/ni.2789
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1038/nmeth.1931 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005577453
    168 https://doi.org/10.1038/nmeth.1931
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1038/nmeth.2212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026331197
    171 https://doi.org/10.1038/nmeth.2212
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1038/nmeth.3038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036222314
    174 https://doi.org/10.1038/nmeth.3038
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1038/nmeth.f.301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039247021
    177 https://doi.org/10.1038/nmeth.f.301
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1038/nprot.2011.319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027556089
    180 https://doi.org/10.1038/nprot.2011.319
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1038/nrg3305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040199034
    183 https://doi.org/10.1038/nrg3305
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1038/nrg3552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038725356
    186 https://doi.org/10.1038/nrg3552
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1186/1752-0509-6-65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000447239
    189 https://doi.org/10.1186/1752-0509-6-65
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1186/1752-0509-8-s2-i1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042478943
    192 https://doi.org/10.1186/1752-0509-8-s2-i1
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1186/gb-2014-15-2-r29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045312009
    195 https://doi.org/10.1186/gb-2014-15-2-r29
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1016/j.cell.2011.02.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034466938
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1016/j.cell.2014.10.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013710164
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1016/j.ebiom.2014.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029861791
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1016/j.jbi.2008.01.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042407175
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1038/msb.2008.55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019717008
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1093/bioinformatics/18.suppl_1.s233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038177541
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1093/bioinformatics/btq089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052112574
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1093/bioinformatics/btt562 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024435170
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1093/nar/gkg056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009644940
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1093/nar/gkh052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002546052
    216 https://app.dimensions.ai/details/publication/pub.1059931949
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1093/nar/gkj109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007734343
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1093/nar/gkm415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003264848
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1093/nar/gkn303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044359466
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1093/nar/gkr1265 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050550090
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1093/nar/gkr378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045860050
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1093/nar/gkr930 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005403189
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1093/nar/gks1147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044402199
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1093/nar/gks374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020822297
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1093/nar/gkt338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035444457
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1093/nar/gku1105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050912818
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1093/nar/gku443 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044275351
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1101/gr.092759.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020163602
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1101/gr.1239303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052744398
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1111/pcmr.12126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030986275
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1126/science.1158684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007743479
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1158/1078-0432.ccr-13-0209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004962203
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1371/journal.pgen.1000282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041945577
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1371/journal.pmed.0050184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029308818
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1371/journal.pone.0019541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048063378
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.1593/neo.07112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001776780
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.2144/03342mt01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075245738
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.4049/jimmunol.1001952 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037634473
    261 rdf:type schema:CreativeWork
    262 https://www.grid.ac/institutes/grid.10306.34 schema:alternateName Wellcome Sanger Institute
    263 schema:name Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada.
    264 Wellcome Trust Sanger Institute, Hinxton, United Kingdom.
    265 rdf:type schema:Organization
    266 https://www.grid.ac/institutes/grid.14709.3b schema:alternateName McGill University
    267 schema:name Department of Microbiology and Immunology, McGill University, Montreal, Québec, Canada.
    268 Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada.
    269 Institute of Parasitology, and Department of Animal Science, McGill University, Ste. Ann de Bellevue, Québec, Canada.
    270 rdf:type schema:Organization
    271 https://www.grid.ac/institutes/grid.17091.3e schema:alternateName University of British Columbia
    272 schema:name Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada.
    273 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...