Creating interactive, web-based and data-enriched maps with the Systems Biology Graphical Notation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-03-01

AUTHORS

Astrid Junker, Hendrik Rohn, Tobias Czauderna, Christian Klukas, Anja Hartmann, Falk Schreiber

ABSTRACT

The Systems Biology Graphical Notation (SBGN) is an emerging standard for the uniform representation of biological processes and networks. By using examples from gene regulation and metabolism, this protocol shows the construction of SBGN maps by either manual drawing or automatic translation using the tool SBGN-ED. In addition, it discusses the enrichment of SBGN maps with different kinds of -omics data to bring numerical data into the context of these networks in order to facilitate the interpretation of experimental data. Finally, the export of such maps to public websites, including clickable images, supports the communication of results within the scientific community. With regard to the described functionalities, other tools partially overlap with SBGN-ED. However, currently, SBGN-ED is the only tool that combines all of these functions, including the representation in SBGN, data mapping and website export. This protocol aims to assist scientists with the step-by-step procedure, which altogether takes ∼90 min. More... »

PAGES

579

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nprot.2012.002

DOI

http://dx.doi.org/10.1038/nprot.2012.002

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1014648827

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22383037


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Graphics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Regulatory Networks", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Information Dissemination", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Internet", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metabolic Networks and Pathways", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Systems Biology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Plant Genetics and Crop Plant Research", 
          "id": "https://www.grid.ac/institutes/grid.418934.3", 
          "name": [
            "Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben (IPK), Gatersleben, Germany."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Junker", 
        "givenName": "Astrid", 
        "id": "sg:person.0707017147.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707017147.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Plant Genetics and Crop Plant Research", 
          "id": "https://www.grid.ac/institutes/grid.418934.3", 
          "name": [
            "Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben (IPK), Gatersleben, Germany."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rohn", 
        "givenName": "Hendrik", 
        "id": "sg:person.01321351313.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01321351313.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Plant Genetics and Crop Plant Research", 
          "id": "https://www.grid.ac/institutes/grid.418934.3", 
          "name": [
            "Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben (IPK), Gatersleben, Germany."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Czauderna", 
        "givenName": "Tobias", 
        "id": "sg:person.01367464513.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367464513.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Plant Genetics and Crop Plant Research", 
          "id": "https://www.grid.ac/institutes/grid.418934.3", 
          "name": [
            "Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben (IPK), Gatersleben, Germany."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Klukas", 
        "givenName": "Christian", 
        "id": "sg:person.01230250433.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230250433.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Plant Genetics and Crop Plant Research", 
          "id": "https://www.grid.ac/institutes/grid.418934.3", 
          "name": [
            "Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben (IPK), Gatersleben, Germany."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hartmann", 
        "givenName": "Anja", 
        "id": "sg:person.01342503602.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342503602.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Martin Luther University Halle-Wittenberg", 
          "id": "https://www.grid.ac/institutes/grid.9018.0", 
          "name": [
            "Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben (IPK), Gatersleben, Germany.", 
            "Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle, Germany."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schreiber", 
        "givenName": "Falk", 
        "id": "sg:person.0712477053.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712477053.24"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1752-0509-1-s1-p72", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000320350", 
          "https://doi.org/10.1186/1752-0509-1-s1-p72"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb.2010.108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000444361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb.2010.108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000444361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkm835", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001186870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002033837", 
          "https://doi.org/10.1038/nmeth.1436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002033837", 
          "https://doi.org/10.1038/nmeth.1436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005746991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0712364105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006659750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009225972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1105/tpc.105.039925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009550838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.drudis.2010.02.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012242109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tplants.2010.03.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012791424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b906951h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013181339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-11-121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013268665", 
          "https://doi.org/10.1186/1471-2105-11-121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35002125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016534270", 
          "https://doi.org/10.1038/35002125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35002125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016534270", 
          "https://doi.org/10.1038/35002125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/28.1.27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017305614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.1558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020951156", 
          "https://doi.org/10.1038/nbt.1558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.1558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020951156", 
          "https://doi.org/10.1038/nbt.1558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027275936", 
          "https://doi.org/10.1186/1471-2105-9-399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btq407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031831416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btq154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035918802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btm553", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038855504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkq352", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039036472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkq352", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039036472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btm401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039887750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11103-004-2525-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042328084", 
          "https://doi.org/10.1007/s11103-004-2525-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkr1004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042402197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btl520", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042652549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.104.046367", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048724335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/mic.0.035790-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060394770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jproc.2008.925458", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061296985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1147/rd.506.0561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063182923"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-03-01", 
    "datePublishedReg": "2012-03-01", 
    "description": "The Systems Biology Graphical Notation (SBGN) is an emerging standard for the uniform representation of biological processes and networks. By using examples from gene regulation and metabolism, this protocol shows the construction of SBGN maps by either manual drawing or automatic translation using the tool SBGN-ED. In addition, it discusses the enrichment of SBGN maps with different kinds of -omics data to bring numerical data into the context of these networks in order to facilitate the interpretation of experimental data. Finally, the export of such maps to public websites, including clickable images, supports the communication of results within the scientific community. With regard to the described functionalities, other tools partially overlap with SBGN-ED. However, currently, SBGN-ED is the only tool that combines all of these functions, including the representation in SBGN, data mapping and website export. This protocol aims to assist scientists with the step-by-step procedure, which altogether takes \u223c90 min.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nprot.2012.002", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1037502", 
        "issn": [
          "1754-2189", 
          "1750-2799"
        ], 
        "name": "Nature Protocols", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "Creating interactive, web-based and data-enriched maps with the Systems Biology Graphical Notation", 
    "pagination": "579", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "45c9e7adcf373de4dd2fec610678a00cc407fcbd87c2cf4f57e9c5e0210e3ee4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22383037"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101284307"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nprot.2012.002"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1014648827"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nprot.2012.002", 
      "https://app.dimensions.ai/details/publication/pub.1014648827"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000435.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nprot.2012.002"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nprot.2012.002'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nprot.2012.002'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nprot.2012.002'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nprot.2012.002'


 

This table displays all metadata directly associated to this object as RDF triples.

227 TRIPLES      21 PREDICATES      63 URIs      27 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nprot.2012.002 schema:about N03061359188e4d009997daaeb6ee62d1
2 N4c1c23835c4743bbbaed514ada47e2e8
3 N7323259f88414432be2d6b37fe809392
4 Na212bd09f1f44f5c95bf87d6174c0c2c
5 Na4e67ba97fec490192e2d3f779d23c1e
6 Na9281e265e8541bba9708d9f1727004e
7 Nd3e183b4e29147d3a0bb9b7df0afe0ba
8 anzsrc-for:06
9 anzsrc-for:0604
10 schema:author N6c23b22ee381474e9450fdad053016a7
11 schema:citation sg:pub.10.1007/s11103-004-2525-8
12 sg:pub.10.1038/35002125
13 sg:pub.10.1038/nbt.1558
14 sg:pub.10.1038/nmeth.1436
15 sg:pub.10.1186/1471-2105-11-121
16 sg:pub.10.1186/1471-2105-9-399
17 sg:pub.10.1186/1752-0509-1-s1-p72
18 https://doi.org/10.1016/j.drudis.2010.02.012
19 https://doi.org/10.1016/j.tplants.2010.03.005
20 https://doi.org/10.1038/msb.2010.108
21 https://doi.org/10.1039/b906951h
22 https://doi.org/10.1073/pnas.0712364105
23 https://doi.org/10.1093/bioinformatics/bth200
24 https://doi.org/10.1093/bioinformatics/btl520
25 https://doi.org/10.1093/bioinformatics/btm401
26 https://doi.org/10.1093/bioinformatics/btm553
27 https://doi.org/10.1093/bioinformatics/btp061
28 https://doi.org/10.1093/bioinformatics/btq154
29 https://doi.org/10.1093/bioinformatics/btq407
30 https://doi.org/10.1093/nar/28.1.27
31 https://doi.org/10.1093/nar/gkm835
32 https://doi.org/10.1093/nar/gkq352
33 https://doi.org/10.1093/nar/gkr1004
34 https://doi.org/10.1099/mic.0.035790-0
35 https://doi.org/10.1104/pp.104.046367
36 https://doi.org/10.1105/tpc.105.039925
37 https://doi.org/10.1109/jproc.2008.925458
38 https://doi.org/10.1147/rd.506.0561
39 schema:datePublished 2012-03-01
40 schema:datePublishedReg 2012-03-01
41 schema:description The Systems Biology Graphical Notation (SBGN) is an emerging standard for the uniform representation of biological processes and networks. By using examples from gene regulation and metabolism, this protocol shows the construction of SBGN maps by either manual drawing or automatic translation using the tool SBGN-ED. In addition, it discusses the enrichment of SBGN maps with different kinds of -omics data to bring numerical data into the context of these networks in order to facilitate the interpretation of experimental data. Finally, the export of such maps to public websites, including clickable images, supports the communication of results within the scientific community. With regard to the described functionalities, other tools partially overlap with SBGN-ED. However, currently, SBGN-ED is the only tool that combines all of these functions, including the representation in SBGN, data mapping and website export. This protocol aims to assist scientists with the step-by-step procedure, which altogether takes ∼90 min.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree false
45 schema:isPartOf N09602ec853014ffd9faf6af6315c5459
46 N721a8b3a42ce425b991e7a913c2e8cc3
47 sg:journal.1037502
48 schema:name Creating interactive, web-based and data-enriched maps with the Systems Biology Graphical Notation
49 schema:pagination 579
50 schema:productId N197e8dfb8b904117beb5fa42cd02c9a4
51 N361ea760683c42e1bed5dc843538a7f9
52 N3c219b1036d943088bddb16b962c4992
53 N53316fe86ed24e029ab49728a59b76e2
54 N7a2e6c46afb04993aba4fc78acec641c
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014648827
56 https://doi.org/10.1038/nprot.2012.002
57 schema:sdDatePublished 2019-04-10T21:25
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N9339863c882d4ea396eb282acf78265a
60 schema:url https://www.nature.com/articles/nprot.2012.002
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N03061359188e4d009997daaeb6ee62d1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
65 schema:name Information Dissemination
66 rdf:type schema:DefinedTerm
67 N0348e6823ee24e4591871dcbba5b5e6e rdf:first sg:person.01342503602.38
68 rdf:rest N7e02e051e679437eb97434a82f97fc10
69 N09602ec853014ffd9faf6af6315c5459 schema:volumeNumber 7
70 rdf:type schema:PublicationVolume
71 N0ea6295f964e493e9fdd13cd3d08adc1 rdf:first sg:person.01230250433.84
72 rdf:rest N0348e6823ee24e4591871dcbba5b5e6e
73 N10ab9be2efd54d33ac8025b948469b71 rdf:first sg:person.01321351313.69
74 rdf:rest N52cf8d2029f94b988393312e5a60cafb
75 N197e8dfb8b904117beb5fa42cd02c9a4 schema:name nlm_unique_id
76 schema:value 101284307
77 rdf:type schema:PropertyValue
78 N361ea760683c42e1bed5dc843538a7f9 schema:name readcube_id
79 schema:value 45c9e7adcf373de4dd2fec610678a00cc407fcbd87c2cf4f57e9c5e0210e3ee4
80 rdf:type schema:PropertyValue
81 N3c219b1036d943088bddb16b962c4992 schema:name dimensions_id
82 schema:value pub.1014648827
83 rdf:type schema:PropertyValue
84 N4c1c23835c4743bbbaed514ada47e2e8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Software
86 rdf:type schema:DefinedTerm
87 N52cf8d2029f94b988393312e5a60cafb rdf:first sg:person.01367464513.01
88 rdf:rest N0ea6295f964e493e9fdd13cd3d08adc1
89 N53316fe86ed24e029ab49728a59b76e2 schema:name doi
90 schema:value 10.1038/nprot.2012.002
91 rdf:type schema:PropertyValue
92 N6c23b22ee381474e9450fdad053016a7 rdf:first sg:person.0707017147.12
93 rdf:rest N10ab9be2efd54d33ac8025b948469b71
94 N721a8b3a42ce425b991e7a913c2e8cc3 schema:issueNumber 3
95 rdf:type schema:PublicationIssue
96 N7323259f88414432be2d6b37fe809392 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Metabolic Networks and Pathways
98 rdf:type schema:DefinedTerm
99 N7a2e6c46afb04993aba4fc78acec641c schema:name pubmed_id
100 schema:value 22383037
101 rdf:type schema:PropertyValue
102 N7e02e051e679437eb97434a82f97fc10 rdf:first sg:person.0712477053.24
103 rdf:rest rdf:nil
104 N9339863c882d4ea396eb282acf78265a schema:name Springer Nature - SN SciGraph project
105 rdf:type schema:Organization
106 Na212bd09f1f44f5c95bf87d6174c0c2c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Computer Graphics
108 rdf:type schema:DefinedTerm
109 Na4e67ba97fec490192e2d3f779d23c1e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Internet
111 rdf:type schema:DefinedTerm
112 Na9281e265e8541bba9708d9f1727004e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Systems Biology
114 rdf:type schema:DefinedTerm
115 Nd3e183b4e29147d3a0bb9b7df0afe0ba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Gene Regulatory Networks
117 rdf:type schema:DefinedTerm
118 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
119 schema:name Biological Sciences
120 rdf:type schema:DefinedTerm
121 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
122 schema:name Genetics
123 rdf:type schema:DefinedTerm
124 sg:journal.1037502 schema:issn 1750-2799
125 1754-2189
126 schema:name Nature Protocols
127 rdf:type schema:Periodical
128 sg:person.01230250433.84 schema:affiliation https://www.grid.ac/institutes/grid.418934.3
129 schema:familyName Klukas
130 schema:givenName Christian
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230250433.84
132 rdf:type schema:Person
133 sg:person.01321351313.69 schema:affiliation https://www.grid.ac/institutes/grid.418934.3
134 schema:familyName Rohn
135 schema:givenName Hendrik
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01321351313.69
137 rdf:type schema:Person
138 sg:person.01342503602.38 schema:affiliation https://www.grid.ac/institutes/grid.418934.3
139 schema:familyName Hartmann
140 schema:givenName Anja
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342503602.38
142 rdf:type schema:Person
143 sg:person.01367464513.01 schema:affiliation https://www.grid.ac/institutes/grid.418934.3
144 schema:familyName Czauderna
145 schema:givenName Tobias
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367464513.01
147 rdf:type schema:Person
148 sg:person.0707017147.12 schema:affiliation https://www.grid.ac/institutes/grid.418934.3
149 schema:familyName Junker
150 schema:givenName Astrid
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707017147.12
152 rdf:type schema:Person
153 sg:person.0712477053.24 schema:affiliation https://www.grid.ac/institutes/grid.9018.0
154 schema:familyName Schreiber
155 schema:givenName Falk
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712477053.24
157 rdf:type schema:Person
158 sg:pub.10.1007/s11103-004-2525-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042328084
159 https://doi.org/10.1007/s11103-004-2525-8
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/35002125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016534270
162 https://doi.org/10.1038/35002125
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/nbt.1558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020951156
165 https://doi.org/10.1038/nbt.1558
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/nmeth.1436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002033837
168 https://doi.org/10.1038/nmeth.1436
169 rdf:type schema:CreativeWork
170 sg:pub.10.1186/1471-2105-11-121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013268665
171 https://doi.org/10.1186/1471-2105-11-121
172 rdf:type schema:CreativeWork
173 sg:pub.10.1186/1471-2105-9-399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027275936
174 https://doi.org/10.1186/1471-2105-9-399
175 rdf:type schema:CreativeWork
176 sg:pub.10.1186/1752-0509-1-s1-p72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000320350
177 https://doi.org/10.1186/1752-0509-1-s1-p72
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.drudis.2010.02.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012242109
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.tplants.2010.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012791424
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1038/msb.2010.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000444361
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1039/b906951h schema:sameAs https://app.dimensions.ai/details/publication/pub.1013181339
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1073/pnas.0712364105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006659750
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1093/bioinformatics/bth200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005746991
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1093/bioinformatics/btl520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042652549
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1093/bioinformatics/btm401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039887750
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1093/bioinformatics/btm553 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038855504
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1093/bioinformatics/btp061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009225972
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1093/bioinformatics/btq154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035918802
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1093/bioinformatics/btq407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031831416
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1093/nar/28.1.27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017305614
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1093/nar/gkm835 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001186870
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1093/nar/gkq352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039036472
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1093/nar/gkr1004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042402197
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1099/mic.0.035790-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060394770
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1104/pp.104.046367 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048724335
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1105/tpc.105.039925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009550838
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1109/jproc.2008.925458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061296985
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1147/rd.506.0561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063182923
220 rdf:type schema:CreativeWork
221 https://www.grid.ac/institutes/grid.418934.3 schema:alternateName Institute of Plant Genetics and Crop Plant Research
222 schema:name Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben (IPK), Gatersleben, Germany.
223 rdf:type schema:Organization
224 https://www.grid.ac/institutes/grid.9018.0 schema:alternateName Martin Luther University Halle-Wittenberg
225 schema:name Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle, Germany.
226 Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben (IPK), Gatersleben, Germany.
227 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...