Ontology type: schema:ScholarlyArticle
2012-03-01
AUTHORSAstrid Junker, Hendrik Rohn, Tobias Czauderna, Christian Klukas, Anja Hartmann, Falk Schreiber
ABSTRACTThe Systems Biology Graphical Notation (SBGN) is an emerging standard for the uniform representation of biological processes and networks. By using examples from gene regulation and metabolism, this protocol shows the construction of SBGN maps by either manual drawing or automatic translation using the tool SBGN-ED. In addition, it discusses the enrichment of SBGN maps with different kinds of -omics data to bring numerical data into the context of these networks in order to facilitate the interpretation of experimental data. Finally, the export of such maps to public websites, including clickable images, supports the communication of results within the scientific community. With regard to the described functionalities, other tools partially overlap with SBGN-ED. However, currently, SBGN-ED is the only tool that combines all of these functions, including the representation in SBGN, data mapping and website export. This protocol aims to assist scientists with the step-by-step procedure, which altogether takes ∼90 min. More... »
PAGES579
http://scigraph.springernature.com/pub.10.1038/nprot.2012.002
DOIhttp://dx.doi.org/10.1038/nprot.2012.002
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1014648827
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/22383037
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Genetics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biological Sciences",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Computer Graphics",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Gene Regulatory Networks",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Information Dissemination",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Internet",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Metabolic Networks and Pathways",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Software",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Systems Biology",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institute of Plant Genetics and Crop Plant Research",
"id": "https://www.grid.ac/institutes/grid.418934.3",
"name": [
"Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben (IPK), Gatersleben, Germany."
],
"type": "Organization"
},
"familyName": "Junker",
"givenName": "Astrid",
"id": "sg:person.0707017147.12",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707017147.12"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Plant Genetics and Crop Plant Research",
"id": "https://www.grid.ac/institutes/grid.418934.3",
"name": [
"Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben (IPK), Gatersleben, Germany."
],
"type": "Organization"
},
"familyName": "Rohn",
"givenName": "Hendrik",
"id": "sg:person.01321351313.69",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01321351313.69"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Plant Genetics and Crop Plant Research",
"id": "https://www.grid.ac/institutes/grid.418934.3",
"name": [
"Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben (IPK), Gatersleben, Germany."
],
"type": "Organization"
},
"familyName": "Czauderna",
"givenName": "Tobias",
"id": "sg:person.01367464513.01",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367464513.01"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Plant Genetics and Crop Plant Research",
"id": "https://www.grid.ac/institutes/grid.418934.3",
"name": [
"Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben (IPK), Gatersleben, Germany."
],
"type": "Organization"
},
"familyName": "Klukas",
"givenName": "Christian",
"id": "sg:person.01230250433.84",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230250433.84"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Plant Genetics and Crop Plant Research",
"id": "https://www.grid.ac/institutes/grid.418934.3",
"name": [
"Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben (IPK), Gatersleben, Germany."
],
"type": "Organization"
},
"familyName": "Hartmann",
"givenName": "Anja",
"id": "sg:person.01342503602.38",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342503602.38"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Martin Luther University Halle-Wittenberg",
"id": "https://www.grid.ac/institutes/grid.9018.0",
"name": [
"Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben (IPK), Gatersleben, Germany.",
"Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle, Germany."
],
"type": "Organization"
},
"familyName": "Schreiber",
"givenName": "Falk",
"id": "sg:person.0712477053.24",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712477053.24"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1186/1752-0509-1-s1-p72",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000320350",
"https://doi.org/10.1186/1752-0509-1-s1-p72"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1038/msb.2010.108",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000444361"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1038/msb.2010.108",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000444361"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/nar/gkm835",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001186870"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nmeth.1436",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002033837",
"https://doi.org/10.1038/nmeth.1436"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nmeth.1436",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002033837",
"https://doi.org/10.1038/nmeth.1436"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/bioinformatics/bth200",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005746991"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1073/pnas.0712364105",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006659750"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/bioinformatics/btp061",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009225972"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1105/tpc.105.039925",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009550838"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.drudis.2010.02.012",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012242109"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.tplants.2010.03.005",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012791424"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1039/b906951h",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013181339"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/1471-2105-11-121",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013268665",
"https://doi.org/10.1186/1471-2105-11-121"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/35002125",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016534270",
"https://doi.org/10.1038/35002125"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/35002125",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016534270",
"https://doi.org/10.1038/35002125"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/nar/28.1.27",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017305614"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nbt.1558",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020951156",
"https://doi.org/10.1038/nbt.1558"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nbt.1558",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020951156",
"https://doi.org/10.1038/nbt.1558"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/1471-2105-9-399",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027275936",
"https://doi.org/10.1186/1471-2105-9-399"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/bioinformatics/btq407",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031831416"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/bioinformatics/btq154",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035918802"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/bioinformatics/btm553",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038855504"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/nar/gkq352",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039036472"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/nar/gkq352",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039036472"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/bioinformatics/btm401",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039887750"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11103-004-2525-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042328084",
"https://doi.org/10.1007/s11103-004-2525-8"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/nar/gkr1004",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042402197"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/bioinformatics/btl520",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042652549"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1104/pp.104.046367",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048724335"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1099/mic.0.035790-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060394770"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/jproc.2008.925458",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061296985"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1147/rd.506.0561",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1063182923"
],
"type": "CreativeWork"
}
],
"datePublished": "2012-03-01",
"datePublishedReg": "2012-03-01",
"description": "The Systems Biology Graphical Notation (SBGN) is an emerging standard for the uniform representation of biological processes and networks. By using examples from gene regulation and metabolism, this protocol shows the construction of SBGN maps by either manual drawing or automatic translation using the tool SBGN-ED. In addition, it discusses the enrichment of SBGN maps with different kinds of -omics data to bring numerical data into the context of these networks in order to facilitate the interpretation of experimental data. Finally, the export of such maps to public websites, including clickable images, supports the communication of results within the scientific community. With regard to the described functionalities, other tools partially overlap with SBGN-ED. However, currently, SBGN-ED is the only tool that combines all of these functions, including the representation in SBGN, data mapping and website export. This protocol aims to assist scientists with the step-by-step procedure, which altogether takes \u223c90 min.",
"genre": "research_article",
"id": "sg:pub.10.1038/nprot.2012.002",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1037502",
"issn": [
"1754-2189",
"1750-2799"
],
"name": "Nature Protocols",
"type": "Periodical"
},
{
"issueNumber": "3",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "7"
}
],
"name": "Creating interactive, web-based and data-enriched maps with the Systems Biology Graphical Notation",
"pagination": "579",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"45c9e7adcf373de4dd2fec610678a00cc407fcbd87c2cf4f57e9c5e0210e3ee4"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"22383037"
]
},
{
"name": "nlm_unique_id",
"type": "PropertyValue",
"value": [
"101284307"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1038/nprot.2012.002"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1014648827"
]
}
],
"sameAs": [
"https://doi.org/10.1038/nprot.2012.002",
"https://app.dimensions.ai/details/publication/pub.1014648827"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-10T21:25",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000435.jsonl",
"type": "ScholarlyArticle",
"url": "https://www.nature.com/articles/nprot.2012.002"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nprot.2012.002'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nprot.2012.002'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nprot.2012.002'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nprot.2012.002'
This table displays all metadata directly associated to this object as RDF triples.
227 TRIPLES
21 PREDICATES
63 URIs
27 LITERALS
16 BLANK NODES